1
|
Zhang WW, Thakur K, Zhang JG, Wei ZJ. Riboflavin ameliorates intestinal inflammation via immune modulation and alterations of gut microbiota homeostasis in DSS-colitis C57BL/6 mice. Food Funct 2024; 15:4109-4121. [PMID: 38597225 DOI: 10.1039/d4fo00835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
While there have been advancements in understanding the direct and indirect impact of riboflavin (B2) on intestinal inflammation, the precise mechanisms are still unknown. This study focuses on evaluating the effects of riboflavin (B2) supplementation on a colitis mouse model induced with 3% dextran sodium sulphate (DSS). We administered three different doses of oral B2 (VB2L, VB2M, and VB2H) and assessed its impact on various physiological and biochemical parameters associated with colitis. Mice given any of the three doses exhibited relative improvement in the symptoms and intestinal damage. This was evidenced by the inhibition of the pro-inflammatory cytokines TNF-α, IL-1β, and CALP, along with an increase in the anti-inflammatory cytokine IL-10. B2 supplementation also led to a restoration of oxidative homeostasis, as indicated by a decrease in myeloperoxidase (MPO) and malondialdehyde (MDA) levels and an increase in reduced glutathione (GSH) and catalase (CAT) activities. B2 intervention showed positive effects on intestinal barrier function, confirmed by increased expression of tight junction proteins (occludin and ZO-1). B2 was linked to an elevated relative abundance of Actinobacteriota, Desulfobacterota, and Verrucomicrobiota. Notably, Verrucomicrobiota showed a significant increase in the VB2H group, reaching 15.03% relative abundance. Akkermansia exhibited a negative correlation with colitis and might be linked to anti-inflammatory function. Additionally, a remarkable increase in n-butyric acid, i-butyric acid, and i-valeric acid was reported in the VB2H group. The ameliorating role of B2 in gut inflammation can be attributed to immune system modulation as well as alterations in the gut microbiota composition, along with elevated levels of fecal SCFAs.
Collapse
Affiliation(s)
- Wang-Wei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
2
|
Li J, Gao X, Sun X, Li H, Wei J, Lv L, Zhu L. Investigating the causal role of the gut microbiota in esophageal cancer and its subtypes: a two-sample Mendelian randomization study. BMC Cancer 2024; 24:416. [PMID: 38575885 PMCID: PMC10996172 DOI: 10.1186/s12885-024-12205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Through research on the gut microbiota (GM), increasing evidence has indicated that the GM is associated with esophageal cancer (ESCA). However, the specific cause-and-effect relationship remains unclear. In this study, Mendelian randomization (MR) analysis was applied to investigate the causal relationship between the GM and ESCA, including its subtypes. METHODS We collected information on 211 GMs and acquired data on ESCA and its subtypes through genome-wide association studies (GWASs). The causal relationship was primarily assessed using the inverse variance weighted (IVW) method. Additionally, we applied the weighted median estimator (WME) method, MR-Egger method, weighted mode, and simple mode to provide further assistance. Subsequent to these analyses, sensitivity analysis was conducted using the MR-Egger intercept test, MR-PRESSO global test, and leave-one-out method. RESULT Following our assessment using five methods and sensitivity analysis, we identified seven GMs with potential causal relationships with ESCA and its subtypes. At the genus level, Veillonella and Coprobacter were positively correlated with ESCA, whereas Prevotella9, Eubacterium oxidoreducens group, and Turicibacter were negatively correlated with ESCA. In the case of esophageal adenocarcinoma (EAC), Flavonifractor exhibited a positive correlation, while Actinomyces exhibited a negative correlation. CONCLUSION Our study revealed the potential causal relationship between GM and ESCA and its subtypes, offering novel insights for the advancement of ESCA diagnosis and treatment.
Collapse
Affiliation(s)
- Jia Li
- Thoracic Surgery Department, Jinan Central Hospital, Shandong University, Jinan, 250000, China
| | - Xuedi Gao
- Thoracic Surgery Department, Jinan Mingshui Eye Hospital, Jinan, 250000, China
| | - Xiaoming Sun
- Thoracic Surgery Department, Jinan Central Hospital, Jinan, 250000, China
| | - Hao Li
- Thoracic Surgery Department, Jinan Central Hospital, Shandong First Medical University, Jinan, 250000, China
| | - Jiaheng Wei
- Thoracic Surgery Department, Weifang Medical University, Weifang, 261000, China
| | - Lin Lv
- Thoracic Surgery Department, Jinan Central Hospital, Shandong University, Jinan, 250000, China
| | - Liangming Zhu
- Thoracic Surgery Department, Jinan Central Hospital, Shandong University, Jinan, 250000, China.
| |
Collapse
|
3
|
Zhang Z, Zhang G, Huang Z, Shi Y, Wang D. Application of Mendelian randomization to assess host gene-gut microbiota correlations in patients with esophageal cancer. Front Microbiol 2023; 14:1309596. [PMID: 38179450 PMCID: PMC10764629 DOI: 10.3389/fmicb.2023.1309596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Background Increasing evidence suggests that esophageal cancer (ESCA) may be correlated with gut flora. However, their causal connection remains unclear. This study aimed to evaluate potential causal linkages and gene-gut microbiome associations between the gut microbiota and ESCA using Mendelian randomization (MR). Methods We analyzed the data using genome-wide association studies. The exposure factor and outcome variable were the gut microbiota and ESCA, respectively. The MR-Egger method, weighted median, inverse-variance weighted method, heterogeneity test, sensitivity analysis, and multiplicity analysis were used for the MR analysis. And it was validated using an external dataset. Further meta-analysis was performed to validate the robustness of this relationship. Finally, we annotated single nucleotide polymorphisms in the gut microbiota that were causally associated with ESCA to explore possible host gene-gut microbiota correlations in patients with ESCA. Results We identified four species with potential associations with ESCA. Three of these species had a negative causal relationship with ESCA (odds ratio (OR): 0.961; 95% confidence interval (CI): 0.923-0.971; p = 0.047 for Romboutsia; OR: 0.972; 95% CI: 0.921-0.961; p = 0.018 for Lachnospira; OR: 0.948; 95% CI: 0.912-0.970; p = 0.032 for Eubacterium). A positive causal relationship was observed between one bacterial group and ESCA (OR: 1.105; 95% CI: 1.010-1.072; p = 0.018 for Veillonella). External datasets show the same trend. This is further supported by meta-analysis. None of the data showed pleiotropy, and leave-one-out analysis indicated the reliability of these findings. The gut microbiomes of patients with ESCA may correlate with the 19 identified genes. Conclusion Our data indicate a potential causal link between these four gut bacteria and ESCA and identify a correlation between host genes and gut microbiota in ESCA, offering novel therapeutic options.
Collapse
Affiliation(s)
- Zhenhu Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guodong Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhulan Huang
- Department of Ultrasound Medicine, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong, China
| | - Yamin Shi
- Department of Foreign Languages, Shandong University of Finance and Economics, Jinan, China
| | - Dong Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
4
|
Gao X, Wang Z, Liu B, Cheng Y. Causal association of gut microbiota and esophageal cancer: a Mendelian randomization study. Front Microbiol 2023; 14:1286598. [PMID: 38107856 PMCID: PMC10722290 DOI: 10.3389/fmicb.2023.1286598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Despite the growing body of evidence, the link between the gut microbiota and different types of tumors, such as colorectal, gastric, and liver cancer, is becoming more apparent. The gut microbiota can be used as a reference for evaluating various diseases, including cancer, and can also act as risk factors or preventive factors. However, the specific connection between the gut microbiota and the advancement of esophageal cancer has yet to be investigated. Therefore, the aim of this research is to clarify the possible causal influence of intestinal microorganisms on the vulnerability to esophageal cancer through the utilization of Mendelian randomization (MR) studies. Methods In this study, we employed a two-sample Mendelian randomization approach to evaluate the unbiased causal association between 150 different gut microbiota types and the occurrence of esophageal cancer. Following the selection from the IEU GWAS database and SNP filtration, we utilized various MR statistical techniques on the suitable instrumental variables. These included IVW methods, employing inverse variance weighting. Additionally, we performed a range of sensitivity analyses to confirm the heterogeneity and pleiotropy of the instrumental variables, thus ensuring the reliability of the outcomes. Results The increased likelihood of developing esophageal cancer is linked to the genetically predicted high levels of Gordonibacter, Oxalobacter, Coprobacter, Veillonella, Ruminiclostridium 5, Ruminococcus 1, and Senegalimasilia genera. Conversely, a decreased risk of esophageal cancer is associated with the high abundance of Turicibacter, Eubacterium oxidoreducens group, Romboutsia, and Prevotella 9 genera. No heterogeneity and pleiotropy were detected in the sensitivity analysis. Discussion We found that 11 types of gut microbial communities are associated with esophageal cancer, thereby confirming that the gut microbiota plays a significant role in the path.
Collapse
Affiliation(s)
- Xiangyu Gao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhiguo Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bowen Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Fang M, Hu W, Liu B. Effects of nano-selenium on cecum microbial community and metabolomics in chickens challenged with Ochratoxin A. Front Vet Sci 2023; 10:1228360. [PMID: 37732141 PMCID: PMC10507861 DOI: 10.3389/fvets.2023.1228360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Ochratoxin A (OTA) is a widely distributed mycotoxin. Nano-selenium (Nano-Se) is an emerging form of selenium known for its superior bioavailability, remarkable catalytic efficiency, and robust adsorbing capacity. Despite these characteristics, its impact on the microbial community and metabolomics in the cecum of chickens exposed to OTA has been infrequently investigated. This research examined the microbiota and metabolomic alterations linked to OTA in chickens, with or without Nano-Se present. Methods A cohort of 80 healthy chickens at the age of 1 day was randomly distributed into four groups of equal numbers, namely the Se cohort (1 mg/kg Nano-Se), the OTA cohort (50 μg/kg OTA), the OTA-Se cohort (50 μg/kg OTA + 1 mg/kg Nano-Se), and the control group. Each chicken group's caecal microbiome and metabolome were characterized using 16S rRNA sequencing and Liquid chromatography coupled with mass spectrometry (LC-MS) analyses. Results and discussion Our results showed that the on day 21, the final body weight was significantly reduced in response to OTA treatments (p < 0.05), the average daily gain in the OTA group was found to be inferior to the other groups (p < 0.01). In addition, Nano-Se supplementation could reduce the jejunum and liver pathological injuries caused by OTA exposure. The 16S rRNA sequencing suggest that Nano-Se supplementation in OTA-exposed chickens mitigated gut microbiota imbalances by promoting beneficial microbiota and suppressing detrimental bacteria. Moreover, untargeted metabolomics revealed a significant difference in caecal metabolites by Nano-Se pretreatment. Collectively, the dataset outcomes highlighted that Nano-Se augmentation regulates intestinal microbiota and associated metabolite profiles, thus influencing critical metabolic pathways, and points to a possible food-additive product.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
7
|
Ismail OI, Rashed NA. Riboflavin attenuates tartrazine toxicity in the cerebellar cortex of adult albino rat. Sci Rep 2022; 12:19346. [PMID: 36369258 PMCID: PMC9652251 DOI: 10.1038/s41598-022-23894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Tartrazine is a synthetic yellowish dye considered one of the most common food colorants. Extensive usage of tartrazine in humans led to harmful health impacts. To investigate the impact of tartrazine administration on the cerebellum and to assess the potential role of riboflavin co-administration in the adult male albino rat. Four groups of adult albino rats were included in this study. Group I was supplied with distilled water. Group II was supplied tartrazine orally at a dose of 7.5 mg/kg BW dissolved in distilled water. Group III was supplied with tartrazine at the same previously mentioned dose and riboflavin orally at a dose of 25 mg/kg BW dissolved in distilled water. Group IV was supplied with riboflavin at the same previously mentioned dose. The study was conducted for 30 days then rats were sacrificed, weighted and the cerebella extracted and handled for light, ultrastructural and immunohistochemical evaluation. It was found with tartrazine treatment focal areas of Purkinje cell loss leaving empty spaces, a broad spread of neuronal affection to the degree of the disappearance of some of the granular cells, reduced the thickness of the molecular and granular layers, and strong positive GFAP immunoreactions. With riboflavin coadministration restored continuous Purkinje layer with normal appeared Purkinje cells, but some cells were still shrunken and vacuolated as well as the molecular and granular cell layers appeared normal. Tartrazine had deleterious effects on the cerebellar cytoarchitecture, and riboflavin co-administration alleviated these neurotoxic effects.
Collapse
Affiliation(s)
- Omnia I Ismail
- Lecturer of Human Anatomy and Embryology, Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Noha A Rashed
- Lecturer of Human Anatomy and Embryology, Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
8
|
Gao Y, Hou L, Hu M, Li D, Tian Z, Wen W, Fan B, Li S, Wang F. Effects of Bacillus subtilis BSNK-5-Fermented Soymilk on the Gut Microbiota by In Vitro Fecal Fermentation. Foods 2022; 11:3501. [PMID: 36360112 PMCID: PMC9654106 DOI: 10.3390/foods11213501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 06/13/2024] Open
Abstract
The gut microbiota of soymilk intervention is beneficial to maintaining human health. Bacillus subtilis fermented soymilk has brought much interest, due to its richness of thrombolytic nattokinase and the strain of potential probiotic properties. In this study, soymilk was fermented by B. subtilis BSNK-5, and the BSNK-5-fermented soymilk (SMF) on the production of short chain fatty acids (SCFAs) and the regulation of fecal microbiota was initially evaluated by in vitro fecal fermentation. SMF supplementation obviously increased the levels of SCFAs from 32.23 mM to 49.10 mM, especially acetic acid, propionic acid, and isobutyric acid. Additionally, SMF changed the composition and microbial diversity of gut microbiota. After 24 h of anaerobic incubation in vitro, SMF decreased the Firmicutes/Bacteroidota ratio favoring weight loss, increased Lachnospiraceae_UCG-004 and the other beneficial bacteria producing SCFAs, as well as suppressing pathogenic Streptococcus genus. These results revealed the potential use of BSNK-5-fermented soymilk as a potential candidate to promote gut health.
Collapse
Affiliation(s)
- Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Lizhen Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Danfeng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Zhiliang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Wei Wen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Zhan Q, Wang R, Thakur K, Feng JY, Zhu YY, Zhang JG, Wei ZJ. Unveiling of dietary and gut-microbiota derived B vitamins: Metabolism patterns and their synergistic functions in gut-brain homeostasis. Crit Rev Food Sci Nutr 2022; 64:4046-4058. [PMID: 36271691 DOI: 10.1080/10408398.2022.2138263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nutrition-gut cross-talk holds a vital position in sustaining intestinal function, and micronutrient metabolism has emerged as the foremost metabolic pathway to preserve gut homeostasis. Among micronutrients, B vitamins have evolved prior to DNA/RNA and are known for their vital roles for major evolutionary transitions in extant organisms. Despite their universal requirement and critical role, not all the three domains of life are endowed with a natural ability for de novo B vitamins synthesis. The human gut microbiome constitutes prototrophs and auxotroph which are entirely dependent on dietary intake and gut microbial production of B vitamins. The syntrophic metabolism involving cross-feeding of B vitamins and community-wide exchange between commensal bacteria elicit important changes in the diversity and composition of the human gut microbiome. Hereto, we discuss the B-vitamins sharing among prototrophic and auxotrophic gut bacteria, their absorption in small intestine and transport in distal gut, functional role in relation to the gut homeostasis and symptoms linked to their deficiency. We also briefly explore their potential involvement as psychobiotics in brain energetic metabolism (kynurenines/tryptophan pathway) for neurological functions and highlight their deficiency related malfunctioning.
Collapse
Affiliation(s)
- Qi Zhan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Rui Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Jing-Yu Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Yun-Yang Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| |
Collapse
|
10
|
Xu Y, Zhang B, Zhao R, Gao K, Liang S, Wu Y, Hao Y, Liu D, Guo Z, Hu J, Zhou Z, Xie M, Tang J. Effect of riboflavin deficiency on intestinal morphology, jejunum mucosa proteomics, and cecal microbiota of Pekin ducks. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:215-226. [PMID: 36712406 PMCID: PMC9860382 DOI: 10.1016/j.aninu.2022.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
This study was to determine the effects of riboflavin deficiency (RD) on intestinal development, jejunum mucosa proteome, cecal short-chain fatty acids (SCFA) profiling, and cecal microbial diversity and community of starter Pekin ducks. Male white Pekin ducks (1 d old, n = 240) were allocated into 2 groups, with 12 replicates and 10 birds per replicate in each group. For 21 d, all ducks had ad libitum access to either an RD or a riboflavin adequate (control, CON) diet, formulated by supplementing a basal diet with 0 or 10 mg riboflavin per kg of diet, respectively. Compared to the CON group, growth retardation, high mortality, and poor riboflavin status were observed in the RD group. Furthermore, RD reduced the villus height and the ratio of villus height to crypt depth of jejunum and ileum (P < 0.05), indicating morphological alterations of the small intestine. In addition, dietary RD enhanced relative cecum weight and decreased cecal SCFA concentrations (P < 0.05), including propionate, isobutyrate, butyrate, and isovalerate. The jejunum mucosa proteomics showed that 208 proteins were upregulated and 229 proteins were downregulated in the RD group compared to those in the CON group. Among these, RD mainly suppressed intestinal absorption and energy generation processes such as glycolysis and gluconeogenesis, fatty acid beta oxidation, tricarboxylic acid cycle, and oxidative phosphorylation, leading to impaired ATP generation. In addition, RD decreased the community richness and diversity of the bacterial community in the cecum of ducks. Specifically, RD reduced the abundance of butyrate-producing bacteria in the cecum (P < 0.05), such as Eubacterium coprostanoligenes, Prevotella and Faecalibacterium. Dietary RD resulted in growth depression and intestinal hypofunction of Pekin ducks, which could be associated with impaired intestinal absorption and energy generation processes in intestinal mucosa, as well as gut microbiota dysbiosis. These findings contribute to our understanding of the mechanisms of intestinal hypofunction due to RD.
Collapse
|
11
|
Gupta I, Pedersen S, Vranic S, Al Moustafa AE. Implications of Gut Microbiota in Epithelial-Mesenchymal Transition and Cancer Progression: A Concise Review. Cancers (Basel) 2022; 14:2964. [PMID: 35740629 PMCID: PMC9221329 DOI: 10.3390/cancers14122964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Advancement in the development of molecular sequencing platforms has identified infectious bacteria or viruses that trigger the dysregulation of a set of genes inducing the epithelial-mesenchymal transition (EMT) event. EMT is essential for embryogenesis, wound repair, and organ development; meanwhile, during carcinogenesis, initiation of the EMT can promote cancer progression and metastasis. Recent studies have reported that interactions between the host and dysbiotic microbiota in different tissues and organs, such as the oral and nasal cavities, esophagus, stomach, gut, skin, and the reproductive tract, may provoke EMT. On the other hand, it is revealed that certain microorganisms display a protective role against cancer growth, indicative of possible therapeutic function. In this review, we summarize recent findings elucidating the underlying mechanisms of pathogenic microorganisms, especially the microbiota, in eliciting crucial regulator genes that induce EMT. Such an approach may help explain cancer progression and pave the way for developing novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
| | - Shona Pedersen
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
12
|
Zhu YY, Thakur K, Feng JY, Zhang JG, Hu F, Cespedes-Acuña CL, Liao C, Wei ZJ. Riboflavin Bioenriched Soymilk Alleviates Oxidative Stress Mediated Liver Injury, Intestinal Inflammation, and Gut Microbiota Modification in B 2 Depletion-Repletion Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3818-3831. [PMID: 35302755 DOI: 10.1021/acs.jafc.2c00117] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Epidemiological evidence emphasizes that ariboflavinosis can lead to oxidative stress, which in turn may mediate the initiation and progression of liver injury and intestinal inflammation. Although vitamin B2 has gained worldwide attention for its antioxidant defense, the relationship between B2 status, oxidative stress, inflammatory response, and intestinal homeostasis remains indistinct. Herein, we developed a B2 depletion-repletion BALB/c mice model to investigate the ameliorative effects of B2 bioenriched fermented soymilk (B2FS) on ariboflavinosis, accompanied by oxidative stress, inflammation, and gut microbiota modulation in response to B2 deficiency. In vivo results revealed that the phenotypic ariboflavinosis symptoms, growth rate, EGRAC status, and hepatic function reverted to normal after B2FS supplementation. B2FS significantly elevated CAT, SOD, T-AOC, and compromised MDA levels in the serum, simultaneously up-regulated Nrf2, CAT, and SOD2, and down-regulated Keap1 gene in the colon. The histopathological characteristics revealed significant alleviation in the liver and intestinal inflammation, confirmed by the downregulation of inflammatory (IL-1β and IL-6) and nuclear transcription (NF-κB) factors after B2FS supplementation. B2FS also increased the abundance and diversity of gut microbiota, increased the relative abundance of Prevotella and Absiella, as well as decreased Proteobacteria, Fusobacteria, Synergistetes, and Cyanobacteria in strong conjunction with antioxidant, anti-inflammatory properties, and gut homeostasis along with the remarkable increase in cecal SCFAs content. We hereby reveal that B2FS can effectively alleviate deleterious ariboflavinosis associated with oxidative stress mediated liver injury, chronic intestinal inflammation, and gut dysbiosis in the B2 depletion-repletion mice model via activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yun-Yang Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Jing-Yu Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Carlos L Cespedes-Acuña
- Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, University of Bio-Bío, Andrés Bello Avenue, Chillan 3800708, Chile
| | - Chenzhong Liao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
13
|
Liu Y, Zeng D, Qu L, Wang Z, Ning Z. Multi-Enzyme Supplementation Modifies the Gut Microbiome and Metabolome in Breeding Hens. Front Microbiol 2021; 12:711905. [PMID: 34925250 PMCID: PMC8678520 DOI: 10.3389/fmicb.2021.711905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Laying and reproductive performance, egg quality, and disease resistance of hens decrease during the late laying period. Exogenous enzymes promote nutrient digestibility and utilization and improve the intestinal environment. However, the specific regulation of the gut microbiome and metabolome by exogenous enzymes remains unelucidated. This study was conducted to evaluate effects of dietary multi-enzyme supplementation on egg and reproductive performance, egg quality, ileum microbiome, and metabolome of breeders. Here, 224 Hy-Line Brown breeding hens (55 weeks old) were randomly allocated to two groups: dietary controls fed basal diet (DC), and test hens fed 0.2 g/kg corn enzyme diet (CE). Serum levels of total protein, globulin, immunoglobulin Y, and antibodies against the Newcastle disease virus and avian influenza H9 strain were significantly increased (p < 0.05). Egg albumen height, Haugh unit, and fertilization and hatching rates were also significantly increased (p < 0.05) in the CE-fed group. 16S rRNA sequence analysis showed that CE strongly affected both α- and β-diversity of the ileal microbiota. LEfSe analysis revealed that the potentially beneficial genera Lactobacillus, Enterococcus, Faecalicoccus, and Streptococcus were enriched as biomarkers in the CE-fed group. Microbial functional analysis revealed that the functional genes associated with harmful-substance biodegradation was significantly increased in the CE-fed group. Additionally, Spearman correlation analysis indicated that changes in microbial genera were correlated with differential metabolites. In summary, dietary multi-enzyme addition can improve egg quality, humoral immunity, and reproductive performance and regulate the intestinal microbiome and metabolome in breeders. Therefore, multi-enzymes could be used as feed additive to extend breeder service life.
Collapse
Affiliation(s)
- Yuchen Liu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Zeng
- Huayu Agricultural Science and Technology Co., Ltd., Handan, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Cui G, Qing Y, Li M, Sun L, Zhang J, Feng L, Li J, Chen T, Wang J, Wan C. Salivary Metabolomics Reveals that Metabolic Alterations Precede the Onset of Schizophrenia. J Proteome Res 2021; 20:5010-5023. [PMID: 34618462 DOI: 10.1021/acs.jproteome.1c00504] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a complex and highly heterogeneous mental illness with a prodromal period called clinical high risk (CHR) for psychosis before onset. Metabolomics is greatly promising in analyzing the pathology of complex diseases and exploring diagnostic biomarkers. Therefore, we conducted salivary metabolomics analysis in 83 first-episode schizophrenia (FES) patients, 42 CHR individuals, and 78 healthy controls with ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The mass spectrometry raw data have been deposited on the MetaboLights (ID: MTBLS3463). We found downregulated aromatic amino acid metabolism, disturbed glutamine and nucleotide metabolism, and upregulated tricarboxylic acid cycle in FES patients, which existed even in the CHR stage and became more intense with the onset of the schizophrenia. Moreover, differential metabolites can be considered as potential diagnostic biomarkers and indicate the severity of the different clinical stages of disease. Furthermore, three disordered pathways were closely related to peripheral indicators of inflammatory response, oxidative stress, blood-brain barrier damage, and salivary microbiota. These results indicate that the disorder of oral metabolism occurs earlier than the onset of schizophrenia and is concentrated and intensified with the onset of disease, which may originate from the dysbiotic salivary microbiota and cause the onset of schizophrenia through the peripheral inflammatory response and redox system, suggesting the importance of oral-brain connection in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Gaoping Cui
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Minghui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jijun Wang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
15
|
Smet A, Kupcinskas J, Link A, Hold GL, Bornschein J. The Role of Microbiota in Gastrointestinal Cancer and Cancer Treatment: Chance or Curse? Cell Mol Gastroenterol Hepatol 2021; 13:857-874. [PMID: 34506954 PMCID: PMC8803618 DOI: 10.1016/j.jcmgh.2021.08.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
The gastrointestinal (GI) tract is home to a complex and dynamic community of microorganisms, comprising bacteria, archaea, viruses, yeast, and fungi. It is widely accepted that human health is shaped by these microbes and their collective microbial genome. This so-called second genome plays an important role in normal functioning of the host, contributing to processes involved in metabolism and immune modulation. Furthermore, the gut microbiota also is capable of generating energy and nutrients (eg, short-chain fatty acids and vitamins) that are otherwise inaccessible to the host and are essential for mucosal barrier homeostasis. In recent years, numerous studies have pointed toward microbial dysbiosis as a key driver in many GI conditions, including cancers. However, comprehensive mechanistic insights on how collectively gut microbes influence carcinogenesis remain limited. In addition to their role in carcinogenesis, the gut microbiota now has been shown to play a key role in influencing clinical outcomes to cancer immunotherapy, making them valuable targets in the treatment of cancer. It also is becoming apparent that, besides the gut microbiota's impact on therapeutic outcomes, cancer treatment may in turn influence GI microbiota composition. This review provides a comprehensive overview of microbial dysbiosis in GI cancers, specifically esophageal, gastric, and colorectal cancers, potential mechanisms of microbiota in carcinogenesis, and their implications in diagnostics and cancer treatment.
Collapse
Affiliation(s)
- Annemieke Smet
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Juozas Kupcinskas
- Institute for Digestive Research, Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Georgina L Hold
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Jan Bornschein
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
16
|
Zhao G, Dong F, Lao X, Zheng H. Strategies to Increase the Production of Biosynthetic Riboflavin. Mol Biotechnol 2021; 63:909-918. [PMID: 34156642 DOI: 10.1007/s12033-021-00318-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/20/2021] [Indexed: 12/29/2022]
Abstract
Riboflavin is widely regarded as an essential nutrient that is involved in biological oxidation in vivo. In addition to preventing and treating acyl-CoA dehydrogenase deficiency in patients with keratitis, stomatitis, and glossitis, riboflavin is also closely related to the treatment of radiation mucositis and cardiovascular disease. Chemical synthesis has been the dominant method for producing riboflavin for approximately 50 years. Nevertheless, due to the intricate synthesis process, relatively high cost, and high risk of pollution, alternative methods of chemical syntheses, such as the fermentation method, began to develop and eventually became the main methods for producing riboflavin. At present, there are three types of strains used in industrial riboflavin production: Ashbya gossypii, Candida famata, and Bacillus subtilis. Additionally, many recent studies have been conducted on Escherichia coli and Lactobacillus. Fermentation increases the yield of riboflavin using genetic engineering technology to modify and induce riboflavin production in the strain, as well as to regulate the metabolic flux of the purine pathway and pentose phosphate pathway (PP pathway), thereby optimizing the culture process. This article briefly introduces recent progress in the fermentation of riboflavin.
Collapse
Affiliation(s)
- Guiling Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Fanyi Dong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
17
|
Cai JS, Feng JY, Ni ZJ, Ma RH, Thakur K, Wang S, Hu F, Zhang JG, Wei ZJ. An update on the nutritional, functional, sensory characteristics of soy products, and applications of new processing strategies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Pan F, Xu X, Zhang LL, Luo HJ, Chen Y, Long L, Wang X, Zhuang PT, Li EM, Xu LY. Dietary riboflavin deficiency induces genomic instability of esophageal squamous cells that is associated with gut microbiota dysbiosis in rats. Food Funct 2020; 11:10070-10083. [PMID: 33135706 DOI: 10.1039/d0fo01944e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
SCOPE Epidemiologic evidence suggests that riboflavin (RBF) deficiency is a specific nutritional predisposition for esophageal cancer. The aim of this study is to investigate the potential roles of gut microbiota in esophageal tumorigenesis caused by the RBF deficiency. METHODS Male F344 rats were subcutaneously injected with the chemical carcinogen N-nitrosomethylbenzylamine (NMBA, 0.35 mg kg-1). Rats were assigned to 4 groups, denoted as R6 (normal RBF, 6 mg kg-1), R6N (normal RBF combined with NMBA), R6N → R0N (normal RBF conversion to RBF-deficiency), and R0N → R6N (RBF-deficiency conversion to normal RBF). Bacterial communities were analyzed based on high-throughput 16S rRNA gene sequencing. Oxidative DNA damage and double-strand break markers were studied by immunohistochemistry. RESULTS The R6N → R0N diet enhanced the incidence of esophageal intraepithelial neoplasia (EIN, 40 weeks 66.7% vs. 25 weeks 16.7%, P < 0.05). RBF deficiency and replenishment modulated the gut microbiota composition. The gut microbiota (e.g. Caulobacteraceae, Sphingomonas and Bradyrhizobium) affected xenobiotic biodegradation and the genomic instability of the host. Furthermore, the RBF deficiency aggravated oxidative DNA damage and DNA double-strand breaks (immunohistochemistry) in the esophageal epithelium, whereas the RBF replenishment had the opposite effect (P < 0.05, respectively). CONCLUSIONS RBF deficiency promotes NMBA-induced esophageal tumorigenesis, which is associated with gut microbiota-associated genomic instability, and offers new insights into the role of RBF deficiency in esophageal carcinogenesis.
Collapse
Affiliation(s)
- Feng Pan
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhu YY, Thakur K, Feng JY, Cai JS, Zhang JG, Hu F, Wei ZJ. B-vitamin enriched fermented soymilk: A novel strategy for soy-based functional foods development. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|