1
|
Sun N, Wen S, Huo Z, He Z, Sun T, Hu J, Sonestedt E, Borné Y, Zhang S. Association Between the EAT-Lancet Reference Diet and Gestational Diabetes Mellitus: A Mini-Review. Nutrients 2024; 16:4073. [PMID: 39683466 DOI: 10.3390/nu16234073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a prevalent pregnancy complication that seriously endangers maternal and infant health, posing a medical and economic burden worldwide. Several dietary patterns have been recommended for women of childbearing age, demonstrating a positive role in preventing and managing GDM. However, these dietary patterns may not fully take environmental factors into account when addressing global food sustainability and planetary health. In this context, the EAT-Lancet Commission proposed a diet in 2019 aimed at both health improvement and environmental sustainability, which can potentially reduce the prevalence of diet-related diseases. Nevertheless, the role of the EAT-Lancet reference diet in preventing and managing GDM has not been fully evaluated. Therefore, we conducted a literature search to assess the existing evidence for the association between the EAT-Lancet reference diet components and GDM. Based on the current evidence available in the PubMed database from inception to 31 October 2024, women of childbearing age are recommended to consume whole grains, fish, soy products, olive oil, full-fat dairy products, nuts, and moderate amounts of fruits while reducing red meat and sugar-sweetened beverage intake to lower the risk of GDM. There remains inconsistency regarding the association between tubers or starchy vegetables, vegetables, eggs, and poultry and the risk of GDM. In conclusion, current research on the association between diet and GDM is limited and offers suggestions for methodologies to obtain robust evidence regarding the association between the EAT-Lancet reference diet and GDM.
Collapse
Affiliation(s)
- Niuniu Sun
- School of Nursing, Henan University of Science and Technology, Luoyang 471023, China
| | - Shubo Wen
- School of Nursing, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhenyu Huo
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Zitong He
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Tongyao Sun
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jingxi Hu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Emily Sonestedt
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden
| | - Yan Borné
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden
| | - Shunming Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden
| |
Collapse
|
2
|
Gong L, Wu Z, Gao L, Wen J, Lin X, Wen G. Type 2 diabetes prevention: genetic association analysis of dried fruit intake and disease risk. Br J Nutr 2024; 132:988-995. [PMID: 39465576 DOI: 10.1017/s0007114524001879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Prior research has suggested an inverse correlation between dried fruit intake and type 2 diabetes mellitus (T2DM), yet the causal link remains uncertain. This study seeks to investigate the potential causal impact of dried fruit intake on T2DM, covering cases both with and without various complications, as well as glycaemic traits, using a two-sample Mendelian randomisation (MR) approach. Using MR analysis with genome-wide association study summary statistics, the primary analysis investigated the causal relationship between dried fruit intake and T2DM, both with and without complications, as well as glycaemic traits, employing the inverse variance weighted method. Supplementary analyses were conducted using MR-Egger and the weighted median method. Heterogeneity and intercept tests were utilised to evaluate the robustness of the study outcomes. The results show a significant association between dried fruit intake and T2DM without complications, as well as fasting insulin. Sensitivity analyses confirmed the robustness of the results and the independence from multicollinearity. However, no association was found between dried fruit intake and T2DM with various complications or other glycaemic traits. The significant association between dried fruit intake and T2DM without complications and fasting insulin persisted even after adjusting for BMI. This study offers genetic evidence endorsing the protective effects of dried fruit intake against T2DM, specifically for cases without complications, and in regulating fasting insulin. These findings suggest that dried fruit intake might serve as a primary preventive strategy for T2DM.
Collapse
Affiliation(s)
- Liya Gong
- Department of Imaging Diagnostics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ziqi Wu
- Department of Imaging Diagnostics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Liaoming Gao
- Department of Imaging Diagnostics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Junyan Wen
- Department of Imaging Diagnostics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xuecong Lin
- Department of Imaging Diagnostics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ge Wen
- Department of Imaging Diagnostics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
3
|
Wuni R, Vimaleswaran KS. Barriers in Translating Existing Nutrigenetics Insights to Precision Nutrition for Cardiometabolic Health in Ethnically Diverse Populations. Lifestyle Genom 2024; 17:122-135. [PMID: 39467522 DOI: 10.1159/000541909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Cardiometabolic diseases pose a significant threat to global public health, with a substantial majority of cardiovascular disease mortality (more than three-quarters) occurring in low- and middle-income countries. There have been remarkable advances in recent years in identifying genetic variants that alter disease susceptibility by interacting with dietary factors. Despite the remarkable progress, several factors need to be considered before the translation of nutrigenetics insights to personalised and precision nutrition in ethnically diverse populations. Some of these factors include variations in genetic predispositions, cultural and lifestyle factors as well as socio-economic factors. SUMMARY This review aimed to explore the factors that need to be considered in bridging the gap between existing nutrigenetics insights and the implementation of personalised and precision nutrition across diverse ethnicities. Several factors might influence variations among individuals with regard to dietary exposures and metabolic responses, and these include genetic diversity, cultural and lifestyle factors as well as socio-economic factors. A multi-omics approach involving disciplines such as metabolomics, epigenetics, and the gut microbiome might contribute to improved understanding of the underlying mechanisms of gene-diet interactions and the implementation of precision nutrition although more research is needed to confirm the practicality and effectiveness of this approach. Conducting gene-diet interaction studies in diverse populations is essential and studies utilising large sample sizes are required as this improves the power to detect interactions with minimal effect sizes. Future studies should focus on replicating initial findings to enhance reliability and promote comparison across studies. Once findings have been replicated in independent samples, dietary intervention studies will be required to further strengthen the evidence and facilitate their application in clinical practice. KEY MESSAGES Nutrigenetics has a potential role to play in the prevention and management of cardiometabolic diseases. Conducting gene-diet interaction studies in diverse populations is essential giving the genetic diversity and variations in dietary patterns. Integrating data from disciplines such as metabolomics, epigenetics, and the gut microbiome could help in early identification of individuals at risk of cardiometabolic diseases as well as the implementation of precise dietary interventions for preventing and managing cardiometabolic diseases.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, UK
| | - Karani Santhanakrishnan Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, UK
- Institute for Food, Nutrition, and Health (IFNH), University of Reading, Reading, UK
| |
Collapse
|
4
|
Tolonen U, Lankinen M, Laakso M, Schwab U. Healthy dietary pattern is associated with lower glycemia independently of the genetic risk of type 2 diabetes: a cross-sectional study in Finnish men. Eur J Nutr 2024; 63:2521-2531. [PMID: 38864868 PMCID: PMC11490453 DOI: 10.1007/s00394-024-03444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Hyperglycemia is affected by lifestyle and genetic factors. We investigated if dietary patterns associate with glycemia in individuals with high or low genetic risk for type 2 diabetes (T2D). METHODS Men (n = 1577, 51-81 years) without T2D from the Metabolic Syndrome in Men (METSIM) cohort filled a food-frequency questionnaire and participated in a 2-hour oral glucose tolerance test. Polygenetic risk score (PRS) including 76 genetic variants was used to stratify participants into low or high T2D risk groups. We established two data-driven dietary patterns, termed healthy and unhealthy, and investigated their association with plasma glucose concentrations and hyperglycemia risk. RESULTS Healthy dietary pattern was associated with lower fasting and 2-hour plasma glucose, glucose area under the curve, and better insulin sensitivity (Matsuda insulin sensitivity index) and insulin secretion (disposition index) in unadjusted and adjusted models, whereas the unhealthy pattern was not. No interaction was observed between the patterns and PRS on glycemic measures. Healthy dietary pattern was negatively associated with the risk for hyperglycemia in an adjusted model (OR 0.69, 95% CI 0.51-0.95, in the highest tertile), whereas unhealthy pattern was not (OR 1.08, 95% CI 0.79-1.47, in the highest tertile). No interaction was found between diet and PRS on the risk for hyperglycemia (p = 0.69 for healthy diet, p = 0.54 for unhealthy diet). CONCLUSION Our findings suggest that healthy diet is associated with lower glucose concentrations and lower risk for hyperglycemia in men with no interaction with the genetic risk.
Collapse
Affiliation(s)
- Ulla Tolonen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, Kuopio, 70211, Finland.
| | - Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, Kuopio, 70211, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, Kuopio, 70211, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
5
|
Zheng G, Ran S, Zhang J, Qian AM, Hua J, Wang C, Vaughn MG, Tabet M, Lin H. Fresh fruit, dried fruit, raw vegetables, and cooked vegetables consumption associated with progression trajectory of type 2 diabetes: a multi-state analysis of a prospective cohort. Eur J Nutr 2024; 63:1719-1730. [PMID: 38520525 DOI: 10.1007/s00394-024-03362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE To examine the effects of fresh fruit, dried fruit, raw vegetables, and cooked vegetables on type 2 diabetes (T2D) progression trajectory. METHODS We included 429,886 participants in the UK Biobank who were free of diabetes and diabetes complications at baseline. Food groups were determined using a validated food frequency questionnaire. Outcomes were T2D incidence, complications, and mortality. Multi-state model was used to analyze the effects of food groups on T2D progression. RESULTS During a follow-up of 12.6 years, 10,333 incident T2D cases were identified, of whom, 3961 (38.3%) developed T2D complications and 1169 (29.5%) died. We found that impacts of four food groups on T2D progression varied depending on disease stage. For example, compared to participants who ate less than one piece of dried fruit per day, the hazard ratios and 95% confidence intervals for those who ate ≥ 2 pieces of dried fruit per day were 0.82 (0.77, 0.87), 0.88 (0.85, 0.92), and 0.86 (0.78, 0.95) for transitions from diabetes-free state to incident T2D, from diabetes-free state to total death, and from incident T2D to T2D complications, respectively. Higher intake of fresh fruit was significantly associated with lower risk of disease progression from diabetes-free state to all-cause death. Higher intake of raw and cooked vegetables was significantly associated with lower risks of disease progression from diabetes-free state to incident T2D and to total death. CONCLUSIONS These findings indicate that higher intake of fresh fruit, dried fruit, raw vegetables, and cooked vegetables could be beneficial for primary and secondary prevention of T2D.
Collapse
Affiliation(s)
- Guzhengyue Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong, 510080, P. R. China
| | - Shanshan Ran
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong, 510080, P. R. China
| | - Jingyi Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong, 510080, P. R. China
| | - Aaron M Qian
- Department of Psychology, College of Arts and Sciences, Saint Louis University, United States of America, Tegeler Hall, 3700 Lindell Boulevard, Saint Louis, MO, 63103, USA
| | - Junjie Hua
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong, 510080, P. R. China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Michael G Vaughn
- School of Social Work, Saint Louis University, Tegeler Hall, 3550 Lindell Boulevard, Saint Louis, MO, 63103, USA
| | - Maya Tabet
- College of Global Population Health, University of Health Sciences and Pharmacy in Saint Louis, United States of America, 1 Pharmacy Place, Saint Louis, MO, 63110, USA
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong, 510080, P. R. China.
| |
Collapse
|
6
|
Ramos-Lopez O. Genotype-based precision nutrition strategies for the prediction and clinical management of type 2 diabetes mellitus. World J Diabetes 2024; 15:142-153. [PMID: 38464367 PMCID: PMC10921165 DOI: 10.4239/wjd.v15.i2.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
Globally, type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders. T2DM physiopathology is influenced by complex interrelationships between genetic, metabolic and lifestyle factors (including diet), which differ between populations and geographic regions. In fact, excessive consumptions of high fat/high sugar foods generally increase the risk of developing T2DM, whereas habitual intakes of plant-based healthy diets usually exert a protective effect. Moreover, genomic studies have allowed the characterization of sequence DNA variants across the human genome, some of which may affect gene expression and protein functions relevant for glucose homeostasis. This comprehensive literature review covers the impact of gene-diet interactions on T2DM susceptibility and disease progression, some of which have demonstrated a value as biomarkers of personal responses to certain nutritional interventions. Also, novel genotype-based dietary strategies have been developed for improving T2DM control in comparison to general lifestyle recommendations. Furthermore, progresses in other omics areas (epigenomics, metagenomics, proteomics, and metabolomics) are improving current understanding of genetic insights in T2DM clinical outcomes. Although more investigation is still needed, the analysis of the genetic make-up may help to decipher new paradigms in the pathophysiology of T2DM as well as offer further opportunities to personalize the screening, prevention, diagnosis, management, and prognosis of T2DM through precision nutrition.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico
| |
Collapse
|
7
|
Liu X, Liu X, Huang N, Yang Z, Zhang Z, Zhuang Z, Jin M, Li N, Huang T. Women's reproductive risk and genetic predisposition in type 2 diabetes: A prospective cohort study. Diabetes Res Clin Pract 2024; 208:111121. [PMID: 38295999 DOI: 10.1016/j.diabres.2024.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
OBJECTIVE To assess synergistic effects of reproductive factors and gene-reproductive interaction on type 2 diabetes (T2D) risk, also the extent to which the genetic risk of T2D can be affected by reproductive risk. METHODS 84,254 women with genetic data and reproductive factors were enrolled between 2006 and 2010 in the UK Biobank. The reproductive risk score (RRS) was conducted based on 17 reproductive items, and genetic risk score (GRS) was based on 149 genetic variants. RESULTS There were 2300 (2.8 %) T2D cases during an average follow-up of 4.49 years. We found a significant increase in T2D risk across RRS categories (Ptrend < 0.001). Compared with low reproductive risk, high-mediate (adjusted hazard ratio [aHR] 1.38, 95 % CI 1.20-1.58) and high (aHR 1.84, 95 % CI 1.54-2.19) reproductive risk could increase the risk of T2D. We further observed a significant additive interaction between reproductive risk and genetic predisposition. In the situation of high genetic predisposition, women with low reproductive risk had lower risk of T2D than those with high reproductive risk (aHR 0.47, 95 % CI 0.30-0.76), with an absolute risk reduction of 2.98 %. CONCLUSIONS Our novo developed RRS identified high reproductive risk is associated with elevated risk of women's T2D, which can be magnified by gene-reproductive interaction.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Xiaowen Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Ninghao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing 100191, China; Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, China
| | - Zeping Yang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Ziyi Zhang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Zhenhuang Zhuang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing 100191, China; Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, China
| | - Ming Jin
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Nan Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China.
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing 100191, China; Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, China
| |
Collapse
|
8
|
Yang R, Lin J, Yang H, Dunk MM, Wang J, Xu W, Wang Y. A low-inflammatory diet is associated with a lower incidence of diabetes: role of diabetes-related genetic risk. BMC Med 2023; 21:483. [PMID: 38049803 PMCID: PMC10696657 DOI: 10.1186/s12916-023-03190-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Whether a low-inflammatory diet relates to type 2 diabetes risk remains unclear. We examined the association between a low-inflammatory diet and risk of type 2 diabetes among normoglycemic and prediabetic participants. We also explored whether a low-inflammatory diet modifies genetic risk for type 2 diabetes. METHODS Among 142,271 diabetes-free UK Biobank participants (aged 39-72 years), 126,203 were normoglycemic and 16,068 were prediabetic at baseline. Participants were followed for up to 15 years to detect incident type 2 diabetes. At baseline, dietary intake was assessed with a 24-h dietary record. An inflammatory diet index (IDI) was generated based on high-sensitivity C-reactive protein levels and was a weighted sum of 34 food groups (16 anti-inflammatory and 18 pro-inflammatory). Participants were grouped into tertiles corresponding to inflammatory level (low, moderate, and high) based on IDI scores. Prediabetes at baseline was defined as HbA1c 5.7-6.4% in diabetes-free participants. Incident type 2 diabetes and age of onset were ascertained according to the earliest recorded date of type 2 diabetes in the Primary Care and Hospital inpatient data. A diabetes-related genetic risk score (GRS) was calculated using 424 single-nucleotide polymorphisms. Data were analyzed using Cox regression and Laplace regression. RESULTS During follow-up (median 8.40 years, interquartile range 6.89 to 11.02 years), 3348 (2.4%) participants in the normoglycemia group and 2496 (15.5%) in the prediabetes group developed type 2 diabetes. Type 2 diabetes risk was lower in normoglycemic (hazard ratio [HR] = 0.71, 95% confidence interval [CI] 0.65, 0.78) and prediabetic (HR = 0.81, 95% CI 0.73, 0.89) participants with low IDI scores compared to those with high IDI scores. A low-inflammatory diet may prolong type 2 diabetes onset by 2.20 (95% CI 1.67, 2.72) years among participants with normoglycemia and 1.11 (95% CI 0.59, 1.63) years among participants with prediabetes. In joint effect analyses, normoglycemic or prediabetes participants with low genetic predisposition to type 2 diabetes and low IDI scores had a significant 74% (HR = 0.26, 95% CI 0.21, 0.32) or 51% (HR = 0.49, 95% CI 0.40, 0.59) reduction in type 2 diabetes risk compared to those with high genetic risk plus high IDI scores. There were significant additive and multiplicative interactions between IDI and GRS in relation to type 2 diabetes risk in the normoglycemia group. CONCLUSIONS A low-inflammatory diet is associated with a decreased risk of type 2 diabetes and may delay type 2 diabetes onset among participants with normal blood glucose or prediabetes. A low-inflammatory diet might significantly mitigate the risk of genetic factors on type 2 diabetes development.
Collapse
Affiliation(s)
- Rongrong Yang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Lin
- School of Public Health, Tianjin Medical University, Heping District, Qixiangtai Road 22, Tianjin, 300070, China
| | - Hongxi Yang
- School of Public Health, Tianjin Medical University, Heping District, Qixiangtai Road 22, Tianjin, 300070, China
| | - Michelle M Dunk
- Aging Research Center, Department of Neurobiology, Health Care Sciences and Society Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jiao Wang
- School of Public Health, Tianjin Medical University, Heping District, Qixiangtai Road 22, Tianjin, 300070, China
| | - Weili Xu
- School of Public Health, Tianjin Medical University, Heping District, Qixiangtai Road 22, Tianjin, 300070, China
- Aging Research Center, Department of Neurobiology, Health Care Sciences and Society Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Yaogang Wang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- School of Public Health, Tianjin Medical University, Heping District, Qixiangtai Road 22, Tianjin, 300070, China.
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
9
|
Yang H, Zheng Y, Lai X, Zhao L, Liu L, Liu M, Guo W, Yang L, Fang Q, Zhu K, Dai W, Mei W, Zhu R, Zhang X. Associations of Urinary Phthalate Metabolites with Thyroid Function and the Mediated Role of Cytokines: A Panel Study of Healthy Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17808-17817. [PMID: 36760168 DOI: 10.1021/acs.est.2c07656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Evidence on joint association of a phthalate mixture with thyroid function among children and its underlying mechanism is largely unknown. We aimed to explore the associations of 10 urinary phthalate metabolites (mPAEs), either as individuals or as a mixture, with thyroid function indicators [free thyroxine, free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH)] in 144 children aged 4-12 years with up to 3 repeated visits across 3 seasons. Significant and positive associations were observed for mono-(2-ethylhexyl) phthalate (MEHP), mono-iso-butyl phthalate (MiBP), and mono-n-butyl phthalate (MnBP) with TSH, as well as monobenzyl phthalate (MBzP) with FT3 in dose-response manners. The relationship between MEHP and TSH remained robust in multiple-phthalate models. Bayesian kernel machine regression (BKMR) models revealed overall linear associations of the 10 mPAE mixture with higher TSH and FT3 levels, and MEHP and MBzP were major contributors. Meanwhile, MEHP, MiBP, and MnBP were linked to the elevation of multiple cytokines including CCL 27, CCL3, CXCL1, and IL-16. Among them, IL-16 mediated the relationships of MEHP and MiBP with TSH, and the mediated proportions were 24.16% and 24.27%, respectively. Our findings suggested that mPAEs dominated by MEHP were dose-responsively associated with elevated TSH among healthy children and mediated by IL-16.
Collapse
Affiliation(s)
- Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuming Zheng
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Fang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kejing Zhu
- Zhuhai Center for Disease Control and Prevention, Zhuhai 519000, China
| | - Wencan Dai
- Zhuhai Center for Disease Control and Prevention, Zhuhai 519000, China
| | - Wenhua Mei
- Zhuhai Center for Disease Control and Prevention, Zhuhai 519000, China
| | - Rui Zhu
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
10
|
Li L, Yang HY, Ma Y, Liang XH, Xu M, Zhang J, Huang ZX, Meng LH, Zhou J, Xian J, Suo YJ, Huang S, Cai JW, Meng BH, Zhao ZY, Lu JL, Xu Y, Wang TG, Li M, Chen YH, Wang WQ, Bi YF, Ning G, Shen FX, Hu RY, Chen G, Chen L, Chen LL, Deng HC, Gao ZN, Huo YN, Li Q, Liu C, Mu YM, Qin GJ, Shi LX, Su Q, Wan Q, Wang GX, Wang SY, Wang YM, Wu SL, Xu YP, Yan L, Yang T, Ye Z, Yu XF, Zhang YF, Zhao JJ, Zeng TS, Tang XL, Qin YF, Luo ZJ. Whole fresh fruit intake and risk of incident diabetes in different glycemic stages: a nationwide prospective cohort investigation. Eur J Nutr 2023; 62:771-782. [PMID: 36261730 PMCID: PMC9941276 DOI: 10.1007/s00394-022-02998-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Fruit intake is beneficial to several chronic diseases, but controversial in diabetes. We aimed to investigate prospectively the associations of whole fresh fruit intake with risk of incident type 2 diabetes (T2D) in subjects with different glucose regulation capacities. METHODS The present study included 79,922 non-diabetic participants aged ≥ 40 years from an ongoing nationwide prospective cohort in China. Baseline fruit intake information was collected by a validated food frequency questionnaire. Plasma HbA1c, fasting and 2 h post-loading glucose levels were measured at both baseline and follow-up examinations. Cox proportional hazards models were used to calculate hazard ratio (HR) and 95% confidence intervals (CI) for incident diabetes among participants with normal glucose tolerance (NGT) and prediabetes, after adjusted for multiple confounders. Restricted cubic spline analysis was applied for dose-response relation. RESULTS During a median 3.8-year follow-up, 5886 (7.36%) participants developed diabetes. Overall, we identified a linear and dose-dependent inverse association between dietary whole fresh fruit intake and risk of incident T2D. Each 100 g/d higher fruit intake was associated with 2.8% lower risk of diabetes (HR 0.972, 95%CI [0.949-0.996], P = 0.0217), majorly benefiting NGT subjects with 15.2% lower risk (HR 0.848, 95%CI [0.766-0.940], P = 0.0017), while not significant in prediabetes (HR 0.981, 95%CI 0.957-4.005, P = 0.1268). Similarly, the inverse association was present in normoglycemia individuals with a 48.6% lower risk of diabetes when consuming fruits > 7 times/week comparing to those < 1 time/week (HR 0.514, 95% CI [0.368-0.948]), but not in prediabetes (HR 0.883, 95% CI [0.762-1.023]). CONCLUSION These findings suggest that higher frequency and amount of fresh fruit intake may protect against incident T2D, especially in NGT, but not in prediabetes, highlighting the dietary recommendation of higher fresh fruit consumption to prevent T2D in normoglycemia population.
Collapse
Affiliation(s)
- Li Li
- grid.412594.f0000 0004 1757 2961Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 of Shuangyong Road, Nanning, 530021 Guangxi China
| | - Hai-Yan Yang
- grid.412594.f0000 0004 1757 2961Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 of Shuangyong Road, Nanning, 530021 Guangxi China
| | - Yan Ma
- grid.412594.f0000 0004 1757 2961Department of Ultrasonography, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xing-Huan Liang
- grid.412594.f0000 0004 1757 2961Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 of Shuangyong Road, Nanning, 530021 Guangxi China
| | - Min Xu
- grid.16821.3c0000 0004 0368 8293Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Jie Zhang
- grid.412594.f0000 0004 1757 2961Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 of Shuangyong Road, Nanning, 530021 Guangxi China
| | - Zhen-Xing Huang
- grid.412594.f0000 0004 1757 2961Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 of Shuangyong Road, Nanning, 530021 Guangxi China
| | - Li-Heng Meng
- grid.412594.f0000 0004 1757 2961Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 of Shuangyong Road, Nanning, 530021 Guangxi China
| | - Jia Zhou
- grid.412594.f0000 0004 1757 2961Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 of Shuangyong Road, Nanning, 530021 Guangxi China
| | - Jing Xian
- grid.412594.f0000 0004 1757 2961Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 of Shuangyong Road, Nanning, 530021 Guangxi China
| | - Ying-Jun Suo
- grid.412594.f0000 0004 1757 2961Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 of Shuangyong Road, Nanning, 530021 Guangxi China
| | - Song Huang
- grid.412594.f0000 0004 1757 2961Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 of Shuangyong Road, Nanning, 530021 Guangxi China
| | - Jin-Wei Cai
- grid.412594.f0000 0004 1757 2961Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 of Shuangyong Road, Nanning, 530021 Guangxi China
| | - Bi-Hui Meng
- grid.412594.f0000 0004 1757 2961Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 of Shuangyong Road, Nanning, 530021 Guangxi China
| | - Zhi-Yun Zhao
- grid.16821.3c0000 0004 0368 8293Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Jie-Li Lu
- grid.16821.3c0000 0004 0368 8293Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Yu Xu
- grid.16821.3c0000 0004 0368 8293Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Tian-Ge Wang
- grid.16821.3c0000 0004 0368 8293Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Mian Li
- grid.16821.3c0000 0004 0368 8293Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Yu-Hong Chen
- grid.16821.3c0000 0004 0368 8293Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Wei-Qing Wang
- grid.16821.3c0000 0004 0368 8293Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Yu-Fang Bi
- grid.16821.3c0000 0004 0368 8293Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Guang Ning
- grid.16821.3c0000 0004 0368 8293Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Fei-Xia Shen
- grid.414906.e0000 0004 1808 0918The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ru-Ying Hu
- grid.433871.aZhejiang Provincial Center for Disease Control and Prevention, Zhejiang, China
| | - Gang Chen
- grid.256112.30000 0004 1797 9307Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Li Chen
- grid.452402.50000 0004 1808 3430Qilu Hospital of Shandong University, Jinan, China
| | - Lu-Lu Chen
- grid.33199.310000 0004 0368 7223Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Cong Deng
- grid.452206.70000 0004 1758 417XThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng-Nan Gao
- grid.452337.40000 0004 0644 5246Dalian Municipal Central Hospital, Dalian, China
| | - Ya-Nan Huo
- grid.415002.20000 0004 1757 8108Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, China
| | - Qiang Li
- grid.412463.60000 0004 1762 6325The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Liu
- grid.412676.00000 0004 1799 0784Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Yi-Ming Mu
- grid.414252.40000 0004 1761 8894Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Gui-Jun Qin
- grid.412633.10000 0004 1799 0733The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Xin Shi
- grid.452244.1Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Qing Su
- grid.412987.10000 0004 0630 1330Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Wan
- grid.488387.8The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gui-Xia Wang
- grid.430605.40000 0004 1758 4110The First Hospital of Jilin University, Changchun, China
| | - Shuang-Yuan Wang
- grid.16821.3c0000 0004 0368 8293Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - You-Min Wang
- grid.412679.f0000 0004 1771 3402The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sheng-Li Wu
- Karamay Municipal People’s Hospital, Xinjiang, China
| | - Yi-Ping Xu
- grid.16821.3c0000 0004 0368 8293Clinical Trials Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yan
- grid.12981.330000 0001 2360 039XSun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Yang
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen Ye
- grid.433871.aZhejiang Provincial Center for Disease Control and Prevention, Zhejiang, China
| | - Xue-Feng Yu
- grid.33199.310000 0004 0368 7223Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin-Fei Zhang
- grid.459667.fCentral Hospital of Shanghai Jiading District, Shanghai, China
| | - Jia-Jun Zhao
- grid.460018.b0000 0004 1769 9639Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Tian-Shu Zeng
- grid.33199.310000 0004 0368 7223Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu-Lei Tang
- grid.412643.60000 0004 1757 2902The First Hospital of Lanzhou University, Lanzhou, China
| | - Ying-Fen Qin
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 of Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Zuo-Jie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 of Shuangyong Road, Nanning, 530021, Guangxi, China.
| | | |
Collapse
|
11
|
Baek EJ, Jung HU, Ha TW, Kim DJ, Lim JE, Kim HK, Kang JO, Oh B. Genome-Wide Interaction Study of Late-Onset Asthma With Seven Environmental Factors Using a Structured Linear Mixed Model in Europeans. Front Genet 2022; 13:765502. [PMID: 35432474 PMCID: PMC9005993 DOI: 10.3389/fgene.2022.765502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Asthma is among the most common chronic diseases worldwide, creating a substantial healthcare burden. In late-onset asthma, there are wide global differences in asthma prevalence and low genetic heritability. It has been suggested as evidence for genetic susceptibility to asthma triggered by exposure to multiple environmental factors. Very few genome-wide interaction studies have identified gene-environment (G×E) interaction loci for asthma in adults. We evaluated genetic loci for late-onset asthma showing G×E interactions with multiple environmental factors, including alcohol intake, body mass index, insomnia, physical activity, mental status, sedentary behavior, and socioeconomic status. In gene-by-single environment interactions, we found no genome-wide significant single-nucleotide polymorphisms. However, in the gene-by-multi-environment interaction study, we identified three novel and genome-wide significant single-nucleotide polymorphisms: rs117996675, rs345749, and rs17704680. Bayes factor analysis suggested that for rs117996675 and rs17704680, body mass index is the most relevant environmental factor; for rs345749, insomnia and alcohol intake frequency are the most relevant factors in the G×E interactions of late-onset asthma. Functional annotations implicate the role of these three novel loci in regulating the immune system. In addition, the annotation for rs117996675 supports the body mass index as the most relevant environmental factor, as evidenced by the Bayes factor value. Our findings help to understand the role of the immune system in asthma and the role of environmental factors in late-onset asthma through G×E interactions. Ultimately, the enhanced understanding of asthma would contribute to better precision treatment depending on personal genetic and environmental information.
Collapse
Affiliation(s)
- Eun Ju Baek
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hae Un Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Tae-Woong Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Dong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Han Kyul Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji-One Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Bermseok Oh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
12
|
The Association between Fasting Glucose and Sugar Sweetened Beverages Intake Is Greater in Latin Americans with a High Polygenic Risk Score for Type 2 Diabetes Mellitus. Nutrients 2021; 14:nu14010069. [PMID: 35010944 PMCID: PMC8746587 DOI: 10.3390/nu14010069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Chile is one of the largest consumers of sugar-sweetened beverages (SSB) world-wide. However, it is unknown whether the effects from this highly industrialized food will mimic those reported in industrialized countries or whether they will be modified by local lifestyle or population genetics. Our goal is to evaluate the interaction effect between SSB intake and T2D susceptibility on fasting glucose. We calculated a weighted genetic risk score (GRSw) based on 16 T2D risk SNPs in 2828 non-diabetic participants of the MAUCO cohort. SSB intake was categorized in four levels using a food frequency questionnaire. Log-fasting glucose was regressed on SSB and GRSw tertiles while accounting for socio-demography, lifestyle, obesity, and Amerindian ancestry. Fasting glucose increased systematically per unit of GRSw (β = 0.02 ± 0.006, p = 0.00002) and by SSB intake (β[cat4] = 0.04 ± 0.01, p = 0.0001), showing a significant interaction, where the strongest effect was observed in the highest GRSw-tertile and in the highest SSB consumption category (β = 0.05 ± 0.02, p = 0.02). SNP-wise, SSB interacted with additive effects of rs7903146 (TCF7L2) (β = 0.05 ± 0.01, p = 0.002) and with the G/G genotype of rs10830963 (MTNRB1B) (β = 0.19 ± 0.05, p = 0.001). Conclusions: The association between SSB intake and fasting glucose in the Chilean population without diabetes is modified by T2D genetic susceptibility.
Collapse
|
13
|
Lu X, Lu J, Fan Z, Liu A, Zhao W, Wu Y, Zhu R. Both Isocarbohydrate and Hypercarbohydrate Fruit Preloads Curbed Postprandial Glycemic Excursion in Healthy Subjects. Nutrients 2021; 13:nu13072470. [PMID: 34371978 PMCID: PMC8308803 DOI: 10.3390/nu13072470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the impact of fruit preloads on the acute postprandial glycemic response (PGR) and satiety response of a rice meal in healthy female subjects based on iso-carbohydrate (IC) and hyper-carbohydrate (HC) contents, respectively. The IC test meals including (1) rice preload (R + 35R), (2) orange preload (O + 35R), (3) apple preload (A + 35R) and (4) pear preload (P + 35R), contained 50.0 g available carbohydrates (AC) where the preload contributed 15.0 g and rice provided 35.0 g. The HC meals included (1) orange preload (O + 50R), (2) apple preload (A+50R) and (3) pear preload (P + 50R), each containing 65.0 g AC, where the fruits contributed 15.0 g and rice provided 50.0 g. Drinking water 30 min before the rice meal was taken as reference (W + 50R). All the preload treatments, irrespective of IC or HC meals, resulted in remarkable reduction (p < 0.001) in terms of incremental peak glucose (IPG) and the maximum amplitude of glycemic excursion in 180 min (MAGE0–180), also a significant decrease (p < 0.05) in the area of PGR contributed by per gram of AC (AAC), compared with the W + 50R. Apple elicited the lowest PGR among all test meals, as the A + 35R halved the IPG and slashed the incremental area under the curve in 180 min (iAUC0–180) by 45.7%, while the A + 50R reduced the IPG by 29.7%, compared with the W + 50R. All the preload meals and the reference meal showed comparable self-reported satiety in spite of the difference in AC. In conclusion, pre-meal consumption of three fruits effectively curbed post-meal glycemia even in the case of a 30% extra carbohydrate load.
Collapse
Affiliation(s)
- Xuejiao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Jiacan Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Zhihong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-62737717
| | - Anshu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Wenqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Yixue Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Ruixin Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| |
Collapse
|
14
|
Zhang XY, Liu YH, Liu DZ, Xu JY, Zhang Q. Insulin-Mimic Components in Acer truncatum Leaves: Bio-Guided Isolation, Annual Variance Profiling and Regulating Pathway Investigated by Omics. Pharmaceuticals (Basel) 2021; 14:ph14070662. [PMID: 34358088 PMCID: PMC8308865 DOI: 10.3390/ph14070662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 01/17/2023] Open
Abstract
Insulin mimic can promote transporting glucose to muscle tissue and accelerate glucose consumption. It is commonly occurring in many functional foods or traditional medicines. Anti-diabetes molecules from food sources are highly safe and suitable for long-term use to prevent early diabetes. The leaves of Acer truncatum was found glucose uptake promotion in our phenotypic screening. However, its bioactive components and mechanism are still unclear. We collected leaves from trees of different ages (2, 3, 4, 7 and 11 years old) and profiled the ingredients by LC-MS/MS. The essential active component (myricitrin) was acquired following bio-guide on a whole organism Zebrafish (Danio rerio). Its content in the leaves was not affected by tree ages. Therefore, myricitrin can serve as a quality mark for functional foods derived from A. truncatum leaves. The transcriptomic and metabolomic analysis in Zebrafish explored the differentially expressed genes and metabolites. Based on joint-pathway enrichment and qRT-PCR verification, the critical bioactive component myricitrin was found to affect toll-like receptors signaling pathways to regulate glucose uptake. Our findings disclosed a bioactive marker (myricitrin) in A. truncatum leaves and explored its regulation mechanism, which rationalized the anti-diabetes function of the herbal food.
Collapse
|