1
|
Nasser M, Wadie M, Farid A, Amir AE. The effect of pro-inflammatory cytokines on the development of atherosclerosis in systemic lupus erythematosus patients: ultrasonographic assessment of intimal medial thickness and resistive index. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2025; 52:1. [DOI: 10.1186/s43166-024-00298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Abstract
Background
Systemic lupus erythematosus (SLE) is a debilitating rheumatic condition that results in the dysfunction of multiple organs in the body. Atherosclerosis is a common occurrence in people with SLE and is exacerbated by an overabundant of various cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), and their soluble receptors, such as soluble tumor necrosis factor receptor I (sTNFR I) and soluble interleukin-6 receptor (sIL-6R) (known as SLE risk factors) and high concentrations of lipids (known as dyslipidemia risk factors). The intimal medial thickness (IMT) of the internal carotid artery (ICA) is a sonographic measurement that assesses the extent of atherosclerosis. On the other hand, the resistive index (RI) is primarily employed to evaluate the severity of chronic kidney diseases (CKDs), but it is seldom utilized to estimate atherosclerosis in ICA. So, the objective of this study was to conduct retrospective cohort study among SLE patients to define which risk factor, inflammation or dyslipidemia, correlated with the development of atherosclerosis in SLE and which ultrasound assessment, CIMT or RI, is more useful in identifying atherosclerosis.
Results
TNF-α, sTNFR I, IL-6, and sIL-6R were significantly elevated (P < 0.0001) in SLE patients (n = 75) compared to the controls (n = 15); also, both CIMT and RI showed significant higher levels in patient’s group (P = 0.001 and 0.0025, respectively). Systemic lupus disease activity index (SLEDAI) (P = 0.002), total cholesterol (TC) (P = 0.025), CIMT (P = 0.00045), TNF-α (P < 0.0001), IL-6 (P < 0.0001), sTNFR I (P = 0.006), and sIL-6R (P < 0.0001) rates were significantly higher in atherosclerotic SLE patients (n = 27) than in non-atherosclerotic patients (n = 48). There were clear and meaningful positive correlations (r = 0.82, P = 0.003) observed between CIMT and SLEDAI, as well as between investigated cytokines and their soluble receptors. RI showed no significant differences between two studied groups of patients and also no significant correlations with the studied parameters except with age (r = 0.45, P = 0.035).
Conclusion
Inflammation is a more prevalent cause of atherosclerosis than dyslipidemia in SLE, thereby making it a recognized risk factor for SLE. In comparison to RI, CIMT is a valuable sonographic measure for identifying incidence of atherosclerosis.
Collapse
|
2
|
Golino M, Harding D, Del Buono MG, Fanti S, Mohiddin S, Toldo S, Smyth J, Sanna T, Marelli-Berg F, Abbate A. Innate and adaptive immunity in acute myocarditis. Int J Cardiol 2024; 404:131901. [PMID: 38403204 PMCID: PMC11450758 DOI: 10.1016/j.ijcard.2024.131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Acute myocarditis is an acute inflammatory cardiomyopathy associated with cardiac damage triggered by a virus or a pathological immune activation. It may present with a wide range of clinical presentations, ranging from mild symptoms to severe forms like fulminant myocarditis, characterized by hemodynamic compromise and cardiogenic shock. The immune system plays a central role in the pathogenesis of myocarditis. In fact, while its function is primarily protective, aberrant responses can be detrimental. In this context, both innate and adaptive immunity play pivotal roles; notably, the innate system offers a non-specific and immediate defense, while the adaptive provides specialized protection with immunological memory. However, dysregulation in these systems can misidentify cardiac tissue, triggering autoimmune reactions and possibly leading to significant cardiac tissue damage. This review highlights the importance of innate and adaptive immune responses in the progression and treatment of acute myocarditis.
Collapse
Affiliation(s)
- Michele Golino
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America; Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Daniel Harding
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Saidi Mohiddin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom; Barts Heart Centre, London, United Kingdom
| | - Stefano Toldo
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - James Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, United States of America; Virginia Tech Carilion School of Medicine, Roanoke, VA, United States of America; Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Tommaso Sanna
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom.
| | - Antonio Abbate
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America.
| |
Collapse
|
3
|
Chen J, Jin J, Jiang J, Wang Y. Adenosine deaminase acting on RNA 1 (ADAR1) as crucial regulators in cardiovascular diseases: structures, pathogenesis, and potential therapeutic approach. Front Pharmacol 2023; 14:1194884. [PMID: 37663249 PMCID: PMC10469703 DOI: 10.3389/fphar.2023.1194884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases that have a major impact on global health and are the leading cause of death. A large number of chemical base modifications in ribonucleic acid (RNA) are associated with cardiovascular diseases. A variety of ribonucleic acid modifications exist in cells, among which adenosine deaminase-dependent modification is one of the most common ribonucleic acid modifications. Adenosine deaminase acting on ribonucleic acid 1 (Adenosine deaminase acting on RNA 1) is a widely expressed double-stranded ribonucleic acid adenosine deaminase that forms inosine (A-to-I) by catalyzing the deamination of adenosine at specific sites of the target ribonucleic acid. In this review, we provide a comprehensive overview of the structure of Adenosine deaminase acting on RNA 1 and summarize the regulatory mechanisms of ADAR1-mediated ribonucleic acid editing in cardiovascular diseases, indicating Adenosine deaminase acting on RNA 1 as a promising therapeutic target in cardiovascular diseases.
Collapse
Affiliation(s)
- Jieying Chen
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
| | - Junyan Jin
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jun Jiang
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yaping Wang
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Matsumoto C, Shibata S, Kishi T, Morimoto S, Mogi M, Yamamoto K, Kobayashi K, Tanaka M, Asayama K, Yamamoto E, Nakagami H, Hoshide S, Mukoyama M, Kario K, Node K, Rakugi H. Long COVID and hypertension-related disorders: a report from the Japanese Society of Hypertension Project Team on COVID-19. Hypertens Res 2023; 46:601-619. [PMID: 36575228 PMCID: PMC9793823 DOI: 10.1038/s41440-022-01145-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
The coronavirus disease 2019 (COVID-19) affects infected patients even after the acute phase and impairs their health and quality of life by causing a wide variety of symptoms, referred to as long COVID. Although the evidence is still insufficient, hypertension is suspected to be a potential risk factor for long COVID, and the occurrence of cardiovascular diseases seems to be a key facet of multiple conditions observed in long COVID. Nonetheless, there are few reports that comprehensively review the impacts of long COVID on hypertension and related disorders. As a sequel to our previous report in 2020 which reviewed the association of COVID-19 and hypertension, we summarize the possible influences of long COVID on hypertension-related organs, including the cardiovascular system, kidney, and endocrine system, as well as the pathophysiological mechanisms associated with the disorders in this review. Given that the clinical course of COVID-19 is highly affected by age and sex, we also review the impacts of these factors on long COVID. Lastly, we discuss areas of uncertainty and future directions, which may lead to better understanding and improved prognosis of clinical problems associated with COVID-19.
Collapse
Affiliation(s)
- Chisa Matsumoto
- Department of Cardiology, Preventive medicine, Tokyo Medical University, Tokyo, Japan.
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | - Takuya Kishi
- Department of Graduate School of Medicine (Cardiology), International University of Health and Welfare, Okawa, Japan
| | - Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuo Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Kobayashi Internal Medicine Clinic, Sagamihara, Japan
| | - Masami Tanaka
- Department of Internal Medicine, Adachi Medical Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Kei Asayama
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Xue Y, Ke J, Zhang J, Chen M, Zeng L, Fan Q, Zheng C, Chen F. Analysis of long noncoding RNAs and messenger RNAs expression profiles in the hearts of mice with acute viral myocarditis. J Med Virol 2023; 95:e28473. [PMID: 36606604 DOI: 10.1002/jmv.28473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Acute viral myocarditis (AVMC) is a common acute myocardial inflammation caused by viral infections, which can lead to severe cardiac dysfunction. Several long noncoding RNAs (lncRNAs) with aberrant expression have been identified in the pathogenesis of AVMC. However, the expression profiles and functions of lncRNAs in AVMC have not been fully elucidated. In the present study, we constructed AVMC mouse models by intraperitoneal injection of coxsackievirus B3 (CVB3) and performed RNA sequencing (RNA-seq) on heart tissues to investigate the differences in lncRNAs and messenger RNAs (mRNAs) expression profiles. Based on the cutoff criteria of adjusted p-values (padj) <0.05 and |log2FoldChange| >1, a total of 1122 differentially expressed lncRNAs (DElncRNAs) and 3186 differentially expressed mRNAs (DEmRNAs) were screened, including 734 upregulated and 388 downregulated lncRNAs, 1821 upregulated and 1365 downregulated mRNAs. RT-qPCR analysis validated that the expression patterns of 12 randomly selected genes (6 DElncRNAs and 6 DEmRNAs) were highly consistent with those in RNA-seq, proving the reliability of the RNA-seq data. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed genes were mainly involved in metabolic and immune-related processes. Furthermore, co-expression networks between DElncRNAs and DEmRNAs in cytokine-cytokine receptor interaction, MAPK signaling pathway, and PI3K-Akt signaling pathway were constructed to study the molecular interactions of these molecules. Our study, for the first time, reveals the expression profiles of lncRNAs and mRNAs associated with AVMC, which may shed light on the roles of lncRNAs in disease pathogenesis and aid in discovering new therapeutic targets.
Collapse
Affiliation(s)
- Yimin Xue
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jun Ke
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jiuyun Zhang
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Mingguang Chen
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Lijuan Zeng
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Qiaolian Fan
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Chunfu Zheng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong, China.,Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Feng Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Garcia-Gonzalez C, Dieterich C, Maroli G, Wiesnet M, Wietelmann A, Li X, Yuan X, Graumann J, Stellos K, Kubin T, Schneider A, Braun T. ADAR1 Prevents Autoinflammatory Processes in the Heart Mediated by IRF7. Circ Res 2022; 131:580-597. [PMID: 36000401 DOI: 10.1161/circresaha.122.320839] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND ADAR1 (adenosine deaminase acting on RNA-1)-mediated adenosine to inosine (A-to-I) RNA editing plays an essential role for distinguishing endogenous from exogenous RNAs, preventing autoinflammatory ADAR1 also regulates cellular processes by recoding specific mRNAs, thereby altering protein functions, but may also act in an editing-independent manner. The specific role of ADAR1 in cardiomyocytes and its mode of action in the heart is not fully understood. To determine the role of ADAR1 in the heart, we used different mutant mouse strains, which allows to distinguish immunogenic, editing-dependent, and editing-independent functions of ADAR1. METHODS Different Adar1-mutant mouse strains were employed for gene deletion or specific inactivation of ADAR1 enzymatic activity in cardiomyocytes, either alone or in combination with Ifih1 (interferon induced with helicase C domain 1) or Irf7 (interferon regulatory factor 7) gene inactivation. Mutant mice were investigated by immunofluorescence, Western blot, RNAseq, proteomics, and functional MRI analysis. RESULTS Inactivation of Adar1 in cardiomyocytes resulted in late-onset autoinflammatory myocarditis progressing into dilated cardiomyopathy and heart failure at 6 months of age. Adar1 depletion activated interferon signaling genes but not NFκB (nuclear factor kappa B) signaling or apoptosis and reduced cardiac hypertrophy during pressure overload via induction of Irf7. Additional inactivation of the cytosolic RNA sensor MDA5 (melanoma differentiation-associated gene 5; encoded by the Ifih1 gene) in Adar1 mutant mice prevented activation of interferon signaling gene and delayed heart failure but did not prevent lethality after 8.5 months. In contrast, compound mutants only expressing catalytically inactive ADAR1 in an Ifih1-mutant background were completely normal. Inactivation of Irf7 attenuated the phenotype of Adar1-deficient cardiomyocytes to a similar extent as Ifih1 depletion, identifying IRF7 as the main mediator of autoinflammatory responses caused by the absence of ADAR1 in cardiomyocytes. CONCLUSIONS Enzymatically active ADAR1 prevents IRF7-mediated autoinflammatory reactions in the heart triggered by endogenous nonedited RNAs. In addition to RNA editing, ADAR1 also serves editing-independent roles in the heart required for long-term cardiac function and survival.
Collapse
Affiliation(s)
- Claudia Garcia-Gonzalez
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.).,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. Del Hospital Universitario, Oviedo, Spain (C.G.-G.)
| | - Christoph Dieterich
- Department of Internal Medicine III and Klaus Tschira Institute for Computational Cardiology, Section of Bioinformatics and Systems Cardiology, University Hospital, Heidelberg, Germany (C.D.)
| | - Giovanni Maroli
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Marion Wiesnet
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Astrid Wietelmann
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Xiang Li
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Xuejun Yuan
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Johannes Graumann
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.).,German Centre for Cardiovascular Research (DZHK), Partner Sites Rhine-Main and Heidelberg/Mannheim, Bad Nauheim and Mannheim, Germany (J.G., K.S., T.B.)
| | - Konstantinos Stellos
- German Centre for Cardiovascular Research (DZHK), Partner Sites Rhine-Main and Heidelberg/Mannheim, Bad Nauheim and Mannheim, Germany (J.G., K.S., T.B.).,Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (K.S.).,Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom (K.S.)
| | - Thomas Kubin
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany (T.K.)
| | - Andre Schneider
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Thomas Braun
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.).,German Centre for Cardiovascular Research (DZHK), Partner Sites Rhine-Main and Heidelberg/Mannheim, Bad Nauheim and Mannheim, Germany (J.G., K.S., T.B.)
| |
Collapse
|
7
|
Fang C, Lv Z, Yu Z, Wang K, Xu C, Li Y, Wang Y. Exploration of dilated cardiomyopathy for biomarkers and immune microenvironment: evidence from RNA-seq. BMC Cardiovasc Disord 2022; 22:320. [PMID: 35850644 PMCID: PMC9290235 DOI: 10.1186/s12872-022-02759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
Background The pathogenic mechanism of dilated cardiomyopathy (DCM) remains to be defined. This study aimed to identify hub genes and immune cells that could serve as potential therapeutic targets for DCM. Methods We downloaded four datasets from the Gene Expression Omnibus (GEO) database: GSE141910, GSE3585, GSE42955 and GSE79962. Weighted gene coexpression network analysis (WGCNA) and differential expression analysis were performed to identify gene panels related to DCM. Meanwhile, the CIBERSORT algorithm was used to estimate the immune cells in DCM tissues. Multiple machine learning approaches were used to screen the hub genes and immune cells. Finally, the diagnostic value of the hub genes was assessed by receiver operating characteristic (ROC) analysis. An experimental mouse model of dilated cardiomyopathy was used to validate the bioinformatics results. Results FRZB and EXT1 were identified as hub biomarkers, and the ROC curves suggested an excellent diagnostic ability of the above genes for DCM. In addition, naive B cells were upregulated in DCM tissues, while eosinophils, M2 macrophages, and memory CD4 T cells were downregulated in DCM tissues. The increase in two hub genes and naive B cells was validated in animal experiments. Conclusion These results indicated that FRZB and EXT1 could be used as promising biomarkers, and eosinophils, M2 macrophages, resting memory CD4 T cells and naive B cells may also affect the occurrence of DCM. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02759-7.
Collapse
Affiliation(s)
- Chenggang Fang
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhan Lv
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhimin Yu
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kexin Wang
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengkai Xu
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yixuan Li
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Medical Research Institute of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Pediatric Myocarditis: What Have We Learnt So Far? J Cardiovasc Dev Dis 2022; 9:jcdd9050143. [PMID: 35621854 PMCID: PMC9144089 DOI: 10.3390/jcdd9050143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Myocarditis is an inflammatory disease of the myocardium that is troublesome to diagnose and manage, especially in children. Since the introduction of endomyocardial biopsy (EMB), new diagnostic tools have provided useful data. Especially when enhanced with immunohistochemistry and polymerase chain reaction (PCR) studies, EMB remains the gold standard for the diagnosis. Notably, cardiac magnetic resonance (MRI) is a non-invasive tool that can confirm the diagnosis and has a particular usefulness during the follow-up. The causes of myocarditis are heterogeneous (mostly viral in children). The course and outcome of the illness in the pediatric population represent a complex interaction between etiologic agents and the immune system, which is still not fully understood. The clinical presentation and course of myocarditis vary widely from paucisymptomatic illness to acute heart failure refractory to therapy, arrhythmias, angina-like presentation and sudden cardiac death. In this setting, cardiac biomarkers (i.e., troponins and BNP), although unspecific, can be used to support the diagnosis. Finally, the efficacy of therapeutic strategies is controversial and not confirmed by clinical trials. In this review, we summarized the milestones in diagnosis and provided an overview of the therapeutic options for myocarditis in children.
Collapse
|
9
|
Kim SH, Shin HH, Kim JH, Park JH, Jeon ES, Lim BK. Protein Kinase B2 (PKB2/AKT2) Is Essential for Host Protection in CVB3-Induced Acute Viral Myocarditis. Int J Mol Sci 2022; 23:ijms23031489. [PMID: 35163412 PMCID: PMC8836114 DOI: 10.3390/ijms23031489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Protein kinase B2 (AKT2) is involved in various cardiomyocyte signaling processes, including those important for survival and metabolism. Coxsackievirus B3 (CVB3) is one of the most common pathogens that cause myocarditis in humans. The role of AKT2 in CVB3 infection is not yet well understood. We used a cardiac-specific AKT2 knockout (KO) mouse to determine the role of AKT2 in CVB3-mediated myocarditis. CVB3 was injected intraperitoneally into wild-type (WT) and KO mice. The mice’s survival rate was recorded: survival in KO mice was significantly decreased compared with WT mice (WT vs. KO: 73.3 vs. 27.1%). Myocardial damage and inflammation were significantly increased in the hearts of KO mice compared with those of WT mice. Moreover, from surface ECG, AKT2 KO mice showed a prolonged atria and ventricle conduction time (PR interval, WT vs. KO: 47.27 ± 1.17 vs. 64.79 ± 7.17 ms). AKT2 deletion induced severe myocarditis and cardiac dysfunction due to CVB3 infection. According to real-time PCR, the mRNA level of IL-1, IL-6, and TNF-α decreased significantly in KO mice compared with WT mice on Days 5 after infection. In addition, innate immune response antiviral effectors, Type I interferon (interferon-α and β), and p62, were dramatically suppressed in the heart of KO mice. In particular, the adult cardiac myocytes isolated from the heart showed high induction of TLR4 protein in KO mice in comparison with WT. AKT2 deletion suppressed the activation of Type I interferon and p62 transcription in CVB3 infection. In cardiac myocytes, AKT2 is a key signaling molecule for the heart from damage through the activation of innate immunity during acute myocarditis.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Korea; (S.-H.K.); (H.-H.S.); (J.-H.K.)
| | - Ha-Hyeon Shin
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Korea; (S.-H.K.); (H.-H.S.); (J.-H.K.)
| | - Jin-Ho Kim
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Korea; (S.-H.K.); (H.-H.S.); (J.-H.K.)
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea;
| | - Eun-Seok Jeon
- Division of Cardiology, Samsung Medical Center, Sungkyunkwan University School of Medicine 50 Irwon dong, Gangnam-gu, Seoul 06351, Korea;
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Korea; (S.-H.K.); (H.-H.S.); (J.-H.K.)
- Correspondence: author: ; Tel.: +82-43-830-8605; Fax: +82-43-830-8579
| |
Collapse
|
10
|
Rroku A, Kottwitz J, Heidecker B. Update on myocarditis - what we know so far and where we may be heading. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2021; 10:455–467. [PMID: 32319308 DOI: 10.1177/2048872620910109] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Affiliation(s)
- Andi Rroku
- Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Germany
| | | | - Bettina Heidecker
- Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Germany
| |
Collapse
|
11
|
Hang W, Chen C, Seubert JM, Wang DW. Fulminant myocarditis: a comprehensive review from etiology to treatments and outcomes. Signal Transduct Target Ther 2020; 5:287. [PMID: 33303763 PMCID: PMC7730152 DOI: 10.1038/s41392-020-00360-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Fulminant myocarditis (FM) is characterized by a rapid progressive decline in cardiac function and a high mortality rate. Since the first report of FM patients in the 1980s, several clinical trials and research studies have been published increasing our knowledge regarding FM. Currently, the diagnosis of FM depends on various techniques including electrocardiography, echocardiography, endomyocardial biopsy, and cardiac magnetic resonance. The development of mechanical circulation support (MCS) devices and progress in our understanding of the pathophysiological mechanisms underlying FM, treatment regimens have evolved from simple symptomatic treatment to a life support-based comprehensive treatment approach. The core mechanism underlying the development of FM is the occurrence of an inflammatory cytokine storm. This review provides a comprehensive account of the current understanding of FM pathophysiology and knowledge regarding its etiology, pathophysiology, treatments, and outcomes.
Collapse
Affiliation(s)
- Weijian Hang
- Division of Cardiology, Department of Internal Medicine, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Abstract
Inflammatory cardiomyopathy, characterized by inflammatory cell infiltration into the myocardium and a high risk of deteriorating cardiac function, has a heterogeneous aetiology. Inflammatory cardiomyopathy is predominantly mediated by viral infection, but can also be induced by bacterial, protozoal or fungal infections as well as a wide variety of toxic substances and drugs and systemic immune-mediated diseases. Despite extensive research, inflammatory cardiomyopathy complicated by left ventricular dysfunction, heart failure or arrhythmia is associated with a poor prognosis. At present, the reason why some patients recover without residual myocardial injury whereas others develop dilated cardiomyopathy is unclear. The relative roles of the pathogen, host genomics and environmental factors in disease progression and healing are still under discussion, including which viruses are active inducers and which are only bystanders. As a consequence, treatment strategies are not well established. In this Review, we summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with a special focus on virus-induced and virus-associated myocarditis. Furthermore, we identify knowledge gaps, appraise the available experimental models and propose future directions for the field. The current knowledge and open questions regarding the cardiovascular effects associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also discussed. This Review is the result of scientific cooperation of members of the Heart Failure Association of the ESC, the Heart Failure Society of America and the Japanese Heart Failure Society.
Collapse
|
13
|
Abstract
Gene expression is needed for the maintenance of heart function under normal conditions and in response to stress. Each cell type of the heart has a specific program controlling transcription. Different types of stress induce modifications of these programs and, if prolonged, can lead to altered cardiac phenotype and, eventually, to heart failure. The transcriptional status of a gene is regulated by the epigenome, a complex network of DNA and histone modifications. Until a few years ago, our understanding of the role of the epigenome in heart disease was limited to that played by histone deacetylation. But over the last decade, the consequences for the maintenance of homeostasis in the heart and for the development of cardiac hypertrophy of a number of other modifications, including DNA methylation and hydroxymethylation, histone methylation and acetylation, and changes in chromatin architecture, have become better understood. Indeed, it is now clear that many levels of regulation contribute to defining the epigenetic landscape required for correct cardiomyocyte function, and that their perturbation is responsible for cardiac hypertrophy and fibrosis. Here, we review these aspects and draw a picture of what epigenetic modification may imply at the therapeutic level for heart failure.
Collapse
Affiliation(s)
- Roberto Papait
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| | - Simone Serio
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| | - Gianluigi Condorelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| |
Collapse
|
14
|
Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 2019; 114:19. [PMID: 30887214 DOI: 10.1007/s00395-019-0722-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Heart failure is a consequence of various cardiovascular diseases and associated with poor prognosis. Despite progress in the treatment of heart failure in the past decades, prevalence and hospitalisation rates are still increasing. Heart failure is typically associated with cardiac remodelling. Here, inflammation and fibrosis are thought to play crucial roles. During cardiac inflammation, immune cells invade the cardiac tissue and modulate tissue-damaging responses. Cardiac fibrosis, however, is characterised by an increased amount and a disrupted composition of extracellular matrix proteins. As evidence exists that cardiac inflammation and fibrosis are potentially reversible in experimental and clinical set ups, they are interesting targets for innovative heart failure treatments. In this context, animal models are important as they mimic clinical conditions of heart failure patients. The advantages of mice in this respect are short generation times and genetic modifications. As numerous murine models of heart failure exist, the selection of a proper disease model for a distinct research question is demanding. To facilitate this selection, this review aims to provide an overview about the current understanding of the pathogenesis of cardiac inflammation and fibrosis in six frequently used murine models of heart failure. Hence, it compares the models of myocardial infarction with or without reperfusion, transverse aortic constriction, chronic subjection to angiotensin II or deoxycorticosterone acetate, and coxsackievirus B3-induced viral myocarditis in this context. It furthermore provides information about the clinical relevance and the limitations of each model, and, if applicable, about the recent advancements in their methodological proceedings.
Collapse
|
15
|
Li-Sha G, Jing-Lin Z, Guang-Yi C, Li L, De-Pu Z, Yue-Chun L. Dose-dependent protective effect of nicotine in a murine model of viral myocarditis induced by coxsackievirus B3. Sci Rep 2015; 5:15895. [PMID: 26507386 PMCID: PMC4623743 DOI: 10.1038/srep15895] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022] Open
Abstract
The alpha 7 nicotinic acetylcholine receptor (alpha7 nAChR) was recently described as an anti-inflammatory target in various inflammatory diseases. The aim of this study was to investigate the dose-related effects of nicotine, an alpha7 nAChR agonist, in murine model of viral myocarditis. BALB/C mice were infected by an intraperitoneally injection with coxsackievirus B3. Nicotine was administered at doses of 0.1, 0.2 or 0.4 mg/kg three times per day for 7 or 14 consecutive days. The effects of nicotine on survival, myocardial histopathological changes, cardiac function, and cytokine levels were studied. The survival rate on day 14 increased in a dose-dependent fashion and was markedly higher in the 0.2 and 0.4 mg/kg nicotine groups than in the infected untreated group. Treatment with high-dose nicotine reduced the myocardial inflammation and improved the impaired left ventricular function in infected mice. The mRNA expressions and protein levels of TNF-α, IL-1β, IL-6, and IL-17A were significantly downregulated in dose-dependent manners in the nicotine treatment groups compared to the infected untreated group. Nicotine dose-dependently reduced the severity of viral myocarditis through inhibiting the production of proinflammatory cytokines. The findings suggest that alpha7 nAChR agonists may be a promising new strategy for patients with viral myocarditis.
Collapse
Affiliation(s)
- Ge Li-Sha
- Department of Pediatrics, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhao Jing-Lin
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chen Guang-Yi
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liu Li
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhou De-Pu
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Li Yue-Chun
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
16
|
Abstract
Cardiotropic viruses have been implicated as major pathogenetic agents in acute and chronic forms of myocarditis. By the introduction of molecular tools, such as (RT-) polymerase chain reaction ((RT-) PCR) and in situ hybridization in the diagnosis of inflammatory heart disease, genomes of various RNA and DNA viruses comprising enteroviruses, adenoviruses, parvovirus B19 (B19V) and herpesviruses (EBV, HHV6, HCMV) were detected in endomyocardial biopsies of patients with myocarditis and dilated cardiomyopathy. Meanwhile, it is known that the outcome of a virus infection in the heart resulting in myocarditis is determined by genetic host factors as well as by the viral pathogenicity which considerably varies in the different virus infections. A considerable portion of our knowledge about the etiopathogenetic mechanisms in viral heart disease is derived from animal studies. Whereas the evolvement of cardiac inflammation in enterovirus infections is guided by viral cytotoxicity and virus persistence, in herpesvirus infections, the pathophysiology is rather determined by primary immune-mediated pathogenicity. By investigation of immunocompetent and gene-targeted mice, valuable new insights into host and virus factors relevant for the control of cardiac viral infection and inflammation were gained which are reviewed in this paper.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/pathogenicity
- Animals
- Biopsy, Needle
- DNA, Viral/analysis
- Disease Models, Animal
- Enterovirus/genetics
- Enterovirus/pathogenicity
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 6, Human/genetics
- Herpesvirus 6, Human/pathogenicity
- Humans
- Immunohistochemistry
- Mice
- Mice, Transgenic
- Molecular Diagnostic Techniques/methods
- Myocarditis/genetics
- Myocarditis/pathology
- Myocarditis/virology
- Parvovirus B19, Human/genetics
- Parvovirus B19, Human/pathogenicity
- RNA, Viral/analysis
- Real-Time Polymerase Chain Reaction/methods
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Sabine Pankuweit
- Department of Cardiology, University Hospital Gießen & Marburg, 35043, Marburg, Germany,
| | | |
Collapse
|
17
|
Cialdella P, Pedicino D, Gustapane M, Santangeli P, Narducci ML, Pelargonio G, Basile E, Giglio AF, Pazzano V, Vitulano N, Bellocci F. Inflammatory markers in heart failure. J Cardiovasc Med (Hagerstown) 2013; 14:342-50. [DOI: 10.2459/jcm.0b013e328349afb6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Staab J, Ruppert V, Pankuweit S, Meyer T. Polymorphisms in genes encoding nonsarcomeric proteins and their role in the pathogenesis of dilated cardiomyopathy. Herz 2012. [DOI: 10.1007/s00059-012-3698-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Qian Q, Xiong S, Xu W. Manipulating intestinal immunity and microflora: an alternative solution to viral myocarditis? Future Microbiol 2012; 7:1207-16. [DOI: 10.2217/fmb.12.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Viral myocarditis (VMC) is an important cause of heart failure and dilated cardiomyopathy with no effective clinical diagnosis and treatment, and has been commonly associated with Coxsackievirus B3 (CVB3) infection. Current evidence from CVB3 myocarditis in mice indicates that acute myocarditis is mainly mediated by the host immune responses, including Th1, Th17 and type I macrophages. Recently, innate immunity triggered by TLR3, TLR4, TLR8 and MDA5 has also been demonstrated to participate in the induction of inflammatory cytokines in response to CVB3. Apart from the heart tissue, the intestine, which is the assumed initial infection and important replication site for CVB3, needs to be investigated, where induction of innate immunity and interactions with microflora may shape the immune response involved in the pathogenesis of VMC. This review presents recent advances in research into innate and adaptive immunity to CVB3, and provides insights into developing new strategies for the future treatment for VMC.
Collapse
Affiliation(s)
- Qian Qian
- Institutes of Biology & Medical Sciences, Jiangsu Key Laboratory of Infection & Immunity, Soochow University, Suzhou 215123, China
| | - Sidong Xiong
- Institutes of Biology & Medical Sciences, Jiangsu Key Laboratory of Infection & Immunity, Soochow University, Suzhou 215123, China
| | - Wei Xu
- Institutes of Biology & Medical Sciences, Jiangsu Key Laboratory of Infection & Immunity, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Corsten MF, Schroen B, Heymans S. Inflammation in viral myocarditis: friend or foe? Trends Mol Med 2012; 18:426-37. [DOI: 10.1016/j.molmed.2012.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
21
|
Liu W, Li S, Tian W, Li W, Zhang Z. Immunoregulatory effects of α-GalCer in a murine model of autoimmune myocarditis. Exp Mol Pathol 2011; 91:636-42. [DOI: 10.1016/j.yexmp.2011.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/10/2011] [Indexed: 11/30/2022]
|
22
|
Conditional transgenic expression of TIR-domain-containing adaptor-inducing interferon-β (TRIF) in the adult mouse heart is protective in acute viral myocarditis. Basic Res Cardiol 2011; 106:1159-71. [DOI: 10.1007/s00395-011-0226-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/10/2011] [Accepted: 09/19/2011] [Indexed: 12/29/2022]
|
23
|
Kleinbongard P, Schulz R, Heusch G. TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 2011; 16:49-69. [PMID: 20571888 DOI: 10.1007/s10741-010-9180-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TNFα is crucially involved in the pathogenesis and progression of myocardial ischemia/reperfusion injury and heart failure. The formation and release of TNFα and its downstream signal transduction cascade following activation of its two receptor subtypes are characterized. Myocardial TNFα and TNF receptor activation have an ambivalent role in myocardial ischemia/reperfusion injury and protection from it. Excessive TNFα expression and subsequent cardiomyocyte TNF receptor type 1 stimulation induce contractile dysfunction, hypertrophy, fibrosis and cell death, while a lower TNFα concentration and subsequent cardiomyocyte TNF receptor type 2 stimulation are protective. Apart from its concentration and receptor subtype, the myocardial action of TNFα depends on the duration of its exposure and its localization. While detrimental during sustained ischemia, TNFα contributes to ischemic preconditioning protection, no matter whether it is the first, second or third window of protection, and both TNF receptors are involved in the protective signal transduction cascade. Finally, the available clinical attempts to antagonize TNFα in cardiovascular disease, notably heart failure, are critically discussed.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institut für Pathophysiologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | | |
Collapse
|
24
|
Hammer E, Goritzka M, Ameling S, Darm K, Steil L, Klingel K, Trimpert C, Herda LR, Dörr M, Kroemer HK, Kandolf R, Staudt A, Felix SB, Völker U. Characterization of the Human Myocardial Proteome in Inflammatory Dilated Cardiomyopathy by Label-free Quantitative Shotgun Proteomics of Heart Biopsies. J Proteome Res 2011; 10:2161-71. [DOI: 10.1021/pr1008042] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elke Hammer
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Michelle Goritzka
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Sabine Ameling
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Katrin Darm
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Leif Steil
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Karin Klingel
- Abteilung Molekulare Pathologie, Universitätsklinikum Tübingen, Germany
| | | | - Lars R. Herda
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Germany
| | - Marcus Dörr
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Germany
| | - Heyo K. Kroemer
- Institut für Pharmakologie, Universitätsmedizin Greifswald, Germany
| | - Reinhard Kandolf
- Abteilung Molekulare Pathologie, Universitätsklinikum Tübingen, Germany
| | - Alexander Staudt
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Germany
| | - Stephan B. Felix
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Germany
| | - Uwe Völker
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| |
Collapse
|
25
|
Glück B, Dahlke K, Zell R, Krumbholz A, Decker M, Lehmann J, Wutzler P. Cardioprotective effect of NO-metoprolol in murine coxsackievirus B3-induced myocarditis. J Med Virol 2011; 82:2043-52. [PMID: 20981792 DOI: 10.1002/jmv.21928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effect of NO-metoprolol, that is, 3-nitrooxypivaloyl metoprolol-amide, a novel NO-releasing derivative of the β1-blocking drug metoprolol was investigated in A.CA/SnJ mice infected with coxsackievirus B3 (CVB3) and compared to metoprolol and placebo. Daily treatment of mice with the respective drug started immediately (experiment A) or 3 days after virus infection (experiment B) and was continued until day 13 post-infection (p.i.). Two doses of NO-metoprolol were administered. Body mass differences, viral load, and histopathological signs of myocarditis were compared between the several groups. As a result, NO-metoprolol diminished significantly the body weight loss, the viral load and the histopathology, whereas metoprolol treatment led solely to a significant attenuation of myocardial damage. In experiment A, low dose NO-metoprolol decreased significantly enteroviral copy numbers. Both doses of NO-metoprolol had a significant effect on reduction of myocardial infiltrates and fibrosis. The data suggest that delayed drug administration might more advantageous. Both doses of NO-metoprolol reduced significantly the scores of four tested parameters compared to placebo. Body weight loss, virus titers, plus-strand as well as minus-strand enteroviral RNA levels, infiltration and fibrosis scores were diminished significantly when NO-metoprolol was given 3 days p.i. In addition, a significant difference regarding the enteroviral copy numbers was observed between low dose NO-metoprolol- and metoprolol-treated mice. Treatment with metoprolol reduced insignificantly the viral load and body weight loss (experiment A and B) but led to a significant reduction of myocardial histopathology in experiment A. The results indicate that NO-metoprolol treatment has a greater therapeutic benefit than metoprolol.
Collapse
Affiliation(s)
- Brigitte Glück
- Department of Virology and Antiviral Therapy, Jena University Hospital, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Guggilam A, Cardinale JP, Mariappan N, Sriramula S, Haque M, Francis J. Central TNF inhibition results in attenuated neurohumoral excitation in heart failure: a role for superoxide and nitric oxide. Basic Res Cardiol 2011; 106:273-86. [PMID: 21246206 DOI: 10.1007/s00395-010-0146-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 11/20/2010] [Accepted: 12/23/2010] [Indexed: 11/25/2022]
Abstract
This study examined the effect of central tumor necrosis factor-alpha (TNF) blockade on the imbalance between nitric oxide and superoxide production in the paraventricular nucleus (PVN) and ventrolateral medulla (VLM), key autonomic regulators, and their contribution to enhanced sympathetic drive in mice with congestive heart failure (CHF). We also used a TNF gene knockout (KO) mouse model to study the involvement of TNF in body fluid homeostasis and sympathoexcitation in CHF. After implantation of intracerebroventricular (ICV) cannulae, myocardial infarction (MI) was induced in wild-type (WT) and KO mice by coronary artery ligation. Osmotic mini-pumps were implanted into one set of WT + MI/Sham mice for continuous ICV infusion of Etanercept (ETN), a TNF receptor fusion protein, or vehicle (VEH). Gene expressions of neuronal nitric oxide synthase (NOS) and angiotensin receptor-type 2 were reduced, while those of inducible NOS, Nox2 homologs, superoxide, peroxynitrite and angiotensin receptor-type 1 were elevated in the brainstem and hypothalamus of MI + VEH. Plasma norepinephrine levels and the number of Fos-positive neurons were also increased in the PVN and VLM in MI + VEH. MI + ETN and KO + MI mice exhibited reduced oxidative stress, reduced sympathoexcitation and an improved cardiac function. These changes in WT + MI were associated with increased sodium and fluid retention. These results indicate that elevated TNF in these autonomic regulatory regions of the brain alter the production of superoxide and nitric oxide, contributing to fluid imbalance and sympathoexcitation in CHF.
Collapse
Affiliation(s)
- Anuradha Guggilam
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | | | | | | | | | | |
Collapse
|
27
|
Editorial on the manuscript entitled “Impact of Troponin I-Autoantibodies in Chronic Dilated and Ischemic Cardiomyopathy” by Andreas O. Doesch and co-workers. Basic Res Cardiol 2010; 106:1-4. [DOI: 10.1007/s00395-010-0140-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/06/2010] [Indexed: 01/22/2023]
|
28
|
Viral induction of Zac1b through TLR3- and IRF3-dependent pathways. Mol Immunol 2010; 48:119-27. [DOI: 10.1016/j.molimm.2010.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/20/2010] [Accepted: 09/14/2010] [Indexed: 01/22/2023]
|
29
|
Hammer E, Phong TQ, Steil L, Klingel K, Salazar MG, Bernhardt J, Kandolf R, Kroemer HK, Felix SB, Völker U. Viral myocarditis induced by Coxsackievirus B3 in A.BY/SnJ mice: analysis of changes in the myocardial proteome. Proteomics 2010; 10:1802-18. [PMID: 20213679 DOI: 10.1002/pmic.200900734] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Enteroviral myocarditis displays highly diverse clinical phenotypes ranging from mild dyspnoea or chest pain to cardiogenic shock and death. Despite detailed studies of the virus life cycle in vitro and in vivo, the molecular interplay between host and virus in disease progression is largely unresolved. Murine models of Coxsackievirus B3 (CVB3)-induced myocarditis well mimic the human disease patterns and can thus be explored to study mechanisms leading from acute to chronic myocarditis. Here, we present a 2-D gel-based proteomic survey of the changes in the murine cardiac proteome that occurs following infection with CVB3. In total, 136 distinct proteins were affected. Proteins, which are involved in immunity and defense and protein metabolism/modification displayed pronounced changes in intensity not only during acute but also at later stages of CVB3 myocarditis. Proteins involved in maintenance of cell structure and associated proteins were particularly influenced in the acute phase of myocarditis, whereas reduction of levels of metabolic enzymes was observed in chronic myocarditis. Studies about changes in protein intensities were complemented by an analysis of protein phosphorylation that revealed infection-associated changes in the phosphorylation of myosin binding protein C, atrial and ventricular isoforms of myosin regulatory light chain 2, desmin, and Rab GDP dissociation inhibitor beta-2.
Collapse
Affiliation(s)
- Elke Hammer
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lupia E, Spatola T, Cuccurullo A, Bosco O, Mariano F, Pucci A, Ramella R, Alloatti G, Montrucchio G. Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum. Basic Res Cardiol 2010; 105:609-20. [PMID: 20467749 DOI: 10.1007/s00395-010-0103-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 01/21/2023]
Abstract
Thrombopoietin (TPO) is a humoral growth factor that has been shown to increase platelet activation in response to several agonists. Patients with sepsis have increased circulating TPO levels, which may enhance platelet activation, potentially participating to the pathogenesis of multi-organ failure. Aim of this study was to investigate whether TPO affects myocardial contractility and participates to depress cardiac function during sepsis. We showed the expression of the TPO receptor c-Mpl on myocardial cells and tissue by RT-PCR, immunofluorescence and western blotting. We then evaluated the effect of TPO on the contractile function of rat papillary muscle and isolated heart. TPO did not change myocardial contractility in basal conditions, but, when followed by epinephrine (EPI) stimulation, it blunted the enhancement of contractile force induced by EPI both in papillary muscle and isolated heart. An inhibitor of TPO prevented TPO effect on cardiac inotropy. Treatment of papillary muscle with pharmacological inhibitors of phosphatidylinositol 3-kinase, NO synthase, and guanilyl cyclase abolished TPO effect, indicating NO as the final mediator. We finally studied the role of TPO in the negative inotropic effect exerted by human septic shock (HSS) serum and TPO cooperation with TNF-alpha and IL-1beta. Pre-treatment with the TPO inhibitor prevented the decrease in contractile force induced by HSS serum. Moreover, TPO significantly amplified the negative inotropic effect induced by TNF-alpha and IL-1beta in papillary muscle. In conclusion, TPO negatively modulates cardiac inotropy in vitro and contributes to the myocardial depressing activity of septic shock serum.
Collapse
Affiliation(s)
- Enrico Lupia
- Department of Clinical Pathophysiology, University of Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Dilated cardiomyopathy is characterised by left ventricular dilation that is associated with systolic dysfunction. Diastolic dysfunction and impaired right ventricular function can develop. Affected individuals are at risk of left or right ventricular failure, or both. Heart failure symptoms can be exercise-induced or persistent at rest. Many patients are asymptomatic. Chronically treated patients sometimes present acutely with decompensated heart failure. Other life-threatening risks are ventricular arrhythmias and atrioventricular block, syncope, and sudden death. Genetic inheritance arises in 30-48% of patients, and inflammatory disorders such as myocarditis or toxic effects from medications, alcohol, or illicit drugs also result in dilated cardiomyopathy. Genes that cause dilated cardiomyopathy generally encode cytoskeletal and sarcomeric (contractile apparatus) proteins, although disturbance of calcium homeostasis also seems to be important. In children, disrupted mitochondrial function and metabolic abnormalities have a causal role. Treatments focus on improvement of cardiac efficiency and reduction of mechanical stress. Arrhythmia therapy and prevention of sudden death continue to be mainstays of treatment. Despite progress over the past 10 years, outcomes need to be improved.
Collapse
Affiliation(s)
- John Lynn Jefferies
- Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
32
|
|
33
|
Abstract
Myocarditis is an uncommon, potentially life-threatening disease that presents with a wide range of symptoms in children and adults. Viral infection is the most common cause of myocarditis in developed countries, but other etiologies include bacterial and protozoal infections, toxins, drug reactions, autoimmune diseases, giant cell myocarditis, and sarcoidosis. Acute injury leads to myocyte damage, which in turn activates the innate and humeral immune system, leading to severe inflammation. In most patients, the immune reaction is eventually down-regulated and the myocardium recovers. In select cases, however, persistent myocardial inflammation leads to ongoing myocyte damage and relentless symptomatic heart failure or even death. The diagnosis is usually made based on clinical presentation and noninvasive imaging findings. Most patients respond well to standard heart failure therapy, although in severe cases, mechanical circulatory support or heart transplantation is indicated. Prognosis in acute myocarditis is generally good except in patients with giant cell myocarditis. Persistent, chronic myocarditis usually has a progressive course but may respond to immunosuppression.
Collapse
Affiliation(s)
- Lori A Blauwet
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
34
|
Huang CH, Lin LY, Tsai MS, Hsu CY, Chen HW, Wang TD, Chang WT, Cheng TJ, Chen WJ. Acute cardiac dysfunction after short-term diesel exhaust particles exposure. Toxicol Lett 2010; 192:349-55. [DOI: 10.1016/j.toxlet.2009.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 12/29/2022]
|
35
|
Affiliation(s)
- Toshitaka Yajima
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla
| | - Kirk U. Knowlton
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla
| |
Collapse
|
36
|
Zimmermann O, Bienek-Ziolkowski M, Wolf B, Vetter M, Baur R, Mailänder V, Hombach V, Torzewski J. Myocardial inflammation and non-ischaemic heart failure: is there a role for C-reactive protein? Basic Res Cardiol 2009; 104:591-9. [DOI: 10.1007/s00395-009-0026-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/18/2009] [Accepted: 03/18/2009] [Indexed: 11/28/2022]
|