1
|
Moghbeli M. MicroRNAs as the critical regulators of bone metastasis during prostate tumor progression. Int J Biol Macromol 2025; 309:142912. [PMID: 40203904 DOI: 10.1016/j.ijbiomac.2025.142912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Prostate cancer (PCa) is the most prevalent cancer among men globally. Although, there are various therapeutic methods for the localized or advanced cancers, there is still a high rate of mortality among PCa patients that is mainly associated with bone metastasis in advanced tumors. There are few options available for treating bone metastasis in PCa, which only provide symptom relief without curing the disease. Therefore, it is crucial to evaluate the molecular mechanisms associated with bone metastasis of PCa cells to suggest the novel diagnostic and therapeutic approaches that could lower the morbidity and mortality rates in PCa patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological processes such as tumor growth and osteoblasts/osteoclasts formation. Since, miRNA deregulation has been also frequently observed in PCa patients with bone metastasis, we discussed the role of miRNAs in bone metastasis during PCa progression. It has been reported that miRNAs mainly reduced the ability of PCa tumor cells for the bone metastasis through the regulation of WNT, NF-kB, PI3K/AKT, and TGF-β signaling pathways. They also affected the EMT process, transcription factors, and structural proteins to regulate the bone metastasis during PCa progression. This review paves the way to suggest the miRNAs as the reliable markers not only for the non-invasive early diagnosis, but also for the targeted therapy of PCa tumors with bone metastasis.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zhang W, Zhang K. Understanding the Biological Basis of Polygenic Risk Scores and Disparities in Prostate Cancer: A Comprehensive Genomic Analysis. Cancer Inform 2024; 23:11769351241276319. [PMID: 39444678 PMCID: PMC11497523 DOI: 10.1177/11769351241276319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/14/2024] [Indexed: 10/25/2024] Open
Abstract
Objectives For prostate cancer (PCa), hundreds of risk variants have been identified. It remains unknown whether the polygenic risk score (PRS) that combines the effects of these variants is also a sufficiently informative metric with relevance to the molecular mechanisms of carcinogenesis in prostate. We aimed to understand the biological basis of PRS and racial disparities in the cancer. Methods We performed a comprehensive analysis of the data generated (deposited in) by several genomic and/or transcriptomic projects (databases), including the GTEx, TCGA, 1000 Genomes, GEO and dbGap. PRS was constructed from 260 PCa risk variants that were identified by a recent trans-ancestry meta-analysis and contained in the GTEx dataset. The dosages of risk variants and the multi-ancestry effects on PCa incidence estimated by the meta-analysis were used in calculating individual PRS values. Results The following novel results were obtained from our analyses. (1) In normal prostate samples from healthy European Americans (EAs), the expression levels of 540 genes (termed PRS genes) were associated with the PRS (P < .01). (2) Ubiquitin-proteasome system in high-PRS individuals' prostates was more active than that in low-PRS individuals' prostates. (3) Nine PRS genes play roles in the cancer progression-relevant parts, which are frequently hit by somatic mutations in PCa, of PI3K-Akt/RAS-MAPK/mTOR signaling pathways. (4) The expression profiles of the top significant PRS genes in tumor samples were capable of predicting malignant PCa relapse after prostatectomy. (5) The transcriptomic differences between African American and EA samples were incompatible with the patterns of the aforementioned associations between PRS and gene expression levels. Conclusions This study provided unique insights into the relationship between PRS and the molecular mechanisms of carcinogenesis in prostate. The new findings, alongside the moderate but significant heritability of PCa susceptibility contributed by the risk variants, suggest the aptness and inaptness of PRS for explaining PCa and disparities.
Collapse
Affiliation(s)
- Wensheng Zhang
- Bioinformatics Core of Xavier NIH RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| | - Kun Zhang
- Bioinformatics Core of Xavier NIH RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
- Department of Computer Science, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
3
|
Naponelli V, Rocchetti MT, Mangieri D. Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading. Int J Mol Sci 2024; 25:5569. [PMID: 38791608 PMCID: PMC11122459 DOI: 10.3390/ijms25105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Due to its propensity to metastasize, cancer remains one of the leading causes of death worldwide. Thanks in part to their intrinsic low cytotoxicity, the effects of the flavonoid family in the prevention and treatment of various human cancers, both in vitro and in vivo, have received increasing attention in recent years. It is well documented that Apigenin (4',5,7-trihydroxyflavone), among other flavonoids, is able to modulate key signaling molecules involved in the initiation of cancer cell proliferation, invasion, and metastasis, including JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and Wnt/β-catenin pathways, as well as the oncogenic non-coding RNA network. Based on these premises, the aim of this review is to emphasize some of the key events through which Apigenin suppresses cancer proliferation, focusing specifically on its ability to target key molecular pathways involved in angiogenesis, epithelial-to-mesenchymal transition (EMT), maintenance of cancer stem cells (CSCs), cell cycle arrest, and cancer cell death.
Collapse
Affiliation(s)
- Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Plesso Biotecnologico Integrato, Via Volturno 39, 43126 Parma, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| |
Collapse
|
4
|
He W, Zhang Z, Tan Z, Liu X, Wang Z, Xiong B, Shen X, Zhu X. PSMB2 plays an oncogenic role in glioma and correlates to the immune microenvironment. Sci Rep 2024; 14:5861. [PMID: 38467767 PMCID: PMC10928079 DOI: 10.1038/s41598-024-56493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
There has been an upward trend in the incidence of glioma, with high recurrence and high mortality. The beta subunits of the 20S proteasome are encoded by the proteasome beta (PSMB) genes and may affect the proteasome's function in glioma, assembly and inhibitor binding. This study attempted to reveal the function of the proliferation and invasion of glioma cells, which is affected by proteasome 20S subunit beta 2 (PSMB2). We subjected the data downloaded from the TCGA database to ROC, survival, and enrichment analyses. After establishing the stable PSMB2 knockdown glioma cell line. We detect the changes in the proliferation, invasion and migration of glioma cells by plate colony formation assay, transwell assay, wound healing assay and flow cytometry and PSMB2 expression was verified by quantitative PCR and Western blotting to identify the mRNA and protein levels. PSMB2 expression was higher in glioma tissues, and its expression positively correlated with poor prognosis and high tumor grade and after PSMB2 knockdown, the proliferation, invasion and migration of glioma cells were weakened.
Collapse
Affiliation(s)
- Wei He
- Department of Neurosurgery, The Second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Zhe Zhang
- Department of Neurosurgery, The Second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - ZiLong Tan
- Department of Neurosurgery, The Second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - XinXian Liu
- Department of Neurosurgery, The Second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - ZeKun Wang
- Department of Neurosurgery, The Second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Xiong
- Department of Neurosurgery, The People's Hospital of Gao an, Yichun, China
| | - XiaoLi Shen
- Department of Neurosurgery, The Second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - XinGen Zhu
- Department of Neurosurgery, The Second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Rullah K, Shamsudin NF, Koeberle A, Tham CL, Fasihi Mohd Aluwi MF, Leong SW, Jantan I, Lam KW. Flavonoid diversity and roles in the lipopolysaccharide-mediated inflammatory response of monocytes and macrophages. Future Med Chem 2024; 16:75-99. [PMID: 38205612 DOI: 10.4155/fmc-2023-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeting lipopolysaccharide (LPS)/toll-like receptor 4 signaling in mononuclear phagocytes has been explored for the treatment of inflammation and inflammation-related disorders. However, only a few key targets have been translated into clinical applications. Flavonoids, a class of ubiquitous plant secondary metabolites, possess a privileged scaffold which serves as a valuable template for designing pharmacologically active compounds directed against diseases with inflammatory components. This perspective provides a general overview of the diversity of flavonoids and their multifaceted mechanisms that interfere with LPS-induced signaling in monocytes and macrophages. Focus is placed on flavonoids targeting MD-2, IκB kinases, c-Jun N-terminal kinases, extracellular signal-regulated kinase, p38 MAPK and PI3K/Akt or modulating LPS-related gene expression.
Collapse
Affiliation(s)
- Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Nur Farisya Shamsudin
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Sze-Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Kok Wai Lam
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Gupta M, Ahmad J, Ahamad J, Kundu S, Goel A, Mishra A. Flavonoids as promising anticancer therapeutics: Contemporary research, nanoantioxidant potential, and future scope. Phytother Res 2023; 37:5159-5192. [PMID: 37668281 DOI: 10.1002/ptr.7975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 09/06/2023]
Abstract
Flavonoids are natural polyphenolic compounds considered safe, pleiotropic, and readily available molecules. It is widely distributed in various food products such as fruits and vegetables and beverages such as green tea, wine, and coca-based products. Many studies have reported the anticancer potential of flavonoids against different types of cancers, including solid tumors. The chemopreventive effect of flavonoids is attributed to various mechanisms, including modulation of autophagy, induction of cell cycle arrest, apoptosis, and antioxidant defense. Despite of significant anticancer activity of flavonoids, their clinical translation is limited due to their poor biopharmaceutical attributes (such as low aqueous solubility, limited permeability across the biological membranes (intestinal and blood-brain barrier), and stability issue in biological systems). A nanoparticulate system is an approach that is widely utilized to improve the biopharmaceutical performance and therapeutic efficacy of phytopharmaceuticals. The present review discusses the significant anticancer potential of promising flavonoids in different cancers and the utilization of nanoparticulate systems to improve their nanoantioxidant activity further to enhance the anticancer activity of loaded promising flavonoids. Although, various plant-derived secondary metabolites including flavonoids have been recommended for treating cancer, further vigilant research is warranted to prove their translational values.
Collapse
Affiliation(s)
- Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Javed Ahamad
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Snehashis Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Archit Goel
- All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
7
|
Siddique YH, Rahul, Ara G, Afzal M, Varshney H, Gaur K, Subhan I, Mantasha I, Shahid M. Beneficial effects of apigenin on the transgenic Drosophila model of Alzheimer's disease. Chem Biol Interact 2022; 366:110120. [PMID: 36027948 DOI: 10.1016/j.cbi.2022.110120] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The available drugs improve the symptoms but do not play role in modifying disease effects. Currently, the treatment strategies focus on inhibiting the production of Aβ-42 aggregates and tau filaments. In this context the natural plant products could act as a potent candidate. Therefore, we decided to study the effect of apigenin on the transgenic Drosophila model of AD i.e., expressing Aβ-42 in the neurons. The AD flies were allowed to feed on the diet having 25, 50, 75 and 100μM of apigenin for 30 days. The exposure of AD flies to apigenin showed a dose dependent significant decrease in the oxidative stress and delay in the loss of climbing ability. Apigenin also inhibits the activity of acetylcholinesterase. The immunostaining and molecular docking studies suggest that apigenin inhibits the formation of Aβ-42 aggregates. Apigenin is potent in reducing the AD symptoms being mimicked in the transgenic Drosophila model of AD.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Gulshan Ara
- Women's College, Zoology Section, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Kajal Gaur
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Iqra Subhan
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - I Mantasha
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - M Shahid
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
8
|
Bhari N, Schwaertz RA, Apalla Z, Salerni G, Akay BN, Patil A, Grabbe S, Goldust M. Effect of estrogen in malignant melanoma. J Cosmet Dermatol 2022; 21:1905-1912. [PMID: 34416066 DOI: 10.1111/jocd.14391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Melanoma is associated with poor prognosis in its advanced stages. Potential influence of estrogen and its metabolites on melanoma growth has been suggested. AIMS The objective of this review was to provide an overview on the evidence related to estrogen in malignant melanoma. MATERIALS AND METHODS Literature search using PubMed, Google Scholar and relevant cross-references of the retrieved articles was performed to review relevant published articles related to estrogen and its effects in malignant melanoma. RESULTS Effect of estrogen signaling on a tissue largely depends on the relative expression of estrogen receptors (ER) α and β. Gender differences in melanoma may be explained by the difference in expression of these receptors. ERβ is the principal ER in melanoma. DISCUSSION Although there is uncertainty about role of estrogen in pathogenensis and progression of melanoma, evidence suggests that its growth and metastasis are influenced by estrogen stimulation. Role ER on the proliferation of melanoma cells is well described. CONCLUSION There is a need of safe and effective therapy for melanoma, especially for advanced cases. After the establishment of specific role of estrogen and its receptor, analysis of specific genetic mutation can be performed for proper utilization of targeted therapies.
Collapse
Affiliation(s)
- Neetu Bhari
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Robert A Schwaertz
- Department of Dermatology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Zoe Apalla
- Second Dermatology Department, Aristotle University of Thessaloniki, Greece
| | - Gabriel Salerni
- Department of Dermatology, Hospital Provincial del Centenario de Rosario-Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Anant Patil
- Department of Pharmacology, Dr. DY Patil Medical College, Navi Mumbai, India
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
9
|
Chu J, Sun N, Hu W, Chen X, Yi N, Shen Y. Bayesian hierarchical lasso Cox model: A 9-gene prognostic signature for overall survival in gastric cancer in an Asian population. PLoS One 2022; 17:e0266805. [PMID: 35421138 PMCID: PMC9009599 DOI: 10.1371/journal.pone.0266805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
Objective
Gastric cancer (GC) is one of the most common tumour diseases worldwide and has poor survival, especially in the Asian population. Exploration based on biomarkers would be efficient for better diagnosis, prediction, and targeted therapy.
Methods
Expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. Survival-related genes were identified by gene set enrichment analysis (GSEA) and univariate Cox. Then, we applied a Bayesian hierarchical lasso Cox model for prognostic signature screening. Protein-protein interaction and Spearman analysis were performed. Kaplan–Meier and receiver operating characteristic (ROC) curve analysis were applied to evaluate the prediction performance. Multivariate Cox regression was used to identify prognostic factors, and a prognostic nomogram was constructed for clinical application.
Results
With the Bayesian lasso Cox model, a 9-gene signature included TNFRSF11A, NMNAT1, EIF5A, NOTCH3, TOR2A, E2F8, PSMA5, TPMT, and KIF11 was established to predict overall survival in GC. Protein-protein interaction analysis indicated that E2F8 was likely related to KIF11. Kaplan-Meier analysis showed a significant difference between the high-risk and low-risk groups (P<0.001). Multivariate analysis demonstrated that the 9-gene signature was an independent predictor (HR = 2.609, 95% CI 2.017–3.370), and the C-index of the integrative model reached 0.75. Function enrichment analysis for different risk groups revealed the most significant enrichment pathway/term, including pyrimidine metabolism and respiratory electron transport chain.
Conclusion
Our findings suggested that a novel prognostic model based on a 9-gene signature was developed to predict GC patients in high-risk and improve prediction performance. We hope our model could provide a reference for risk classification and clinical decision-making.
Collapse
Affiliation(s)
- Jiadong Chu
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, P.R. China
| | - Na Sun
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, P.R. China
| | - Wei Hu
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, P.R. China
| | - Xuanli Chen
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, P.R. China
| | - Nengjun Yi
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yueping Shen
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, P.R. China
- * E-mail:
| |
Collapse
|
10
|
Role of Induced Programmed Cell Death in the Chemopreventive Potential of Apigenin. Int J Mol Sci 2022; 23:ijms23073757. [PMID: 35409117 PMCID: PMC8999072 DOI: 10.3390/ijms23073757] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
The flavonoid apigenin (4′,5,7-trihydroxyflavone), which is one of the most widely distributed phytochemicals in the plant kingdom, is one of the most thoroughly investigated phenolic components. Previous studies have attributed the physiological effects of apigenin to its anti-allergic, antibacterial, antidiabetic, anti-inflammatory, antioxidant, antiviral, and blood-pressure-lowering properties, and its documented anticancer properties have been attributed to the induction of apoptosis and autophagy, the inhibition of inflammation, angiogenesis, and cell proliferation, and the regulation of cellular responses to oxidative stress and DNA damage. The most well-known mechanism for the compound’s anticancer effects in human cancer cell lines is apoptosis, followed by autophagy, and studies have also reported that apigenin induces novel cell death mechanisms, such as necroptosis and ferroptosis. Therefore, the aim of this paper is to review the therapeutic potential of apigenin as a chemopreventive agent, as well as the roles of programmed cell death mechanisms in the compound’s chemopreventive properties.
Collapse
|
11
|
Dorababu A. Promising heterocycle-based scaffolds in recent (2019-2021) anti-Alzheimer's drug design and discovery. Eur J Pharmacol 2022; 920:174847. [PMID: 35218718 DOI: 10.1016/j.ejphar.2022.174847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative diseases that led to morbidity and mortality world-wide. It is a complex disease whose etiology is not completely known that leads to difficulty in prevent or cure of the AD. Also, there are only few approved drugs for AD treatment. Apart from deaths due to AD, expenditure of treatment and care of AD patients is higher than that of treatment of HIV and cancer diseases combined. Hence, it leads to an economic burden also. Although research is being carried out on designing drugs for AD, most of them have ended up in poor inhibitors with high toxicity. Hence, researchers should shoulder a great responsibility of discovery of efficient drugs for AD treatment. In the field of drug discovery, heterocycles played an important role. Also, most of the heterocyclic scaffolds have been used in design of potent anti-AD agents. In view of this, heterocyclic molecules reported recently are compiled and evaluated comprehensively. Especially, the molecules which exhibited pronounced activity are emphasized and described with respect to structure-activity relationship (SAR) in brief.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College, Huvinahadagali, 583219, India.
| |
Collapse
|
12
|
Wang F, Ning S, Yu B, Wang Y. USP14: Structure, Function, and Target Inhibition. Front Pharmacol 2022; 12:801328. [PMID: 35069211 PMCID: PMC8766727 DOI: 10.3389/fphar.2021.801328] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin-specific protease 14 (USP14), a deubiquitinating enzyme (DUB), is associated with proteasomes and exerts a dual function in regulating protein degradation. USP14 protects protein substrates from degradation by removing ubiquitin chains from proteasome-bound substrates, whereas promotes protein degradation by activating the proteasome. Increasing evidence have shown that USP14 is involved in several canonical signaling pathways, correlating with cancer, neurodegenerative diseases, autophagy, immune responses, and viral infections. The activity of USP14 is tightly regulated to ensure its function in various cellular processes. Structural studies have demonstrated that free USP14 exists in an autoinhibited state with two surface loops, BL1 and BL2, partially hovering above and blocking the active site cleft binding to the C-terminus of ubiquitin. Hence, both proteasome-bound and phosphorylated forms of USP14 require the induction of conformational changes in the BL2 loop to activate its deubiquitinating function. Due to its intriguing roles in the stabilization of disease-causing proteins and oncology targets, USP14 has garnered widespread interest as a therapeutic target. In recent years, significant progress has been made on identifying inhibitors targeting USP14, despite the complexity and challenges in improving their selectivity and affinity for USP14. In particular, the crystal structures of USP14 complexed with IU1-series inhibitors revealed the underlying allosteric regulatory mechanism and enabled the further design of potent inhibitors. In this review, we summarize the current knowledge regarding the structure, regulation, pathophysiological function, and selective inhibition of USP14, including disease associations and inhibitor development.
Collapse
Affiliation(s)
| | | | | | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
13
|
Liu X, Shen J, Zong J, Liu J, Jin Y. Beta-Sitosterol Promotes Milk Protein and Fat Syntheses-Related Genes in Bovine Mammary Epithelial Cells. Animals (Basel) 2021; 11:ani11113238. [PMID: 34827970 PMCID: PMC8614283 DOI: 10.3390/ani11113238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The levels of milk fats and proteins are important indexes used to evaluate milk quality. Generally, feed additives are used to improve milk quality. This study aimed to investigate the effect of β-sitosterol on milk fat and protein gene expression in bovine mammary epithelial cells. β-sitosterol increased the β-casein levels in bovine mammary epithelial cells and promoted the expression of milk fat and protein synthesis-related genes, suggesting the use of β-sitosterol as a potential feed additive to improve milk quality in dairy cows. Abstract β-sitosterol, a phytosterol with multiple biological activities, has been used in the pharmaceutical industry. However, there are only a few reports on the use of β-sitosterol in improving milk synthesis in dairy cows. This study aimed to investigate the effects of β-sitosterol on milk fat and protein syntheses in bovine mammary epithelial cells (MAC-T) and its regulatory mechanism. MAC-T cells were treated with different concentrations (0.01, 0.1, 1, 5, 10, 20, 30, or 40 μM) of β-sitosterol, and the expression levels of milk protein and fat synthesis-related genes and proteins were analyzed. β-sitosterol at 0.1, 1, and 10 μM concentrations promoted the mRNA and protein expression of β-casein. β-sitosterol (0.1, 1, 10 μM) increased the mRNA and protein expression levels of signal transducer activator of transcription 5 (STAT5), mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase beta-1 (S6K1) of the JAK2/STAT5 and mTOR signaling pathways. It also stimulated the milk fat synthesis-related factors, including sterol regulatory element-binding protein 1 (SREBP1), peroxisome proliferator-activated receptor-gamma (PPARγ), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL), and stearyl CoA desaturase (SCD). β-sitosterol (0.1, 1, 10 μM) also significantly increased the expression of growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and hypoxia-inducible factor-1α (HIF-1α)-related genes. Notably, the compound inhibited the expression of the negative regulator, the suppressor of cytokine signaling 2 (SOCS2) at the two lower concentrations (0.1, 1 μM), but significantly promoted the expression at the highest concentration (30 μM). These results highlight the role of β-sitosterol at concentrations ranging from 0.1 to 10 μM in improving milk protein and fat syntheses, regulating milk quality. Therefore, β-sitosterol can be used as a potential feed additive to improve milk quality in dairy cows.
Collapse
|
14
|
Giacomini I, Gianfanti F, Desbats MA, Orso G, Berretta M, Prayer-Galetti T, Ragazzi E, Cocetta V. Cholesterol Metabolic Reprogramming in Cancer and Its Pharmacological Modulation as Therapeutic Strategy. Front Oncol 2021; 11:682911. [PMID: 34109128 PMCID: PMC8181394 DOI: 10.3389/fonc.2021.682911] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is a ubiquitous sterol with many biological functions, which are crucial for proper cellular signaling and physiology. Indeed, cholesterol is essential in maintaining membrane physical properties, while its metabolism is involved in bile acid production and steroid hormone biosynthesis. Additionally, isoprenoids metabolites of the mevalonate pathway support protein-prenylation and dolichol, ubiquinone and the heme a biosynthesis. Cancer cells rely on cholesterol to satisfy their increased nutrient demands and to support their uncontrolled growth, thus promoting tumor development and progression. Indeed, transformed cells reprogram cholesterol metabolism either by increasing its uptake and de novo biosynthesis, or deregulating the efflux. Alternatively, tumor can efficiently accumulate cholesterol into lipid droplets and deeply modify the activity of key cholesterol homeostasis regulators. In light of these considerations, altered pathways of cholesterol metabolism might represent intriguing pharmacological targets for the development of exploitable strategies in the context of cancer therapy. Thus, this work aims to discuss the emerging evidence of in vitro and in vivo studies, as well as clinical trials, on the role of cholesterol pathways in the treatment of cancer, starting from already available cholesterol-lowering drugs (statins or fibrates), and moving towards novel potential pharmacological inhibitors or selective target modulators.
Collapse
Affiliation(s)
- Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Federico Gianfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, VIMM, Padova, Italy
| | | | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Tommaso Prayer-Galetti
- Department of Surgery, Oncology and Gastroenterology - Urology, University of Padova, Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
15
|
Pan FF, Zheng YB, Shi CJ, Zhang FW, Zhang JF, Fu WM. H19-Wnt/β-catenin regulatory axis mediates the suppressive effects of apigenin on tumor growth in hepatocellular carcinoma. Eur J Pharmacol 2021; 893:173810. [PMID: 33345859 DOI: 10.1016/j.ejphar.2020.173810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/28/2023]
Abstract
Hepatocellular Carcinoma (HCC) is one of the leading causes of cancer-related deaths in the world. However, the effective pharmacological approaches remain scanty in clinical practice. As a bioactive flavonoid, apigenin (API) is enriched in common fruits and vegetables. Although pharmacological activities of API have been widely investigated, its biological function in HCC remains obscure. In the present study, we found that API strongly suppressed cell growth and induced apoptosis in HCC cells. Using a xenograft mice model, API was demonstrated to inhibit the in vivo tumor growth. It is known that the long non-coding RNA H19, which is frequently elevated in HCC, plays a vital role in mediating tumorigenesis and cancer progression. Our results demonstrated that H19 was down-regulated by API, and thereby induced the inactivation of the canonical Wnt/β-catenin signaling. In conclusion, our results demonstrated that API was able to suppress tumor growth of HCC through H19-mediated Wnt/β-catenin signaling regulatory axis, suggesting that API may be a promising candidate for developing novel therapeutic approaches against liver cancer.
Collapse
Affiliation(s)
- Fei-Fei Pan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 511458, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Yan-Biao Zheng
- Department of Oncology, The Sixth People's Hospital of Huizhou, The Second School of Clinical Medicine, Southern Medical University, Huizhou, Guangdong, China
| | - Chuan-Jian Shi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 511458, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Feng-Wei Zhang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Jin-Fang Zhang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| | - Wei-Ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 511458, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
16
|
Ahmed SA, Parama D, Daimari E, Girisa S, Banik K, Harsha C, Dutta U, Kunnumakkara AB. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci 2020; 267:118814. [PMID: 33333052 DOI: 10.1016/j.lfs.2020.118814] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the remarkable advances made in the diagnosis and treatment of cancer during the past couple of decades, it remains the second largest cause of mortality in the world, killing approximately 9.6 million people annually. The major challenges in the treatment of the advanced stage of this disease are the development of chemoresistance, severe adverse effects of the drugs, and high treatment cost. Therefore, the development of drugs that are safe, efficacious, and cost-effective remains a 'Holy Grail' in cancer research. However, the research over the past four decades shed light on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action. Apigenin is one such compound, which is known to be safe and has significant potential in the prevention and therapy of this disease. AIM To assess the literature available on the potential of apigenin and its analogs in modulating the key molecular targets leading to the prevention and treatment of different types of cancer. METHOD A comprehensive literature search has been carried out on PubMed for obtaining information related to the sources and analogs, chemistry and biosynthesis, physicochemical properties, biological activities, bioavailability and toxicity of apigenin. KEY FINDINGS The literature search resulted in many in vitro, in vivo and a few cohort studies that evidenced the effectiveness of apigenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK/ERK, Wnt/β-catenin, etc., which play a crucial role in the development and progression of cancer. In addition, apigenin was also shown to inhibit chemoresistance and radioresistance and make cancer cells sensitive to these agents. Reports have further revealed the safety of the compound and the adaptation of nanotechnological approaches for improving its bioavailability. SIGNIFICANCE Hence, the present review recapitulates the properties of apigenin and its pharmacological activities against different types of cancer, which warrant further investigation in clinical settings.
Collapse
Affiliation(s)
- Semim Akhtar Ahmed
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Enush Daimari
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
17
|
Cardoso HJ, Carvalho TMA, Fonseca LRS, Figueira MI, Vaz CV, Socorro S. Revisiting prostate cancer metabolism: From metabolites to disease and therapy. Med Res Rev 2020; 41:1499-1538. [PMID: 33274768 DOI: 10.1002/med.21766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/24/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa), one of the most commonly diagnosed cancers worldwide, still presents important unmet clinical needs concerning treatment. In the last years, the metabolic reprogramming and the specificities of tumor cells emerged as an exciting field for cancer therapy. The unique features of PCa cells metabolism, and the activation of specific metabolic pathways, propelled the use of metabolic inhibitors for treatment. The present work revises the knowledge of PCa metabolism and the metabolic alterations that underlie the development and progression of the disease. A focus is given to the role of bioenergetic sources, namely, glucose, lipids, and glutamine sustaining PCa cell survival and growth. Moreover, it is described as the action of oncogenes/tumor suppressors and sex steroid hormones in the metabolic reprogramming of PCa. Finally, the status of PCa treatment based on the inhibition of metabolic pathways is presented. Globally, this review updates the landscape of PCa metabolism, highlighting the critical metabolic alterations that could have a clinical and therapeutic interest.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
18
|
Wang D, Ma H, Zhao Y, Zhao J. Ubiquitin-specific protease 14 is a new therapeutic target for the treatment of diseases. J Cell Physiol 2020; 236:3396-3405. [PMID: 33135160 DOI: 10.1002/jcp.30124] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Ubiquitin-specific protease 14 (USP14) is a ubiquitin-specific protease that is associated with the proteasome and plays important roles in cellular functions, viral infection, inflammatory responses, neurodegenerative diseases, and tumorigenesis. USP14 appears to have a dual function in regulating intracellular proteolytic degradation. USP14 impedes degradation of ubiquitinated proteins by removing ubiquitin chains from its substrates, while it could promote protein degradation via increasing proteasome activation. Increasing evidence has shown that USP14 is also involved in the regulation of autophagy. Thus, USP14 might act as a key regulator in two major intracellular proteolytic pathways: the ubiquitin-proteasome system (UPS) and autophagy. The important roles of USP14 in multiple diseases have encouraged the development of clinically viable USP14 antagonists. This review summarizes the current state of knowledge about the regulation of USP14 expression, activity, and its functions in physiological and pathological processes.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Haichun Ma
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
19
|
Kondakova IV, Shashova EE, Sidenko EA, Astakhova TM, Zakharova LA, Sharova NP. Estrogen Receptors and Ubiquitin Proteasome System: Mutual Regulation. Biomolecules 2020; 10:biom10040500. [PMID: 32224970 PMCID: PMC7226411 DOI: 10.3390/biom10040500] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
This review provides information on the structure of estrogen receptors (ERs), their localization and functions in mammalian cells. Additionally, the structure of proteasomes and mechanisms of protein ubiquitination and cleavage are described. According to the modern concept, the ubiquitin proteasome system (UPS) is involved in the regulation of the activity of ERs in several ways. First, UPS performs the ubiquitination of ERs with a change in their functional activity. Second, UPS degrades ERs and their transcriptional regulators. Third, UPS affects the expression of ER genes. In addition, the opportunity of the regulation of proteasome functioning by ERs—in particular, the expression of immune proteasomes—is discussed. Understanding the complex mechanisms underlying the regulation of ERs and proteasomes has great prospects for the development of new therapeutic agents that can make a significant contribution to the treatment of diseases associated with the impaired function of these biomolecules.
Collapse
Affiliation(s)
- Irina V. Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, 634009 Tomsk, Russia; (I.V.K.); (E.E.S.); (E.A.S.)
| | - Elena E. Shashova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, 634009 Tomsk, Russia; (I.V.K.); (E.E.S.); (E.A.S.)
| | - Evgenia A. Sidenko
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, 634009 Tomsk, Russia; (I.V.K.); (E.E.S.); (E.A.S.)
| | - Tatiana M. Astakhova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (T.M.A.); (L.A.Z.)
| | - Liudmila A. Zakharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (T.M.A.); (L.A.Z.)
| | - Natalia P. Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (T.M.A.); (L.A.Z.)
- Correspondence: ; Tel.: +7-499-135-7674; Fax: +7-499-135-3322
| |
Collapse
|
20
|
Sang Z, Wang K, Shi J, Liu W, Cheng X, Zhu G, Wang Y, Zhao Y, Qiao Z, Wu A, Tan Z. The development of advanced structural framework as multi-target-directed ligands for the treatment of Alzheimer's disease. Eur J Med Chem 2020; 192:112180. [PMID: 32131034 DOI: 10.1016/j.ejmech.2020.112180] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/19/2020] [Accepted: 02/21/2020] [Indexed: 01/09/2023]
Abstract
In this work, we have developed a novel series of multi-target-directed ligands to address low levels of acetylcholine (ACh), oxidative stress, metal ion dysregulation, and the misfolded proteins. Novel apigenin-donepezil derivatives, naringenin-donepezil derivatives, genistein-donepezil derivatives and chalcone-donepezil derivatives have been synthesized, in vitro results showed that TM-4 was a reversible and potent huAChE (IC50 = 0.36 μM) and huBChE (IC50 = 15.3 μM) inhibitor, and showed potent antioxidant activity (ORAC = 1.2 eq). TM-4 could significantly inhibit self-induced Aβ1-42 aggregation (IC50 = 3.7 μM). TM-4 was also an ideal neuroprotectant, potential metal chelation agent, and it could inhibit and disaggregate huAChE-induced and Cu2+-induced Aβ aggregation. Moreover, TM-4 could activate UPS degradation pathway in HT22 cells and induce autophagy on U87 cells to clear abnormal proteins associated with AD. More importantly, TM-4 could cross BBB in vitro assay. In addition, in vivo assay revealed that TM-4 exhibited remarkable dyskinesia recovery rate and response efficiency on AlCl3-induced zebrafish AD model, and TM-4 indicated surprising protective effect on Aβ1-40-induced vascular injury. TM-4 presented precognitive effect on scopolamine-induced memory impairment. And the regulation of multi-targets for TM-4 were further conformed through transcriptome sequencing. More interesting, the blood, urine and feces metabolism in rat and rat/human liver microsome metabolism towards TM-4 were also investigated. Overall, TM-4 is a promising multi-function candidate for the development of drugs to Alzheimer's disease.
Collapse
Affiliation(s)
- Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Keren Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Jian Shi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Wenmin Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Xinfeng Cheng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Gaofeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Yiling Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Southwest Medical University, Luzhou, 646000, China
| | - Yiyang Zhao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Zhanpin Qiao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Southwest Medical University, Luzhou, 646000, China.
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| |
Collapse
|
21
|
Imran M, Aslam Gondal T, Atif M, Shahbaz M, Batool Qaisarani T, Hanif Mughal M, Salehi B, Martorell M, Sharifi-Rad J. Apigenin as an anticancer agent. Phytother Res 2020; 34:1812-1828. [PMID: 32059077 DOI: 10.1002/ptr.6647] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/03/2020] [Accepted: 01/31/2020] [Indexed: 12/26/2022]
Abstract
Apigenin is an edible plant-derived flavonoid that has been reported as an anticancer agent in several experimental and biological studies. It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways. Apigenin induces apoptosis by the activation of extrinsic caspase-dependent pathway by upregulating the mRNA expressions of caspase-3, caspase-8, and TNF-α. It induces intrinsic apoptosis pathway as evidenced by the induction of cytochrome c, Bax, and caspase-3, while caspase-8, TNF-α, and B-cell lymphoma 2 levels remained unchanged in human prostate cancer PC-3 cells. Apigenin treatment leads to significant downregulation of matrix metallopeptidases-2, -9, Snail, and Slug, suppressing invasion. The expressions of NF-κB p105/p50, PI3K, Akt, and the phosphorylation of p-Akt decreases after treatment with apigenin. However, apigenin-mediated treatment significantly reduces pluripotency marker Oct3/4 protein expression which might be associated with the downregulation of PI3K/Akt/NF-κB signaling.
Collapse
Affiliation(s)
- Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Lahore, Pakistan
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Deakin University, Melbourne, Victoria, Australia
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University of Agriculture Multan, Multan, Pakistan
| | - Tahira Batool Qaisarani
- Department of Agricultural Engineering and Technology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Hanif Mughal
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Lahore, Pakistan
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile.,Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Huang S, Yu M, Shi N, Zhou Y, Li F, Li X, Huang X, Jin J. Apigenin and Abivertinib, a novel BTK inhibitor synergize to inhibit diffuse large B-cell lymphoma in vivo and vitro. J Cancer 2020; 11:2123-2132. [PMID: 32127939 PMCID: PMC7052937 DOI: 10.7150/jca.34981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/28/2019] [Indexed: 01/19/2023] Open
Abstract
Background: Apigenin, a flavonoid phytochemical extracted from fruits and vegetables, has shown anti-neoplastic effects in a variety of malignant tumors. DLBCL is the most common type of aggressive lymphoma in adults with a poor prognosis. Small-molecule inhibitors like BTK inhibitors have demonstrated extended period of disease control. Whereas the effects of the synergetic inhibition of the two have not been elucidated. Methods: We assessed the efficacy of Apigenin alone or combined with Abivertinib to inhibit DLBCL progression. Cell viability was examined using the cell proliferation cell proliferation assay (MTS). Apoptotic cells and cell cycle evaluation were detected by Annexin V-FITC and DNA staining solution respectively. Western blot was used to explore the potential mechanism, and the in vivo effects of the two drugs were performed by a DLBCL xenograft BALB/c nude mice model. Results: Our results demonstrated that Apigenin can inhibit the proliferation and clone forming of DLBCL cells. Apigenin also induces apoptosis by down-regulating BCL-XL and activating Caspase family. In addition, Apigenin down-regulates cell cycle proteins including CDK2/CDK4/CDK6/CDC2/p-RB to increase G2/M phase arrest. Mechanically, our data demonstrate that Apigenin leads to a significant reduction of the expression of pro-proliferative pathway PI3K/mTOR to inhibit DLBCL cells survival. Moreover, our in vitro and in vivo results show that Apigenin can synergize with Abivertinib, a novel BTK inhibitor, in treating DLBCL visa synergistically inducing apoptosis and inhibiting the p-GS3K-β and its downstream targets. Conclusions: Collectively, our study suggests that Apigenin exerts improving anti-lymphoma effect of BTK inhibitors and provides hope to targeted therapy of those develop resistance.
Collapse
Affiliation(s)
- Shujuan Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Mengxia Yu
- Department of Hematology, Hangzhou First people's hospital, Zhejiang, Hangzhou, China
| | - Nana Shi
- The Children's Hospital Zhejiang University School of Medicine
| | - Yile Zhou
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Fengling Li
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xia Li
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xin Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| |
Collapse
|
23
|
Sang Z, Wang K, Shi J, Cheng X, Zhu G, Wei R, Ma Q, Yu L, Zhao Y, Tan Z, Liu W. Apigenin-rivastigmine hybrids as multi-target-directed liagnds for the treatment of Alzheimer’s disease. Eur J Med Chem 2020; 187:111958. [DOI: 10.1016/j.ejmech.2019.111958] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
|
24
|
Liu B, Chen J, Zhang S. Emerging role of ubiquitin-specific protease 14 in oncogenesis and development of tumor: Therapeutic implication. Life Sci 2019; 239:116875. [PMID: 31676235 DOI: 10.1016/j.lfs.2019.116875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
Ubiquitin (Ub) is a small protein that can be attached to substrate proteins to direct their degradation via the proteasome. Deubiquitinating enzymes (DUBs) reverse this process by removing ubiquitin from its substrate protein. Over the past few decades, ubiquitin-specific protease 14 (USP14), a member of the DUBs, has emerged as an important player in various types of cancers. In this article, we review and summarize biological function of USP14 in tumorigenesis and multiple signaling pathways. To determine its role in cancer, we analyzed USP14 gene expression across a panel of tumors, and discussed that it could serve as a novel bio-marker in several types of cancer. And recent contributions indicated that USP14 has been shown to act as a tumor-promoting gene via the AKT, NF-κB, MAPK pathways etc. Besides, drugs targeting USP14 have shown potential anti-tumor effect and clinical significance. We focus on recent studies that explore the link between USP14 and cancer, and further discuss USP14 as a novel target for cancer therapy.
Collapse
Affiliation(s)
- Bing Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiangping Chen
- School of International Studies, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
25
|
Fan J, Du W, Zhang H, Wang Y, Li K, Meng Y, Wang J. Transcriptional downregulation of miR-127-3p by CTCF promotes prostate cancer bone metastasis by targeting PSMB5. FEBS Lett 2019; 594:466-476. [PMID: 31562641 DOI: 10.1002/1873-3468.13624] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancers in males and particularly tends to metastasize to bone. Currently, metastatic bone disease is incurable, and new therapies need to be developed. Our study aims to determine the role of miR-127-3p in PCa metastasis to bone. The results demonstrate that miR-127-3p is markedly reduced in bone metastasis-positive PCa tissues relative to that in bone metastasis-negative PCa tissues. Furthermore, overexpressing miR-127-3p inhibits PCa cell invasion and migration in vitro by targeting the proteasome β-subunit PSMB5. Moreover, CCCTC-binding factor (CTCF) transcriptionally inhibits miR-127-3p by interacting with the miR-127-3p promoter. Collectively, this study uncovers a novel mechanism of the CTCF/miR-127-3p/PSMB5 axis in promoting PCa bone metastasis, indicating that miR-127-3p could function as a promising therapeutic target against bone metastasis.
Collapse
Affiliation(s)
- Jiaxing Fan
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| | - Wenzhi Du
- Graduate School, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.,Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Hui Zhang
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| | - Yunchao Wang
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Kai Li
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yong Meng
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jianning Wang
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
26
|
Cho C, Kang LJ, Jang D, Jeon J, Lee H, Choi S, Han SJ, Oh E, Nam J, Kim CS, Park E, Jeong SY, Park CH, Shin YS, Eyun SI, Yang S. Cirsium japonicum var. maackii and apigenin block Hif-2α-induced osteoarthritic cartilage destruction. J Cell Mol Med 2019; 23:5369-5379. [PMID: 31148341 PMCID: PMC6652892 DOI: 10.1111/jcmm.14418] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Although Hif-2α is a master regulator of catabolic factor expression in osteoarthritis development, Hif-2α inhibitors remain undeveloped. The aim of this study was to determine whether Cirsium japonicum var. maackii (CJM) extract and one of its constituents, apigenin, could attenuate the Hif-2α-induced cartilage destruction implicated in osteoarthritis progression. In vitro and in vivo studies demonstrated that CJM reduced the IL-1β-, IL-6, IL-17- and TNF-α-induced up-regulation of MMP3, MMP13, ADAMTS4, ADAMTS5 and COX-2 and blocked osteoarthritis development in a destabilization of the medial meniscus mouse model. Activation of Hif-2α, which directly up-regulates MMP3, MMP13, ADAMTS4, IL-6 and COX-2 expression, is inhibited by CJM extract. Although cirsimarin, cirsimaritin and apigenin are components of CJM and can reduce inflammation, only apigenin effectively reduced Hif-2α expression and inhibited Hif-2α-induced MMP3, MMP13, ADAMTS4, IL-6 and COX-2 expression in articular chondrocytes. IL-1β induction of JNK phosphorylation and IκB degradation, representing a critical pathway for Hif-2α expression, was completely blocked by apigenin in a concentration-dependent manner. Collectively, these effects indicate that CJM and one of its most potent constituents, apigenin, can lead to the development of therapeutic agents for blocking osteoarthritis development as novel Hif-2α inhibitors.
Collapse
Affiliation(s)
- Chanmi Cho
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Li-Jung Kang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Dain Jang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Jimin Jeon
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Hyemi Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Sangil Choi
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Seong Jae Han
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Eunjeong Oh
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Jiho Nam
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Chun Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju, Korea
| | - Eunkuk Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Seon-Yong Jeong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Chan Hum Park
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Korea
| | - Yu Su Shin
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Siyoung Yang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
27
|
The natural plant flavonoid apigenin is a strong antioxidant that effectively delays peripheral neurodegenerative processes. Anat Sci Int 2019; 94:285-294. [DOI: 10.1007/s12565-019-00486-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
|
28
|
Salmani JMM, Zhang XP, Jacob JA, Chen BA. Apigenin's anticancer properties and molecular mechanisms of action: Recent advances and future prospectives. Chin J Nat Med 2018; 15:321-329. [PMID: 28558867 DOI: 10.1016/s1875-5364(17)30052-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Indexed: 01/31/2023]
Abstract
Cancer is a major health concern and leading burden on economy worldwide. An increasing effort is devoted to isolation and development of plant-derived dietary components as effective chemo-preventive products. Phytochemical compounds from natural resources such as fruits and vegetables are responsible for decreasing the risk of certain cancers among the consuming populations. Apigenin, a flavonoid phytochemical found in many kinds of fruits and vegetables, has been shown to exert significant biological effects, such as anti-oxidant, anti-inflammatory and most particularly anti-neoplastic properties. This review is intended to summarize the most recent advances in the anti-proliferative and chemo-preventive effects of apigenin in different cancer models. Analysis of the data from the studied cancer models has revealed that apigenin exerts its anti-proliferative effects through multiple and complex pathways. This guided us to discover some controversial results about the exact role of certain molecular pathways such as autophagy in the anticancer effects of apigenin. Further, there were cumulative positive evidences supporting the involvement of certain pathways such as apoptosis, ROS and DNA damage and repair. Apigenin possesses a high potential to be used as a chemosensitizing agent through the up-regulation of DR5 pathway. According to these preclinical findings we recommend that further robust unbiased studies should consider the possible interactions between different molecular pathways.
Collapse
Affiliation(s)
- Jumah Masoud Mohammad Salmani
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiao-Ping Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Joe Antony Jacob
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bao-An Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
29
|
Paterni I, Granchi C, Minutolo F. Risks and benefits related to alimentary exposure to xenoestrogens. Crit Rev Food Sci Nutr 2018; 57:3384-3404. [PMID: 26744831 DOI: 10.1080/10408398.2015.1126547] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Xenoestrogens are widely diffused in the environment and in food, thus a large portion of human population worldwide is exposed to them. Among alimentary xenoestrogens, phytoestrogens (PhyEs) are increasingly being consumed because of their potential health benefits, although there are also important risks associated to their ingestion. Furthermore, other xenoestrogens that may be present in food are represented by other chemicals possessing estrogenic activities, that are commonly defined as endocrine disrupting chemicals (EDCs). EDCs pose a serious health concern since they may cause a wide range of health problems, starting from pre-birth till adult lifelong exposure. We herein provide an overview of the main classes of xenoestrogens, which are classified on the basis of their origin, their structures and their occurrence in the food chain. Furthermore, their either beneficial or toxic effects on human health are discussed in this review.
Collapse
Affiliation(s)
- Ilaria Paterni
- a Dipartimento di Farmacia , Università di Pisa , Pisa , Italy
| | | | - Filippo Minutolo
- a Dipartimento di Farmacia , Università di Pisa , Pisa , Italy.,b Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute," Università di Pisa , Pisa , Italy
| |
Collapse
|
30
|
Madunić J, Madunić IV, Gajski G, Popić J, Garaj-Vrhovac V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett 2018; 413:11-22. [DOI: 10.1016/j.canlet.2017.10.041] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023]
|
31
|
Jin BZ, Dong XQ, Xu X, Zhang FH. Development and in vitro evaluation of mucoadhesive patches of methotrexate for targeted delivery in oral cancer. Oncol Lett 2017; 15:2541-2549. [PMID: 29434971 DOI: 10.3892/ol.2017.7613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/15/2017] [Indexed: 11/06/2022] Open
Abstract
The present study focused on the development of a mucoadhesive patch of methotrexate (MTX) for targeted delivery in oral cancer. Initially, MTX-loaded liposomes were prepared using the thin film hydration method, and had a mean diameter of 105.7-137.4 nm and percentage entrapment efficiency of 54.6±3.5. These liposomes were cast in optimized mucoadhesive film. The film was characterized by its release pattern, thickness, weight and percentage swelling index and the sustained release profile of the optimized film was evaluated. The developed liposomes and liposomes cast in the film formulation were evaluated for cytotoxicity in HSC-3 cells using an MTT assay, and a significant decrease in the half maximal inhibitory concentration of MTX was identified with the MTX-entrapped liposomal film, M-LP-F7. The results of the mitochondria-dependent intrinsic pathway demonstrated that there was significant mitochondrial membrane potential disruption with M-LP-F7 compared with the plain drug. M-LP-F7 increased the rate of apoptosis in HSC-3 cells by almost 3-fold. Elevated levels of reactive oxygen species provided evidence that M-LP-F7 exerts a pro-oxidant effect in HSC-3 cells.
Collapse
Affiliation(s)
- Bao-Zhong Jin
- Department of Oral Surgery, Stomatological Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiao-Qi Dong
- Department of Oral Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xin Xu
- Department of Oral Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Feng-He Zhang
- Department of Oral Surgery, Stomatological Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
32
|
Sharma M, Sharma S, Sharma V, Sharma K, Yadav SK, Dwivedi P, Agrawal S, Paliwal SK, Dwivedi AK, Maikhuri JP, Gupta G, Mishra PR, Rawat AKS. Oleanolic–bioenhancer coloaded chitosan modified nanocarriers attenuate breast cancer cells by multimode mechanism and preserve female fertility. Int J Biol Macromol 2017; 104:1345-1358. [DOI: 10.1016/j.ijbiomac.2017.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/24/2017] [Accepted: 06/02/2017] [Indexed: 12/28/2022]
|
33
|
Phytochemicals Targeting Estrogen Receptors: Beneficial Rather Than Adverse Effects? Int J Mol Sci 2017; 18:ijms18071381. [PMID: 28657580 PMCID: PMC5535874 DOI: 10.3390/ijms18071381] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 12/31/2022] Open
Abstract
In mammals, the effects of estrogen are mainly mediated by two different estrogen receptors, ERα and ERβ. These proteins are members of the nuclear receptor family, characterized by distinct structural and functional domains, and participate in the regulation of different biological processes, including cell growth, survival and differentiation. The two estrogen receptor (ER) subtypes are generated from two distinct genes and have partially distinct expression patterns. Their activities are modulated differently by a range of natural and synthetic ligands. Some of these ligands show agonistic or antagonistic effects depending on ER subtype and are described as selective ER modulators (SERMs). Accordingly, a few phytochemicals, called phytoestrogens, which are synthesized from plants and vegetables, show low estrogenic activity or anti-estrogenic activity with potentially anti-proliferative effects that offer nutraceutical or pharmacological advantages. These compounds may be used as hormonal substitutes or as complements in breast cancer treatments. In this review, we discuss and summarize the in vitro and in vivo effects of certain phytoestrogens and their potential roles in the interaction with estrogen receptors.
Collapse
|
34
|
Ali F, Rahul, Naz F, Jyoti S, Siddique YH. Health functionality of apigenin: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1207188] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Shukla S, Kanwal R, Shankar E, Datt M, Chance MR, Fu P, MacLennan GT, Gupta S. Apigenin blocks IKKα activation and suppresses prostate cancer progression. Oncotarget 2016; 6:31216-32. [PMID: 26435478 PMCID: PMC4741599 DOI: 10.18632/oncotarget.5157] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/24/2015] [Indexed: 12/27/2022] Open
Abstract
IKKα has been implicated as a key regulator of oncogenesis and driver of the metastatic process; therefore is regarded as a promising therapeutic target in anticancer drug development. In spite of the progress made in the development of IKK inhibitors, no potent IKKα inhibitor(s) have been identified. Our multistep approach of molecular modeling and direct binding has led to the identification of plant flavone apigenin as a specific IKKα inhibitor. Here we report apigenin, in micro molar range, inhibits IKKα kinase activity, demonstrates anti-proliferative and anti-invasive activities in functional cell based assays and exhibits anticancer efficacy in experimental tumor model. We found that apigenin directly binds with IKKα, attenuates IKKα kinase activity and suppresses NF-ĸB/p65 activation in human prostate cancer PC-3 and 22Rv1 cells much more effectively than IKK inhibitor, PS1145. We also showed that apigenin caused cell cycle arrest similar to knockdown of IKKα in prostate cancer cells. Studies in xenograft mouse model indicate that apigenin feeding suppresses tumor growth, lowers proliferation and enhances apoptosis. These effects correlated with inhibition of p-IKKα, NF-ĸB/p65, proliferating cell nuclear antigen and increase in cleaved caspase 3 expression in a dose-dependent manner. Overall, our results suggest that inhibition of cell proliferation, invasiveness and decrease in tumor growth by apigenin are mediated by its ability to suppress IKKα and downstream targets affecting NF-ĸB signaling pathways.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Rajnee Kanwal
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Eswar Shankar
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Manish Datt
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Mark R Chance
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Pingfu Fu
- Department of Epidemiology & Biostatistics, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Gregory T MacLennan
- Department of Pathology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,Department of Nutrition, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA.,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| |
Collapse
|
36
|
Liang Y, Mafuvadze B, Aebi JD, Hyder SM. Cholesterol biosynthesis inhibitor RO 48-8071 suppresses growth of hormone-dependent and castration-resistant prostate cancer cells. Onco Targets Ther 2016; 9:3223-32. [PMID: 27313468 PMCID: PMC4892832 DOI: 10.2147/ott.s105725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Standard treatment for primary prostate cancer includes systemic exposure to chemotherapeutic drugs that target androgen receptor or antihormone therapy (chemical castration); however, drug-resistant cancer cells generally emerge during treatment, limiting the continued use of systemic chemotherapy. Patients are then treated with more toxic standard therapies. Therefore, there is an urgent need for novel and more effective treatments for prostate cancer. The cholesterol biosynthetic pathway is an attractive therapeutic target for treating endocrine-dependent cancers because cholesterol is an essential structural and functional component of cell membranes as well as the metabolic precursor of endogenous steroid hormones. In this study, we have examined the effects of RO 48-8071 (4′-[6-(allylmethylamino)hexyloxy]-4-bromo-2′-fluorobenzophenone fumarate; Roche Pharmaceuticals internal reference: RO0488071) (RO), which is an inhibitor of 2, 3-oxidosqualene cyclase (a key enzyme in the cholesterol biosynthetic pathway), on prostate cancer cells. Exposure of both hormone-dependent and castration-resistant human prostate cancer cells to RO reduced prostate cancer cell viability and induced apoptosis in vitro. RO treatment reduced androgen receptor protein expression in hormone-dependent prostate cancer cells and increased estrogen receptor β (ERβ) protein expression in both hormone-dependent and castration-resistant prostate cancer cell lines. Combining RO with an ERβ agonist increased its ability to reduce castration-resistant prostate cancer cell viability. In addition, RO effectively suppressed the growth of aggressive castration-resistant human prostate cancer cell xenografts in vivo without any signs of toxicity to experimental animals. Importantly, RO did not reduce the viability of normal prostate cells in vitro. Our study is the first to demonstrate that the cholesterol biosynthesis inhibitor RO effectively suppresses growth of human prostate cancer cells. Our findings suggest that cholesterol biosynthesis inhibitors such as RO, when used in combination with commonly used chemotherapeutic drugs or ERβ specific ligands, could represent a novel therapeutic approach to prevent the growth of prostate cancer tumors.
Collapse
Affiliation(s)
- Yayun Liang
- Dalton Cardiovascular Research Center and Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Benford Mafuvadze
- Dalton Cardiovascular Research Center and Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Johannes D Aebi
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Salman M Hyder
- Dalton Cardiovascular Research Center and Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
37
|
Obeid JP, Zafar N, El Hokayem J. Steroid Hormone Receptor Coregulators in Endocrine Cancers. IUBMB Life 2016; 68:504-15. [PMID: 27240871 DOI: 10.1002/iub.1517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 01/14/2023]
Abstract
Coregulators span a broad and extensive domain in modulating cellular transcriptional activity. Studies have established a dynamic role for such coregulators in various endocrine cancers. Steroid hormone receptors (SHRs) play a pivotal role in such endocrine cancers, and interact abundantly with transcriptional coregulators in altering gene expression. Several families of coregulators have implications in propagating the development, progression and invasion of breast, prostate, and other hormone-responsive cancers. This mini-review aims to discuss different classes of coregulators involved in endocrine cancers and highlight unique information regarding each family with relevance to mechanism, intervention, and novel directions being investigated. © 2016 IUBMB Life, 68(7):504-515, 2016.
Collapse
Affiliation(s)
- Jean-Pierre Obeid
- Department of Biochemistry and Molecular Biology, University of Miami, FL, USA
| | - Nawal Zafar
- Department of Biochemistry and Molecular Biology, University of Miami, FL, USA
| | - Jimmy El Hokayem
- Department of Biochemistry and Molecular Biology, University of Miami, FL, USA
| |
Collapse
|
38
|
Marzagalli M, Montagnani Marelli M, Casati L, Fontana F, Moretti RM, Limonta P. Estrogen Receptor β in Melanoma: From Molecular Insights to Potential Clinical Utility. Front Endocrinol (Lausanne) 2016; 7:140. [PMID: 27833586 PMCID: PMC5080294 DOI: 10.3389/fendo.2016.00140] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma is an aggressive tumor; its incidence has been reported to increase fast in the past decades. Melanoma is a heterogeneous tumor, with most patients harboring mutations in the BRAF or NRAS oncogenes, leading to the overactivation of the MAPK/ERK and PI3K/Akt pathways. The current therapeutic approaches are based on therapies targeting mutated BRAF and the downstream pathway, and on monoclonal antibodies against the immune checkpoint blockade. However, treatment resistance and side effects are common events of these therapeutic strategies. Increasing evidence supports that melanoma is a hormone-related cancer. Melanoma incidence is higher in males than in females, and females have a significant survival advantage over men. Estrogens exert their effects through estrogen receptors (ERα and ERβ) that affect cancer growth in an opposite way: ERα is associated with a proliferative action and ERβ with an anticancer effect. ERβ is the predominant ER in melanoma, and its expression decreases in melanoma progression, supporting its role as a tumor suppressor. Thus, ERβ is now considered as an effective molecular target for melanoma treatment. 17β-estradiol was reported to inhibit melanoma cells proliferation; however, clinical trials did not provide the expected survival benefits. In vitro studies demonstrate that ERβ ligands inhibit the proliferation of melanoma cells harboring the NRAS (but not the BRAF) mutation, suggesting that ERβ activation might impair melanoma development through the inhibition of the PI3K/Akt pathway. These data suggest that ERβ agonists might be considered as an effective treatment strategy, in combination with MAPK inhibitors, for NRAS mutant melanomas. In an era of personalized medicine, pretreatment evaluation of the expression of ER isoforms together with the concurrent oncogenic mutations should be considered before selecting the most appropriate therapeutic intervention. Natural compounds that specifically bind to ERβ have been identified. These phytoestrogens decrease the proliferation of melanoma cells. Importantly, these effects are unrelated to the oncogenic mutations of melanomas, suggesting that, in addition to their ERβ activating function, these compounds might impair melanoma development through additional mechanisms. A better identification of the role of ERβ in melanoma development will help increase the therapeutic options for this aggressive pathology.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
- *Correspondence: Patrizia Limonta,
| |
Collapse
|