1
|
Wang F, Li F, Han L, Wang J, Ding X, Liu Q, Jiang M, Li H. High-Yield-Related Genes Participate in Mushroom Production. J Fungi (Basel) 2024; 10:767. [PMID: 39590686 PMCID: PMC11595646 DOI: 10.3390/jof10110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
In recent years, the increasing global demand for mushrooms has made the enhancement of mushroom yield a focal point of research. Currently, the primary methods for developing high-yield mushroom varieties include mutation- and hybridization-based breeding. However, due to the long breeding cycles and low predictability associated with these approaches, they no longer meet the demands for high-yield and high-quality varieties in the expansive mushroom market. Modern molecular biology technologies such as RNA interference (RNAi) and gene editing, including via CRISPR-Cas9, can be used to precisely modify target genes, providing a new solution for mushroom breeding. The high-yield genes of mushrooms can be divided into four categories based on existing research results: the genes controlling mycelial growth are very suitable for genetic modification; the genes controlling primordium formation are directly or indirectly regulated by the genes controlling mycelial growth; the genes controlling button germination are more difficult to modify; and the genes controlling fruiting body development can be regulated during the mycelial stage. This article reviews the current research status for the four major categories of high-yield-related genes across the different stages of mushroom growth stages, providing a foundation and scientific basis for using molecular biology to improve mushroom yield and promote the economic development of the global edible-mushroom industry.
Collapse
Affiliation(s)
- Fang Wang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (F.W.); (F.L.); (L.H.); (J.W.); (X.D.)
| | - Fengzhu Li
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (F.W.); (F.L.); (L.H.); (J.W.); (X.D.)
| | - Luyang Han
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (F.W.); (F.L.); (L.H.); (J.W.); (X.D.)
| | - Jingzi Wang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (F.W.); (F.L.); (L.H.); (J.W.); (X.D.)
| | - Xupo Ding
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (F.W.); (F.L.); (L.H.); (J.W.); (X.D.)
| | - Qinhong Liu
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing 100193, China;
| | - Mingguo Jiang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (F.W.); (F.L.); (L.H.); (J.W.); (X.D.)
| | - Hailin Li
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (F.W.); (F.L.); (L.H.); (J.W.); (X.D.)
| |
Collapse
|
2
|
Rauf A, Joshi PB, Ahmad Z, Hemeg HA, Olatunde A, Naz S, Hafeez N, Simal-Gandara J. Edible mushrooms as potential functional foods in amelioration of hypertension. Phytother Res 2023; 37:2644-2660. [PMID: 37157920 DOI: 10.1002/ptr.7865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Edible mushrooms are popular functional foods attributed to their rich nutritional bioactive constituent profile influencing cardiovascular function. Edible mushrooms are omnipresent in various prescribed Dietary Approaches to Stop Hypertension, Mediterranean diet, and fortified meal plans as they are rich in amino acids, dietary fiber, proteins, sterols, vitamins, and minerals. However, without an understanding of the influence of mushroom bioactive constituents, mechanism of action on heart and allergenicity, it is difficult to fully comprehend the role of mushrooms as dietary interventions in alleviating hypertension and other cardiovascular malfunctions. To accomplish this endeavor, we chose to review edible mushrooms and their bioactive constituents in ameliorating hypertension. Hypertension and cardiovascular diseases are interrelated and if the former is managed by dietary changes, it is postulated that overall heart health could also be improved. With a concise note on different edible varieties of mushrooms, a particular focus is presented on the antihypertensive potential of mushroom bioactive constituents, mode of action, absorption kinetics and bioavailability. Ergosterol, lovastatin, cordycepin, tocopherols, chitosan, ergothioneine, γ-aminobutyric acid, quercetin, and eritadenine are described as essential bioactives with hypotensive effects. Finally, safety concerns on allergens and limitations of consuming edible mushrooms with special reference to chemical toxins and their postulated metabolites are highlighted. It is opined that the present review will redirect toxicologists to further investigate mushroom bioactives and allergens, thereby influencing dietary interventions for heart health.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Payal B Joshi
- Operations and Method Development, Shefali Research Laboratories, Ambernath, India
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University, Khyber Pakhtunkhwa, Pakistan
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
3
|
Yadav D, Negi PS. Bioactive components of mushrooms: Processing effects and health benefits. Food Res Int 2021; 148:110599. [PMID: 34507744 DOI: 10.1016/j.foodres.2021.110599] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Mushrooms have been recognized for their culinary attributes for long and were relished in the most influential civilizations in history. Currently, they are the focus of renewed research because of their therapeutic abilities. Nutritional benefits from mushrooms are in the form of a significant source of essential proteins, dietary non-digestible carbohydrates, unsaturated fats, minerals, as well as various vitamins, which have enhanced its consumption, and also resulted in the development of various processed mushroom products. Mushrooms are also a crucial ingredient in traditional medicine for their healing potential and curative properties. The literature on the nutritional, nutraceutical, and therapeutic potential of mushrooms, and their use as functional foods for the maintenance of health was reviewed, and the available literature indicates the enormous potential of the bioactive compounds present in mushrooms. Future research should be focused on the development of processes to retain the mushroom bioactive components, and valorization of waste generated during processing. Further, the mechanisms of action of mushroom bioactive components should be studied in detail to delineate their diverse roles and functions in the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Divya Yadav
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
4
|
Hossain MS, Barua A, Tanim MAH, Hasan MS, Islam MJ, Hossain MR, Emon NU, Hossen SMM. Ganoderma applanatum mushroom provides new insights into the management of diabetes mellitus, hyperlipidemia, and hepatic degeneration: A comprehensive analysis. Food Sci Nutr 2021; 9:4364-4374. [PMID: 34401085 PMCID: PMC8358375 DOI: 10.1002/fsn3.2407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
This study was undertaken to evaluate the antidiabetic, hypolipidemic, and hepatoprotective effects of methanol and aqueous extracts of Ganoderma applanatum (MEGA, AEGA) in alloxan-induced diabetic rats. The antidiabetic study was implemented by the induction of alloxan to the rats. The analysis of the hypolipidemic and liver-protective effects of fungus extracts was studied by estimating the lipid profile and the liver marker enzymes. Besides, in silico screening of the compounds of Ganoderma applanatum has been incorporated thus to check the binding affinity of compounds and enzymes affinity. The Discovery Studio 2020, UCSF Chimera, and PyRx AutoDock Vina have been used to implement the docking analysis. Nine days of oral feeding of MEGA and AEGA of Ganoderma applanatum resulted in a significant (p < .001) reduction in blood glucose, lipid profile, and liver marker enzymes. Besides, Myrocin C scored the highest score in the docking study. The biological and computational approaches suggested the MEGA and AEGA could be a potential source for antidiabetic, hypolipidemic, and hepatoprotective effects.
Collapse
Affiliation(s)
| | - Anik Barua
- Department of Biochemistry and BiotechnologyUniversity of Science and Technology ChittagongChattogramBangladesh
| | | | - Mohammad Sharif Hasan
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChattogramBangladesh
| | - Mohammad Jahedul Islam
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChattogramBangladesh
| | - Md. Rabiul Hossain
- Department of PharmacyUniversity of Science and Technology ChittagongChattogramBangladesh
| | - Nazim Uddin Emon
- Department of PharmacyFaculty of Science and EngineeringInternational Islamic University ChittagongChattogramBangladesh
| | - S M Moazzem Hossen
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChattogramBangladesh
| |
Collapse
|
5
|
Javaid F, Mehmood MH, Shaukat B. Hydroethanolic Extract of A. officinarum Hance Ameliorates Hypertension and Causes Diuresis in Obesogenic Feed-Fed Rat Model. Front Pharmacol 2021; 12:670433. [PMID: 34305591 PMCID: PMC8299705 DOI: 10.3389/fphar.2021.670433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Alpinia officinarum Hance (Zingiberaceae) has been used widely in traditional Chinese and Ayurvedic medicines. Its folkloric uses include relieving stomach ache, treating cold, improving the circulatory system, and reducing swelling. Its effectiveness and mechanism of antihypertension in obesity-induced hypertensive rats have not been studied yet as per our knowledge. This study has been designed to provide evidence of underlying mechanisms to the medicinal use of A. officinarum as a cardiotonic using an obesity-induced hypertension model in rats. Chronic administration of A. officinarum caused a marked reduction in the body weight gain and Lee index of rats compared to the obesogenic diet-fed rats. Its administration also caused attenuation in blood pressure (systolic, diastolic, and mean), serum total cholesterol, triglyceride, and leptin, while an increase in serum HDL and adiponectin levels was noticed. The catalase and superoxide dismutase enzymatic activities were found to be remarkable in the serum of A. officinarum-treated animal groups. A. officinarum showed mild to moderate diuretic, hepatoprotective, and reno-protective effects. The A. officinarum-treated group showed less mRNA expression of 3-hydroxy-3-methylglutaryl-CoA reductase while the mRNA expression of peroxisome proliferator-activated receptor and mRNA expression of cholesterol 7 alpha-hydroxylase were raised in comparison to the hypertensive group of rats evaluated by quantitative real-time polymerase chain reaction. These findings show that A. officinarum possesses antihypertensive and diuretic activities, thus providing a rationale to the medicinal use of A. officinarum in cardiovascular ailments.
Collapse
Affiliation(s)
- Farah Javaid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University of Faisalabad, Faisalabad, Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University of Faisalabad, Faisalabad, Pakistan
| | - Bushra Shaukat
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University of Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
6
|
Yang X, Lin P, Wang J, Liu N, Yin F, Shen N, Guo S. Purification, characterization and anti-atherosclerotic effects of the polysaccharides from the fruiting body of Cordyceps militaris. Int J Biol Macromol 2021; 181:890-904. [PMID: 33878353 DOI: 10.1016/j.ijbiomac.2021.04.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
Hyperlipidemia is one major cause of atherosclerosis, which is a basic pathological change of cardiovascular diseases. Polysaccharide is a water-soluble component with lipid-lowering effects. In this study, alkaline-extracted polysaccharides were obtained from the fruiting body of C. militaris. Polysaccharides were purified via anion exchange and size exclusion chromatography. Their structural characteristics were investigated via chemical and spectroscopic methods. CM3I was mainly composed of →4)α-D-Glcp(1 → glycosyls and differed from starch due to the presence of →4,6)β-D-Glcp(1 → glycosyls. CM3II was characterized by its backbone, which was composed of →4)-β-D-Manp(1 → 6)-α-D-Manp(1 → 6)-β-D-Manp(1 → linked glycosyls, and especially the presence of O-methyl. Moreover, CM3II exhibited powerful anti-atherosclerotic effects via lowering plasma lipid levels in apolipoprotein E-deficient mice. The underlying mechanisms were attributed to its promoting effect on LXRα and inhibitory effect on SREBP-2. Collectively, CM3I and CM3II are different from the previously reported polysaccharides from C. militaris, and CM3II has a potential application in hypolipidemia and anti-atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Ping Lin
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jin Wang
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Na Liu
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Fan Yin
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Nuo Shen
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shoudong Guo
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
7
|
Nakamura A, Zhu Q, Yokoyama Y, Kitamura N, Uchida S, Kumadaki K, Tsubota K, Watanabe M. Agaricus brasiliensis KA21 May Prevent Diet-Induced Nash Through Its Antioxidant, Anti-Inflammatory, and Anti-Fibrotic Activities in the Liver. Foods 2019; 8:E546. [PMID: 31689883 PMCID: PMC6915480 DOI: 10.3390/foods8110546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive disease that occurs in the liver. As the number of people with NASH has increased, effective prevention and treatment strategies are needed. Agaricus brasiliensis KA21 (AGA) is a mushroom native to Brazil and is considered a healthy food because of its purported health benefits, including its antioxidant properties. In this study, we focused on the oxidative stress that accompanies the onset of NASH and examined whether AGA can prevent NASH development through its antioxidant activity. We used a mouse model of NASH in which pathogenesis was promoted by dietary induction. Supplementation with AGA attenuated the development of hepatic fibrosis, which is a characteristic feature of late-stage NASH. This effect appeared to be mechanistically linked to an AGA-promoted reduction in hepatic oxidative stress. These results demonstrate a novel role for AGA in NASH prevention.
Collapse
Affiliation(s)
- Anna Nakamura
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa 252-0882, Japan.
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa 252-0882, Japan.
| | - Qi Zhu
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa 252-0882, Japan.
- Department of Environment and Information Studies, Keio University, Kanagawa 252-0882, Japan.
| | - Yoko Yokoyama
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa 252-0882, Japan.
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa 252-0882, Japan.
| | - Naho Kitamura
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa 252-0882, Japan.
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa 252-0882, Japan.
| | - Sena Uchida
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa 252-0882, Japan.
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa 252-0882, Japan.
| | - Kayo Kumadaki
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa 252-0882, Japan.
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa 252-0882, Japan.
| | - Kazuo Tsubota
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa 252-0882, Japan.
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Mitsuhiro Watanabe
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa 252-0882, Japan.
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa 252-0882, Japan.
- Department of Environment and Information Studies, Keio University, Kanagawa 252-0882, Japan.
| |
Collapse
|
8
|
Ge MX, Shao RG, He HW. Advances in understanding the regulatory mechanism of cholesterol 7α-hydroxylase. Biochem Pharmacol 2019; 164:152-164. [DOI: 10.1016/j.bcp.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
|
9
|
Gil-Ramírez A, Morales D, Soler-Rivas C. Molecular actions of hypocholesterolaemic compounds from edible mushrooms. Food Funct 2018; 9:53-69. [DOI: 10.1039/c7fo00835j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Edible mushrooms contain bioactive compounds able to modulate the expression of genes related to absorption, biosynthesis and transport of cholesterol and regulation of its homeostasis.
Collapse
Affiliation(s)
- Alicia Gil-Ramírez
- Department of Production and Characterization of Novel Foods
- CIAL – Research Institute in Food Science (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autonoma de Madrid
| | - Diego Morales
- Department of Production and Characterization of Novel Foods
- CIAL – Research Institute in Food Science (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autonoma de Madrid
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods
- CIAL – Research Institute in Food Science (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autonoma de Madrid
| |
Collapse
|
10
|
Vitak T, Yurkiv B, Wasser S, Nevo E, Sybirna N. Effect of medicinal mushrooms on blood cells under conditions of diabetes mellitus. World J Diabetes 2017; 8:187-201. [PMID: 28572880 PMCID: PMC5437617 DOI: 10.4239/wjd.v8.i5.187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/13/2017] [Accepted: 03/12/2017] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus (DM) is the third most common non-infectious disease leading to early disability and high mortality. Moreover, the number of patients is growing every year. The main symptom of DM is hyperglycemia. Increased levels of blood glucose activate polyol, hexosamine, and protein kinase metabolic pathways cause the intensification of non-enzymatic glycosylation and nitration of macromolecules. This, in turn, leads to the development of oxidative and nitrative stresses and secondary complications, such as different kinds of micro- and macroangiopathies. Metabolic disorders caused by insulin deficiency in diabetes significantly impede the functioning of a homeostasis system, which change the physical, biochemical, morphological, and functional properties of blood cells. As a result, the oxygen-transport function of red blood cells (RBCs), rheological properties of the blood, and functions of immunocompetent cells as well as the process of apoptosis are primarily affected. Modern pharmacotherapy focuses on the search for new preparations that aim to decrease blood glucose levels. Undesirable side effects and adverse reactions caused by synthetic medicines led to the search and investigation of new preparations of natural origin. Medicinal mushrooms play an important role among such new preparations. They are a source of a large number of high- and low-molecular compounds with pronounced biological effects. Our investigations show pronounced hypoglycemic and anti-anemic action of submerged cultivated mycelium powder of medicinal mushrooms Agaricus brasiliensis (A. brasiliensis) and Ganoderma lucidum (G. lucidum) on streptozotocin-induced DM in rats. Also, we showed that mycelium powders have membrane protective properties as evidenced by the redistribution of RBC populations towards the growth of full functional cell numbers. Normalization of parameters of leukocyte formula and suppression of apoptosis of white blood cells in diabetic rats treated with A. brasiliensis and G. lucidum mycelia indicates pronounced positive effects of these strains of mushrooms. Thus, the use of medicinal mushrooms for treatment of DM and in prevention development of its secondary complications might be a new effective approach of this disease's cure. This article is aimed at summarizing and analyzing the literature data and basic achievements concerning DM type 1 treatment using medicinal mushrooms and showing the results obtained in our research.
Collapse
|