1
|
Zhou QY, Pan JQ, Liu W, Jiang ZT, Gao FY, Zhao ZW, Tang CK. Angiotensin II: A novel biomarker in vascular diseases. Clin Chim Acta 2025; 568:120154. [PMID: 39855324 DOI: 10.1016/j.cca.2025.120154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
The renin-angiotensin system (RAS), composed mainly of renin, angiotensin, and aldosterone, is a key endocrine pathway involved in cardiovascular activity regulation. Under physiological conditions, the RAS plays a vital role in water and salt metabolism, blood pressure regulation, and electrolyte balance. Angiotensin II (Ang II) is the most important active component of the RAS, and its receptors are concentrated in vascular, pulmonary, cardiac, and renal tissues in vivo. Moreover, Ang II is closely associated with the development of vascular lesions. Ang II expression is closely associated with atherosclerosis, aortic aneurysm/dissection, ischemic stroke, hypertension, pulmonary hypertension, and type 2 diabetes mellitus. Given the significant pathophysiological role of Ang II in vascular diseases and the availability of advanced detection methods, Ang II holds promise as a reliable biomarker and therapeutic target in clinical settings. This review summarizes the mechanisms through which Ang II contributes to different vascular diseases and discusses its potential application as a biomarker for disease diagnosis.
Collapse
Affiliation(s)
- Qin-Yi Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China; The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Jin-Qian Pan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China
| | - Wang Liu
- The Affiliated Nanhua Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China
| | - Zhen-Tao Jiang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Fang-Ya Gao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Zhen-Wang Zhao
- School of Basic Medicine, Health Science Center, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China.
| |
Collapse
|
2
|
Rodrigues AF, Boreggio L, Lahuta T, Qadri F, Alenina N, Barros CC, Todiras M, Bader M. Renal damage-induced hepcidin accumulation contributes to anemia in angiotensinogen-deficient mice. Clin Sci (Lond) 2025; 139:CS20241789. [PMID: 39869503 DOI: 10.1042/cs20241789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Angiotensin II (Ang II) is the most active peptide hormone produced by the renin-angiotensin system (RAS). Genetic deletion of genes that ultimately restrict Ang II formation has been shown to result in marked anemia in mice. In this study, adult mice with a genetic deletion of the RAS precursor protein angiotensinogen (Agt-KO) were used. Experimental analyses included capillary hematocrit, hemogram, plasma and tissue iron quantifications, expression analyses of genes encoding relevant proteins for body iron homeostasis in different organs, as well as plasma and urine hepcidin quantifications. As previously reported, Agt-KO were anemic with reduced red blood cell counts. Interestingly, we found that they presented microcytic anemia based on the reduced red blood cell volume. In agreement, plasma quantification of iron revealed lower levels of circulating iron in Agt-KO. The major body iron stores, namely in the liver and spleen, were also depleted in the RAS-deficient line. Hepatic hepcidin expression was reduced, as well as one of its major regulators, BMP6, as a result of the iron deficiency. However, plasma hepcidin levels were unexpectedly increased in Agt-KO. We confirm the typical morphological alterations and impaired renal function of Agt-KO and conclude that hepcidin accumulates in the circulation due to the reduced glomerular filtration in Agt-KO, and therefore identified the culprit of iron deficiency in Agt-KO. Collectively, the data demonstrated that the severe anemia developed in RAS-deficient mice is exacerbated by iron deficiency which is secondary to the renal damage-induced hepcidin accumulation in the circulation.
Collapse
Affiliation(s)
- André F Rodrigues
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Laura Boreggio
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tetiana Lahuta
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Bogomoletz Institute of Physiology, Department of General and Molecular Pathophysiology, NAS of Ukraine, Kyiv, Ukraine
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Carlos C Barros
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Nutrition Faculty, Federal University of Pelotas - UFPel, Pelotas, RS, Brazil
- Technological Development Center, Federal University of Pelotas - UFPel, Pelotas, RS, Brazil
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Li Y, Zhou Q, Zhang K, Meng X. Iron Overload and Abdominal Aortic Aneurysm. Rev Cardiovasc Med 2024; 25:361. [PMID: 39484115 PMCID: PMC11522754 DOI: 10.31083/j.rcm2510361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 11/03/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular degenerative disease characterized by progressive segmental dilation of the abdominal aorta. The rupture of an AAA represents a leading cause of death in cardiovascular diseases. Despite numerous experimental and clinical studies examining potential drug targets and therapies, currently there are no pharmaceutical treatment to prevent AAA growth and rupture. Iron is an essential element in almost all living organisms and has important biological functions. Epidemiological studies have indicated that both iron deficiency and overload are associated with adverse clinical outcomes, particularly an increased risk of cardiovascular events. Recent evidence indicates that iron overload is involved in the pathogenesis of abdominal aortic aneurysms. In this review, we provide an overview of the role of iron overload in AAA progression and explore its potential pathological mechanisms. Although the exact molecular mechanisms of iron overload in the development of AAA remain to be elucidated, the inhibition of iron deposition may offer a promising strategy for preventing these aneurysms.
Collapse
Affiliation(s)
- Yunyi Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, China
| | - Quan Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, China
| | - Kai Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, China
| | - Xiao Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, China
| |
Collapse
|
4
|
Hullon D, Taherifard E, Al-Saraireh TH. The effect of the four pharmacological pillars of heart failure on haemoglobin level. Ann Med Surg (Lond) 2024; 86:1575-1583. [PMID: 38463117 PMCID: PMC10923357 DOI: 10.1097/ms9.0000000000001773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/21/2024] [Indexed: 03/12/2024] Open
Abstract
Anaemia, a condition characterized by low levels of haemoglobin, is frequently observed in patients with heart failure (HF). Guideline-directed medical therapy improves HF outcomes by using medications like beta blockers, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers, along with mineralocorticoid receptor antagonists and sodium-glucose cotransporter 2 inhibitors. In this study, we aimed to review the pathophysiology of anaemia in patients with HF and present the current evidence regarding the relationship between the main recommended medications for these patients and haemoglobin levels. The authors conducted a comprehensive search in the medical literature for relevant original clinical articles in which the four pharmacological pillars of HF were given to the patients; we, then, assessed whether the association of use of these medications and haemoglobin level or development of anaemia was provided. These common medications have been shown in the literature that may exacerbate or ameliorate anaemia. Besides, it has been shown that even in the case that they result in the development of anaemia, their use is associated with positive effects that outweigh this potential harm. The literature also suggests that among patients receiving medications with negative effects on the level of haemoglobin, there was no difference in the rate of mortality between anaemic and non-anaemic patients when both were on treatment for anaemia; this point highlights the importance of the detection and treatment of anaemia in these patients. Further research is needed to explore these relationships and identify additional strategies to mitigate the risk of anaemia in this population.
Collapse
Affiliation(s)
| | - Erfan Taherifard
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
5
|
Rodrigues AF, Bader M. The contribution of the AT1 receptor to erythropoiesis. Biochem Pharmacol 2023; 217:115805. [PMID: 37714274 DOI: 10.1016/j.bcp.2023.115805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The renin-angiotensin system (RAS) comprises a broad set of functional peptides and receptors that play a role in cardiovascular homeostasis and contribute to cardiovascular pathologies. Angiotensin II (Ang II) is the most potent peptide hormone produced by the RAS due to its high abundance and its strong and pleiotropic impact on the cardiovascular system. Formation of Ang II takes place in the bloodstream and additionally in tissues in the so-called local RAS. Of the two Ang II receptors (AT1 and AT2) that Ang II binds to, AT1 is the most expressed throughout the mammalian body. AT1 expression is not restricted to cells of the cardiovascular system but in fact AT1 protein is found in nearly all organs, hence, Ang II takes part in several modulatory physiological processes one of which is erythropoiesis. In this review, we present multiple evidence supporting that Ang II modulates physiological and pathological erythropoiesis processes trough the AT1 receptor. Cumulative evidence indicates that Ang II by three distinct mechanisms influences erythropoiesis: 1) stimulation of renal erythropoietin synthesis; 2) direct action on bone marrow precursor cells; and 3) modulation of sympathetic nerve activity to the bone marrow. The text highlights clinical and preclinical evidence focusing on mechanistic studies using rodent models.
Collapse
Affiliation(s)
- André F Rodrigues
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany.
| | - Michael Bader
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany; Charité Universitätsmedizin Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
6
|
Bonomini M, Di Liberato L, Sirolli V. Treatment Options for Anemia in Kidney Transplant Patients: A Review. Kidney Med 2023; 5:100681. [PMID: 37415623 PMCID: PMC10320602 DOI: 10.1016/j.xkme.2023.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
Anemia is common after kidney transplantation. The etiology may be multifactorial, such as causes of anemia in the general population and causes that are unique to the kidney transplant setting. Posttransplant anemia, particularly when severe, may be associated with adverse effects such as graft failure, mortality, and a decline in kidney function. After careful investigation, that is, having excluded or treated reversible causes of anemia, treatment of anemia in patients with a kidney transplant is based on iron supplementation or erythropoiesis-stimulating agents (ESA), although there are no specific guidelines on anemia management in this patient population. Iron therapy is often needed, but optimal and safe iron-deficiency management strategies remain to be defined. Evidence suggests that ESAs are safe and potentially associated with favorable outcomes. Better graft function has been reported with ESA use targeting hemoglobin levels higher than those recommended in the general population with chronic kidney disease and with no apparent increased risk of cardiovascular events. These results require further investigation. Data on the use of hypoxia-inducible factor inhibitors are limited. Prevention and treatment of anemia in kidney transplantation can improve patients' quality of life, life expectancy, allograft function, and survival.
Collapse
Affiliation(s)
- Mario Bonomini
- Address for Correspondence: Dr Mario Bonomini, MD, Nephrology and Dialysis Unit, SS. Annunziata Hospital, Via dei Vestini66100 Chieti, Italy.
| | | | | |
Collapse
|
7
|
Loick P, Mohammad GH, Cassimjee I, Chandrashekar A, Lapolla P, Carrington A, Vera-Aviles M, Handa A, Lee R, Lakhal-Littleton S. Protective Role for Smooth Muscle Cell Hepcidin in Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2023; 43:713-725. [PMID: 36951059 PMCID: PMC10125116 DOI: 10.1161/atvbaha.123.319224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Hepcidin is a liver-derived hormone that controls systemic iron homeostasis, by inhibiting the iron exporter ferroportin in the gut and spleen, respective sites of iron absorption and recycling. Hepcidin is also expressed ectopically in the context of cardiovascular disease. However, the precise role of ectopic hepcidin in underlying pathophysiology is unknown. In patients with abdominal aortic aneurysm (AAA), hepcidin is markedly induced in smooth muscle cells (SMCs) of the aneurysm wall and inversely correlated with the expression of LCN2 (lipocalin-2), a protein implicated in AAA pathology. In addition, plasma hepcidin levels were inversely correlated with aneurysm growth, suggesting hepcidin has a potential disease-modifying role. METHODS To probe the role of SMC-derived hepcidin in the setting of AAA, we applied AngII (Angiotensin-II)-induced AAA model to mice harbouring an inducible, SMC-specific deletion of hepcidin. To determine whether SMC-derived hepcidin acted cell-autonomously, we also used mice harboring an inducible SMC-specific knock-in of hepcidin-resistant ferroportinC326Y. The involvement of LCN2 was established using a LCN2-neutralizing antibody. RESULTS Mice with SMC-specific deletion of hepcidin or knock-in of hepcidin-resistant ferroportinC326Y had a heightened AAA phenotype compared with controls. In both models, SMCs exhibited raised ferroportin expression and reduced iron retention, accompanied by failure to suppress LCN2, impaired autophagy in SMCs, and greater aortic neutrophil infiltration. Pretreatment with LCN2-neutralizing antibody restored autophagy, reduced neutrophil infiltration, and prevented the heightened AAA phenotype. Finally, plasma hepcidin levels were consistently lower in mice with SMC-specific deletion of hepcidin than in controls, indicating that SMC-derived hepcidin contributes to the circulating pool in AAA. CONCLUSIONS Hepcidin elevation in SMCs plays a protective role in the setting of AAA. These findings are the first demonstration of a protective rather than deleterious role for hepcidin in cardiovascular disease. They highlight the need to further explore the prognostic and therapeutic value of hepcidin outside disorders of iron homeostasis.
Collapse
Affiliation(s)
- Paul Loick
- Department of Anesthesiology, Intensive Care and Pain Medicine, Universitätsklinikum Münster, Germany (P. Loick)
| | - Goran Hamid Mohammad
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (G.H.M., A. Carrington, M.V.-A., S.L.-L.)
| | - Ismail Cassimjee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Anirudh Chandrashekar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Pierfrancesco Lapolla
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Alison Carrington
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (G.H.M., A. Carrington, M.V.-A., S.L.-L.)
| | - Mayra Vera-Aviles
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (G.H.M., A. Carrington, M.V.-A., S.L.-L.)
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (G.H.M., A. Carrington, M.V.-A., S.L.-L.)
| |
Collapse
|
8
|
Liu Y, Yang F, Liu X, Ye L, Guo J. Mineral characteristics of viscera of Hulunbuir grassland short-tailed sheep from Inner Mongolia, China. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Greene CJ, Attwood K, Sharma NJ, Balderman B, Deng R, Muhitch JB, Smith GJ, Gross KW, Xu B, Kauffman EC. Iron accumulation typifies renal cell carcinoma tumorigenesis but abates with pathological progression, sarcomatoid dedifferentiation, and metastasis. Front Oncol 2022; 12:923043. [PMID: 35992801 PMCID: PMC9389085 DOI: 10.3389/fonc.2022.923043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Iron is a potent catalyst of oxidative stress and cellular proliferation implicated in renal cell carcinoma (RCC) tumorigenesis, yet it also drives ferroptosis that suppresses cancer progression and represents a novel therapeutic target for advanced RCC. The von Hippel Lindau (VHL)/hypoxia-inducible factor-α (HIF-α) axis is a major regulator of cellular iron, and its inactivation underlying most clear cell (cc) RCC tumors introduces both iron dependency and ferroptosis susceptibility. Despite the central role for iron in VHL/HIF-α signaling and ferroptosis, RCC iron levels and their dynamics during RCC initiation/progression are poorly defined. Here, we conducted a large-scale investigation into the incidence and prognostic significance of total tissue iron in ccRCC and non-ccRCC patient primary tumor cancer cells, tumor microenvironment (TME), metastases and non-neoplastic kidneys. Prussian Blue staining was performed to detect non-heme iron accumulation in over 1600 needle-core sections across multiple tissue microarrays. We found that RCC had significantly higher iron staining scores compared with other solid cancers and, on average, >40 times higher than adjacent renal epithelium. RCC cell iron levels correlated positively with TME iron levels and inversely with RCC levels of the main iron uptake protein, transferrin receptor 1 (TfR1/TFRC/CD71). Intriguingly, RCC iron levels, including in the TME, decreased significantly with pathologic (size/stage/grade) progression, sarcomatoid dedifferentiation, and metastasis, particularly among patients with ccRCC, despite increasing TfR1 levels, consistent with an increasingly iron-deficient tumor state. Opposite to tumor iron changes, adjacent renal epithelial iron increased significantly with RCC/ccRCC progression, sarcomatoid dedifferentiation, and metastasis. Lower tumor iron and higher renal epithelial iron each predicted significantly shorter ccRCC patient metastasis-free survival. In conclusion, iron accumulation typifies RCC tumors but declines toward a relative iron-deficient tumor state during progression to metastasis, despite precisely opposite dynamics in adjacent renal epithelium. These findings raise questions regarding the historically presumed selective advantage for high iron during all phases of cancer evolution, suggesting instead distinct tissue-specific roles during RCC carcinogenesis and early tumorigenesis versus later progression. Future study is warranted to determine how the relative iron deficiency of advanced RCC contributes to ferroptosis resistance and/or introduces a heightened susceptibility to iron deprivation that might be therapeutically exploitable.
Collapse
Affiliation(s)
- Christopher J. Greene
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nitika J. Sharma
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Benjamin Balderman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Rongia Deng
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Jason B. Muhitch
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Gary J. Smith
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Kenneth W. Gross
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bo Xu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Eric C. Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- *Correspondence: Eric C. Kauffman,
| |
Collapse
|
10
|
Piesanen J, Valjakka J, Niemelä S, Borgenström M, Nikkari S, Hytönen V, Määttä J, Kunnas T. Hepcidin is potential regulator for renin activity. PLoS One 2022; 17:e0267343. [PMID: 35442992 PMCID: PMC9020709 DOI: 10.1371/journal.pone.0267343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
An association between genetic variants in the genes HFE, HJV, BMP4 and arterial hypertension has been shown earlier. Proteins encoded by these genes participate in the signalling routes leading eventually to the production of the peptide hormone hepcidin. Mutations in these genes have been associated with the abnormal production of hepcidin in the body. This finding led to studies exploring the possible role of hepcidin in regulating the activity of blood pressure related renin-angiotensin system enzymes. We used molecular modelling to find out if it is possible for hepcidin to bind to the active site of the renin-angiotensin system enzymes, especially renin. Fluorometric assays were used to evaluate the inhibitory effect of hepcidin on renin as well as angiotensin converting enzymes 1 and 2. Finally, bio-layer interferometry technique was used to study hepcidin binding to renin. The molecular modelling showed that hepcidin seems to have similar binding properties to the renin active site as angiotensinogen does. Based on fluorometric enzyme activity assay, hepcidin has an inhibitory effect on renin in vitro, too. However, angiotensin converting enzymes 1 and 2 were not inhibited remarkably by hepcidin-25. In bio-layer interferometry analysis hepcidin-renin binding was concentration dependent. Our results suggest that hepcidin could act as an inhibitor to the renin. Nowadays, there is no known biological inhibitor for renin in vivo and our finding may thus have important clinical implications.
Collapse
Affiliation(s)
- Jaakko Piesanen
- Facult of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jarkko Valjakka
- Facult of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna Niemelä
- Facult of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Seppo Nikkari
- Facult of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Hytönen
- Facult of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juha Määttä
- Facult of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Kunnas
- Facult of Medicine and Health Technology, Tampere University, Tampere, Finland
- * E-mail:
| |
Collapse
|
11
|
Vlahakos V, Marathias K, Lionaki S, Loukides S, Zakynthinos S, Vlahakos D. The Paradigm Shift from Polycythemia to Anemia in COPD: The Critical Role of the Renin-Angiotensin System Inhibitors. Expert Rev Respir Med 2022; 16:391-398. [PMID: 35212601 DOI: 10.1080/17476348.2022.2045958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Although polycythemia has been considered a common adverse event in COPD, anemia is reported more often and has gained more importance than polycythemia over the last thirty years. AREAS COVERED Factors considered to be associated with the development of anemia in COPD have included: Aging and kidney dysfunction with erythropoietin deficiency and bone marrow suppression due to uremic toxins; heart failure (HF), which is often encountered in COPD and is accompanied by anemia in one third of the cases; Low-grade chronic inflammation, which can directly suppresses the bone marrow and diminish iron absorption and utilization via increased hepcidin levels; long-term oxygen therapy (LTOT), which ameliorates chronic hypoxia, and most important, RAS inhibitors, which are widely used for the co-morbidities associated with COPD (hypertension, HF, CKD, diabetes) and have previously been shown to lower hematocrit values or cause anemia in various clinical conditions. EXPERT OPINION Introduction of LTOT in COPD and especially the established use of RAS inhibitors form the basis for the shift from polycythemia to anemia in COPD. Interestingly, when the SGLT2 inhibitors are introduced for cardiorenal protection in COPD, one could anticipate correction of anemia or even reemergence of polycythemia, since this new class of drugs can augment erythropoietin secretion and increase hematocrit values.
Collapse
Affiliation(s)
- Vassilios Vlahakos
- 1st Department of Intensive Care Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos General Hospital, Athens, Greece
| | - Katerina Marathias
- Department of Intensive Care Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Sofia Lionaki
- 2nd Department of Medicine, Renal Unit, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | - Stelios Loukides
- 2nd Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | - Spyros Zakynthinos
- 1 Department of Intensive Care Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos General Hospital, Athens, Greece
| | - Demetrios Vlahakos
- 2 Department of Medicine, Renal Unit, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| |
Collapse
|
12
|
Hemosiderin Accumulation in Liver Decreases Iron Availability in Tachycardia-Induced Porcine Congestive Heart Failure Model. Int J Mol Sci 2022; 23:ijms23031026. [PMID: 35162949 PMCID: PMC8834801 DOI: 10.3390/ijms23031026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/02/2023] Open
Abstract
Despite advances in the management of iron deficiency in heart failure (HF), the mechanisms underlying the effects of treatment remain to be established. Iron distribution and metabolism in HF pathogenesis need to be clarified. We used a porcine tachycardia-induced cardiomyopathy model to find out how HF development influences hepatic and myocardial iron storing, focusing on ferritin, the main iron storage protein. We found that cumulative liver congestion (due to the decrease of heart function) overwhelms its capacity to recycle iron from erythrocytes. As a consequence, iron is trapped in the liver as poorly mobilized hemosiderin. What is more, the ferritin-bound Fe3+ (reflecting bioavailable iron stores), and assembled ferritin (reflecting ability to store iron) are decreased in HF progression in the liver. We demonstrate that while HF pigs show iron deficiency indices, erythropoiesis is enhanced. Renin–angiotensin–aldosterone system activation and hepatic hepcidin suppression might indicate stress erythropoiesisinduced in HF. Furthermore, assembled ferritin increases but ferritin-bound Fe3+ is reduced in myocardium, indicating that a failing heart increases the iron storage reserve but iron deficiency leads to a drop in myocardial iron stores. Together, HF in pigs leads to down-regulated iron bioavailability and reduced hepatic iron storage making iron unavailable for systemic/cardiac needs.
Collapse
|
13
|
Wang J, Tang XQ, Xia M, Li CC, Guo C, Ge HF, Yin Y, Wang B, Chen WX, Feng H. Iron chelation suppresses secondary bleeding after intracerebral hemorrhage in angiotensin II-infused mice. CNS Neurosci Ther 2021; 27:1327-1338. [PMID: 34346561 PMCID: PMC8504530 DOI: 10.1111/cns.13706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 12/01/2022] Open
Abstract
AIMS Secondary bleeding and further hematoma expansion (HE) aggravate brain injury after intracerebral hemorrhage (ICH). The majority of HE results from hypertensive ICH. Previous study reported higher iron content in the brains of hypertensive patients. Iron overload exacerbates the risk of hemorrhagic transformation in thromboembolic stroke mice. Whether iron overload during the process of hypertension participates in secondary bleeding of hypertensive ICH remains unclear. METHODS Hypertension was induced by continuous infusion of angiotensin II (Ang II) with an osmotic pump into C57BL/6 mice. ICH was simulated by intrastriatal injection of the liquid polymer Onyx-18. Iron chelation and iron overload was achieved by deferoxamine mesylate or iron dextran injection. Secondary bleeding was quantified by measuring the hemoglobin content in the ipsilateral brain hemisphere. RESULTS Ang II-induced hypertensive mice showed increased iron accumulation in the brain and expanded secondary hemorrhage after ICH modeling. Moreover, iron chelation suppressed while iron overload aggravated secondary bleeding. Mechanistically, iron exacerbated the loss of contractile cerebral vascular smooth muscle cells (VSMCs), aggravated blood-brain barrier (BBB) leakage in Ang II-induced hypertensive mice, and increased glial and MMP9 accumulation after ICH. CONCLUSION Iron overload plays a key role in secondary bleeding after ICH in Ang II-induced hypertensive mice. Iron chelation during the process of Ang II-induced hypertension suppresses secondary bleeding after ICH.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiao-Qin Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China
| | - Min Xia
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China
| | - Cheng-Cheng Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China
| | - Chao Guo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China
| | - Hong-Fei Ge
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China
| | - Yi Yin
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China
| | - Bo Wang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China
| | - Wei-Xiang Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
Pavlidis G, Papageorgiou SG, Bazani E, Bouchla A, Glezou E, Gkontopoulos K, Thomopoulos T, Pappa V, Vlahakos DV. Discontinuation of the renin-angiotensin system inhibitors improves erythropoiesis in patients with lower-risk myelodysplastic syndromes. Ther Adv Hematol 2021; 12:2040620720958299. [PMID: 33489062 PMCID: PMC7809530 DOI: 10.1177/2040620720958299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/20/2020] [Indexed: 11/15/2022] Open
Abstract
Renin–angiotensin system (RAS) blockade by angiotensin-converting enzyme inhibitors (ACEis) or angiotensin-receptor blockers (ARBs) has been related to anemia in various situations. We aimed to investigate whether discontinuation of RAS inhibitors improves erythropoiesis in patients with lower-risk myelodysplastic syndromes (LR-MDSs). Seventy-four patients with LR-MDS were divided into three groups matched for gender and age. Group A consisted of 20 hypertensive patients who discontinued RAS inhibitors and received alternative medications. Group B consisted of 26 patients who continued to receive ACEi/ARB and Group C included 28 patients (50% hypertensive) never exposed to ACEi/ARB. Half of the patients in each group were under treatment with recombinant human erythropoietin (rHuEPO). Data were collected at baseline and after 3, 6 and 12 months. Group A showed a significant increase in hemoglobin from 10.4 ± 1g/dL at baseline to 12.6 ± 1.2 g/dL after 12 months (p = 0.035) and in hematocrit (31.4 ± 3% versus 37.9 ± 4%, p = 0.002). Incident anemia decreased from 100% at baseline to 60% at 12 months (p = 0.043) despite a concomitant dose reduction in rHuEPO by 18% (p = 0.035). No changes in hemoglobin and hematocrit were observed in both Group B and Group C. In the subset of patients not treated with rHuEPO, improvement of erythropoiesis was found only in Group A, as measured by changes in hemoglobin (11.5 ± 1 g/dL versus 12.4 ± 1.3 g/dL, p = 0.041) and hematocrit (34.5 ± 3% versus 37.1 ± 4%, p = 0.038) after 12 months. In contrast, Group B and Group C decreased hemoglobin and hematocrit after 12 months (p < 0.05). In conclusion, discontinuation of ACEi/ARB in LR-MDS patients is followed by a significant recovery of erythropoiesis after 12 months.
Collapse
Affiliation(s)
- George Pavlidis
- 2nd Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon", Athens, Greece
| | - Sotirios G Papageorgiou
- 2nd Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon", 1 Rimini St., Haidari, Athens, 12462, Greece
| | - Efthimia Bazani
- 2nd Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon", Athens, Greece
| | - Anthi Bouchla
- 2nd Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon", Athens, Greece
| | - Eirini Glezou
- 2nd Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon", Athens, Greece
| | - Konstantinos Gkontopoulos
- 2nd Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon", Athens, Greece
| | - Thomas Thomopoulos
- 2nd Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon", Athens, Greece
| | - Vasiliki Pappa
- 2nd Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon", Athens, Greece
| | - Demetrios V Vlahakos
- 2nd Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon", Athens, Greece
| |
Collapse
|
15
|
Rittase WB, Muir JM, Slaven JE, Bouten RM, Bylicky MA, Wilkins WL, Day RM. Deposition of Iron in the Bone Marrow of a Murine Model of Hematopoietic Acute Radiation Syndrome. Exp Hematol 2020; 84:54-66. [PMID: 32240658 DOI: 10.1016/j.exphem.2020.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/02/2023]
Abstract
Exposure to high-dose total body irradiation (TBI) can result in hematopoietic acute radiation syndrome (H-ARS), characterized by leukopenia, anemia, and coagulopathy. Death from H-ARS occurs from hematopoietic insufficiency and opportunistic infections. Following radiation exposure, red blood cells (RBCs) undergo hemolysis from radiation-induced hemoglobin denaturation, causing the release of iron. Free iron can have multiple detrimental biological effects, including suppression of hematopoiesis. We investigated the impact of radiation-induced iron release on the bone marrow following TBI and the potential impact of the ACE inhibitor captopril, which improves survival from H-ARS. C57BL/6J mice were exposed to 7.9 Gy, 60Co irradiation, 0.6 Gy/min (LD70-90/30). RBCs and reticulocytes were significantly reduced within 7 days of TBI, with the RBC nadir at 14-21 days. Iron accumulation in the bone marrow correlated with the time course of RBC hemolysis, with an ∼10-fold increase in bone marrow iron at 14-21 days post-irradiation, primarily within the cytoplasm of macrophages. Iron accumulation in the bone marrow was associated with increased expression of genes for iron binding and transport proteins, including transferrin, transferrin receptor 1, ferroportin, and integrin αMβ2. Expression of the gene encoding Nrf2, a transcription factor activated by oxidative stress, also increased at 21 days post-irradiation. Captopril did not alter iron accumulation in the bone marrow or expression of iron storage genes, but did suppress Nrf2 expression. Our study suggests that following TBI, iron is deposited in tissues not normally associated with iron storage, which may be a secondary mechanism of radiation-induced tissue injury.
Collapse
Affiliation(s)
- W Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Jeannie M Muir
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - John E Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Roxane M Bouten
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Michelle A Bylicky
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health Bethesda, MD
| | - W Louis Wilkins
- Department of Laboratory Animal Research, Uniformed Services University of Health Sciences, Bethesda, MD
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD.
| |
Collapse
|
16
|
Chen YJ, Qian ZM, Sheng Y, Zheng J, Liu Y. Angiotensin II down-regulates transferrin receptor 1 and ferroportin 1 expression in Neuro-2a cells via activation of type-1 receptor. Neurosci Lett 2019; 716:134684. [PMID: 31830506 DOI: 10.1016/j.neulet.2019.134684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/30/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
Angiotensin II (ANGII) modulates expression of iron intake and export proteins in cultured neurons. However, the relevant mechanisms have not been fully elucidated. Here, we investigated the effects of ANGII and/or candesartan, a ANGII-Type-1 Receptor (AT1R) antagonist, and PD123319, a ANGII-Type-2 Receptor (AT2R) antagonist on expression of transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1)and ferritin as well as iron regulatory proteins (IRPs), hepcidin and nuclear factor E2-related factor 2 (Nrf2) in Neuro-2a cells. We demonstrated that ANGII induces a significant reduction in expression of TfR1, Fpn1, IRP2 proteins and Nrf2 mRNA and an increase in ferritin protein and hepcidin mRNA, while candesartan, but not PD123319, significantly attenuated or reversed all these ANGII-induced changes in Neuro-2a cells. These findings imply that ANGII down-regulates TfR1 expression likely via the AT1R/IRP2 pathway, and Fpn1 expression via ATR1/hepcidin and AT1R/ Nrf2 pathways.
Collapse
Affiliation(s)
- Yun-Jin Chen
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhong-Ming Qian
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institute of Translational & Precision Medicine, Nantong University, Nantong, JS, 226019, China.
| | - Yuan Sheng
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jie Zheng
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yong Liu
- Department of Neurology, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing, China.
| |
Collapse
|
17
|
Inhibition of the renin-angiotensin system in the cardiorenal syndrome with anaemia: a double-edged sword. J Hypertens 2019; 37:2145-2153. [PMID: 31490340 DOI: 10.1097/hjh.0000000000002111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
: The term 'cardiorenal syndrome' (CRS) was introduced to describe problems related to the simultaneous existence of heart and renal insufficiency. The prevalence of anaemia in CRS is high and increases the risk of hospitalizations and death. Renin-angiotensin system (RAS) inhibition is the cornerstone therapy in cardiovascular and renal medicine. As angiotensin II regulates both glomerular filtration rate (GFR) and erythropoiesis, RAS inhibition can further deteriorate renal function and lower hematocrit or cause anaemia in patients with heart failure. The aim of this review is to explore the relationship among CRS, anemia and administration of angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB) and summarize the evidence suggesting that RAS inhibition may be considered an iatrogenic cause of deterioration of CRS with anemia. It should be emphasized however, that RAS inhibition reduces mortality in both groups with and without worsening of renal function, and therefore, no patient with CRS should be denied an ACEi or ARB trial without careful evaluation.
Collapse
|
18
|
Hamano H, Ikeda Y, Watanabe H, Horinouchi Y, Izawa-Ishizawa Y, Imanishi M, Zamami Y, Takechi K, Miyamoto L, Ishizawa K, Tsuchiya K, Tamaki T. The uremic toxin indoxyl sulfate interferes with iron metabolism by regulating hepcidin in chronic kidney disease. Nephrol Dial Transplant 2019; 33:586-597. [PMID: 28992067 DOI: 10.1093/ndt/gfx252] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/24/2017] [Indexed: 12/11/2022] Open
Abstract
Background Hepcidin secreted by hepatocytes is a key regulator of iron metabolism throughout the body. Hepcidin concentrations are increased in chronic kidney disease (CKD), contributing to abnormalities in iron metabolism. Levels of indoxyl sulfate (IS), a uremic toxin, are also elevated in CKD. However, the effect of IS accumulation on iron metabolism remains unclear. Methods We used HepG2 cells to determine the mechanism by which IS regulates hepcidin concentrations. We also used a mouse model of adenine-induced CKD. The CKD mice were divided into two groups: one was treated using AST-120 and the other received no treatment. We examined control mice, CKD mice, CKD mice treated using AST-120 and mice treated with IS via drinking water. Results In the in vitro experiments using HepG2 cells, IS increased hepcidin expression in a dose-dependent manner. Silencing of the aryl hydrocarbon receptor (AhR) inhibited IS-induced hepcidin expression. Furthermore, IS induced oxidative stress and antioxidant drugs diminished IS-induced hepcidin expression. Adenine-induced CKD mice demonstrated an increase in hepcidin concentrations; this increase was reduced by AST-120, an oral adsorbent of the uremic toxin. CKD mice showed renal anemia, decreased plasma iron concentration, increased plasma ferritin and increased iron content in the spleen. Ferroportin was decreased in the duodenum and increased in the spleen. These changes were ameliorated by AST-120 treatment. Mice treated by direct IS administration showed hepatic hepcidin upregulation. Conclusions IS affects iron metabolism in CKD by participating in hepcidin regulation via pathways that depend on AhR and oxidative stress.
Collapse
Affiliation(s)
- Hirofumi Hamano
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroaki Watanabe
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masaki Imanishi
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan.,Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan.,Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
19
|
Greene CJ, Sharma NJ, Fiorica PN, Forrester E, Smith GJ, Gross KW, Kauffman EC. Suppressive effects of iron chelation in clear cell renal cell carcinoma and their dependency on VHL inactivation. Free Radic Biol Med 2019; 133:295-309. [PMID: 30553971 PMCID: PMC10038186 DOI: 10.1016/j.freeradbiomed.2018.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Increasing data implicate iron accumulation in tumorigenesis of the kidney, particularly the clear cell renal cell carcinoma (ccRCC) subtype. The von Hippel Lindau (VHL)/hypoxia inducible factor-α (HIF-α) axis is uniquely dysregulated in ccRCC and is a major regulator and regulatory target of iron metabolism, yet the role of iron in ccRCC tumorigenesis and its potential interplay with VHL inactivation remains unclear. We investigated whether ccRCC iron accumulation occurs due to increased cell dependency on iron for growth and survival as a result of VHL inactivation. Free iron levels were compared between four VHL-mutant ccRCC cell lines (786-0, A704, 769-P, RCC4) and two benign renal tubule epithelial cell lines (RPTEC, HRCEp) using the Phen Green SK fluorescent iron stain. Intracellular iron deprivation was achieved using two clinical iron chelator drugs, deferasirox (DFX) and deferoxamine (DFO), and chelator effects were measured on cell line growth, cell cycle phase, apoptosis, HIF-1α and HIF-2α protein levels and HIF-α transcriptional activity based on expression of target genes CA9, OCT4/POU5F1 and PDGFβ/PDGFB. Similar assays were performed in VHL-mutant ccRCC cells with and without ectopic wild-type VHL expression. Baseline free iron levels were significantly higher in ccRCC cell lines than benign renal cell lines. DFX depleted cellular free iron more rapidly than DFO and led to greater growth suppression of ccRCC cell lines (>90% at ~30-150 µM) than benign renal cell lines (~10-50% at up to 250 µM). Similar growth responses were observed using DFO, with the exception that a prolonged treatment duration was necessary to deplete cellular iron adequately for differential growth suppression of the less susceptible A704 ccRCC cell line relative to benign renal cell lines. Apoptosis and G1-phase cell cycle arrest were identified as potential mechanisms of chelator growth suppression based on their induction in ccRCC cell lines but not benign renal cell lines. Iron chelation in ccRCC cells but not benign renal cells suppressed HIF-1α and HIF-2α protein levels and transcriptional activity, and the degree and timing of HIF-2α suppression correlated with the onset of apoptosis. Restoration of wild-type VHL function in ccRCC cells was sufficient to prevent chelator-induced apoptosis and G1 cell cycle arrest, indicating that ccRCC susceptibility to iron deprivation is VHL inactivation-dependent. In conclusion, ccRCC cells are characterized by high free iron levels and a cancer-specific dependency on iron for HIF-α overexpression, cell cycle progression and apoptotic escape. This iron dependency is introduced by VHL inactivation, revealing a novel interplay between VHL/HIF-α dysregulation and ccRCC iron metabolism. Future study is warranted to determine if iron deprivation using chelator drugs provides an effective therapeutic strategy for targeting HIF-2α and suppressing tumor progression in ccRCC patients.
Collapse
Affiliation(s)
- Christopher J Greene
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Nitika J Sharma
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Peter N Fiorica
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Emily Forrester
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Gary J Smith
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Kenneth W Gross
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Eric C Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States; Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States; Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, United States.
| |
Collapse
|
20
|
Kong WN, Cui Y, Fu YJ, Lei Y, Ci Y, Bao Y, Zhao S, Xie L, Chang YZ, Zhao SE. The α1-adrenergic receptor is involved in hepcidin upregulation induced by adrenaline and norepinephrine via the STAT3 pathway. J Cell Biochem 2018; 119:5517-5527. [PMID: 29377263 DOI: 10.1002/jcb.26715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Elevated body iron stores are associated with hypertension progression, while hypertension is associated with elevated plasma catecholamine levels in patients. However, there is a gap in our understanding of the connection between catecholamines and iron regulation. Hepcidin is a key iron-regulatory hormone, which maintains body iron balance. In the present study, we investigated the effects of adrenaline (AD) and norepinephrine (NE) on hepatic hepcidin regulation. Mice were treated with AD, NE, phenylephrine (PE, α1-adrenergic receptor agonist), prazosin (PZ, α1-adrenergic receptor antagonist), and/or propranolol (Pro, β-adrenergic receptor antagonist). The levels of hepcidin, as well as signal transducer and activator of transcription 3 (STAT3), ferroportin 1 (FPN1), and ferritin-light (Ft-L) protein in the liver or spleen, were assessed. Six hours after AD, NE, or PE treatment, hepatic hepcidin mRNA levels increased. Pretreatment with PZ, but not Pro, abolished the effects of AD or NE on STAT3 phosphorylation and hepatic hepcidin expression. When mice were treated with AD or NE continuously for 7 days, an increase in hepatic hepcidin mRNA levels and serum hepcidin concentration was also observed. Meanwhile, the expected downstream effects of elevated hepcidin, namely decreased FPN1 expression and increased Ft-L protein and non-heme iron concentrations in the spleen, were observed after the continuous AD or NE treatments. Taken together, we found that AD or NE increase hepatic hepcidin expression via the α1-adrenergic receptor and STAT3 pathways in mice. The elevated hepatic hepcidin decreased FPN1 levels in the spleen, likely causing the increased iron accumulation in the spleen.
Collapse
Affiliation(s)
- Wei-Na Kong
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China.,Bioreactor and Protein Drug Research and Development Center of Hebei Universities, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei Province, P. R. China
| | - Yanmei Cui
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China
| | - Yu-Jian Fu
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China
| | - Yuhua Lei
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China
| | - Yunzhe Ci
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China.,Chengde Medical University, Chengde, Hebei Province, P. R. China
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Shuqiang Zhao
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China
| | - Lide Xie
- Chengde Medical University, Chengde, Hebei Province, P. R. China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China
| | - Shu-E Zhao
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, P. R. China.,The 3rd Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| |
Collapse
|
21
|
Piesanen JV, Nikkari ST, Kunnas TA. Genetic variation in bone morphogenetic proteins family members (BMPs 2 and 4) and hypertension risk in middle-aged men: The TAMRISK study. Medicine (Baltimore) 2017; 96:e9362. [PMID: 29390526 PMCID: PMC5758228 DOI: 10.1097/md.0000000000009362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are important regulators of iron metabolism affecting hepcidin expression. We have previously shown that 2 genetic polymorphisms in different genes (histocompatibility complex class I-like transmembrane protein, hemojuvelin) involved in the regulation of hepcidin expression pathways are associated with hypertension. In this study, we analyzed genetic variation sites in BMP2 (rs235756, rs235768) and BMP4 (rs4901474) to get more evidence linking iron metabolism to hypertension risk in the Finnish population.The study included 321 hypertensive cases and 463 controls from the Tampere Adult Population Cardiovascular Risk study cohort. Genotyping of polymorphisms was done by polymerase chain reaction using DNAs extracted from buccal swabs.We found that men carrying the GG genotype of BMP2 rs235756 (A>G) polymorphic site had a 4.09-fold risk (confidence interval [CI] 1.61-10.39, P = .003) for hypertension at the age of 50 years compared with A-allele carriers. The risk was significant in the age groups of 45 and 40 years as well. In addition, the 15-year follow-up period of the same individuals showed that carriers of the GG-genotype had also significantly higher readings of both systolic (P < .001) and diastolic (P = .01) blood pressure during the follow-up time. No significant association between BMP2 rs235768 (A>T) and hypertension was found. BMP4 polymorphic site rs4901474 (T>C) also had an effect on hypertension. CC genotype carriers had a 1.48-fold risk (CI 1.03-2.13, P = .033) for hypertension at the age of 50 years when compared with T-allele carriers.In conclusion, BMP2 polymorphic site rs235756 was associated with hypertension in Finnish men. An effect of BMP4 polymorphic site on hypertension was also found.
Collapse
Affiliation(s)
- Jaakko V.I. Piesanen
- Department of Medical Biochemistry, Faculty of Medicine and Life Sciences, University of Tampere
| | - Seppo T. Nikkari
- Department of Medical Biochemistry, Faculty of Medicine and Life Sciences, University of Tampere
- Fimlab Laboratories, Tampere, Finland
| | - Tarja A. Kunnas
- Department of Medical Biochemistry, Faculty of Medicine and Life Sciences, University of Tampere
| |
Collapse
|
22
|
Morita T, Nakano D, Kitada K, Morimoto S, Ichihara A, Hitomi H, Kobori H, Shiojima I, Nishiyama A. Chelation of dietary iron prevents iron accumulation and macrophage infiltration in the type I diabetic kidney. Eur J Pharmacol 2015; 756:85-91. [PMID: 25820160 DOI: 10.1016/j.ejphar.2015.03.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 11/24/2022]
Abstract
We previously reported that the functional deletion of p21, a cyclin-dependent kinase inhibitor, in mice attenuated renal cell senescence in streptozotocin (STZ)-induced type 1 diabetic mice. In the present study, we investigated the effect of iron chelation on renal cell senescence and inflammation in the type 1 diabetic kidney. STZ-treated mice showed increase in iron accumulation, tubular cell senescence and macrophage infiltration at week 28 in the kidney. Administering deferasirox, which removes only dietary iron, significantly attenuated iron accumulation in proximal tubules and the number of infiltrating F4/80-positive cells without effecting blood glucose, hematocrit or hemoglobin levels. In contrast however, deferasirox did not influence renal cell senescence. The lack of p21 decreased the renal tubular iron accumulation and did not change tubular cell senescence. Interestingly, the STZ-treated animals showed an increase in p16, another cyclin-dependent kinase inhibitor. The results suggest that type 1 diabetes increases renal tubular iron accumulation and macrophage infiltration through a p21-dependent mechanism, and that the chelation of dietary iron attenuates these responses.
Collapse
Affiliation(s)
- Tatsuyori Morita
- Department of Pharmacology, Kagawa University, 1750-1 Miki, Kita, Kagawa, Japan; The Second Department of Internal Medicine, Kansai Medical University, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University, 1750-1 Miki, Kita, Kagawa, Japan.
| | - Kento Kitada
- Department of Pharmacology, Kagawa University, 1750-1 Miki, Kita, Kagawa, Japan
| | - Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Hirofumi Hitomi
- Department of Pharmacology, Kagawa University, 1750-1 Miki, Kita, Kagawa, Japan
| | - Hiroyuki Kobori
- Department of Pharmacology, Kagawa University, 1750-1 Miki, Kita, Kagawa, Japan
| | - Ichiro Shiojima
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, 1750-1 Miki, Kita, Kagawa, Japan
| |
Collapse
|