1
|
Sliskovic N, Sestan G, Gjorgjievska S, Baric D, Unic D, Varvodic J, Kusurin M, Susnjar D, Singer S, Rudez I. Intraoperative Hemoadsorption in Heart Transplant Surgery: A 5-Year Experience. J Cardiovasc Dev Dis 2025; 12:119. [PMID: 40278178 PMCID: PMC12028209 DOI: 10.3390/jcdd12040119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Hyperimmune response and cytokine release post-reperfusion might occur after orthotopic heart transplantation (HTx). Intraoperative hemoadsorption (HA) has been introduced to remove such elevated cytokines. We aimed to analyze the effect of intraoperative HA in patients undergoing orthotopic HTx. METHODS Between 2018 and 2022, 40 consecutive orthotopic HTx patients who underwent intraoperative hemoadsorption HA integrated into the cardiopulmonary bypass were compared to 41 historical controls. Primary outcome measures included postoperative hemodynamic stability and blood product requirements, while secondary outcomes were the incidence of acute kidney injury requiring dialysis (AKI-d) and 30-day mortality. RESULTS Postoperatively, the vasoactive-inotropic score (VIS) did not significantly differ between the groups. However, the use duration for milrinone and dobutamine was shortened by one day compared to controls. The HA group had fewer red blood cell transfusions (765 vs. 1330 mL, p = 0.01) and lower fresh frozen plasma requirements (945 vs. 1200 mL, p = 0.04). Mechanical ventilation duration was reduced (22 vs. 28 h, p = 0.02). AKI-d rates were similar, and 30-day mortality favored non-significantly the HA group (5% vs. 14.6%, p = ns). No device-related adverse events were observed. CONCLUSION These findings suggest that intraoperative HA might improve immediate postoperative outcomes; however, further validation in larger randomized controlled trials is warranted.
Collapse
Affiliation(s)
- Nikola Sliskovic
- Department of Cardiac and Transplant Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia (S.S.); (I.R.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Montelukast and Acute Coronary Syndrome: The Endowed Drug. Pharmaceuticals (Basel) 2022; 15:ph15091147. [PMID: 36145367 PMCID: PMC9500901 DOI: 10.3390/ph15091147] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/16/2022] Open
Abstract
Acute coronary syndrome (ACS) is a set of signs and symptoms caused by a reduction of coronary blood flow with subsequent myocardial ischemia. ACS is associated with activation of the leukotriene (LT) pathway with subsequent releases of various LTs, including LTB4, LTC4, and LTD4, which cause inflammatory changes and induction of immunothrombosis. LTs through cysteine leukotriene (CysLT) induce activation of platelets and clotting factors with succeeding coronary thrombosis. CysLT receptor (CysLTR) antagonists such as montelukast (MK) may reduce the risk of the development of ACS and associated complications through suppression of the activation of platelet and clotting factors. Thus, this critical review aimed to elucidate the possible protective role of MK in the management of ACS. The LT pathway is implicated in the pathogenesis of atherosclerosis, cardiac hypertrophy, and heart failure. Inhibition of the LT pathway and CysL1TR by MK might be effective in preventing cardiovascular complications. MK could be an effective novel therapy in the management of ACS through inhibition of pro-inflammatory CysLT1R and modulation of inflammatory signaling pathways. MK can attenuate thrombotic events by inhibiting platelet activation and clotting factors that are activated during the development of ACS. In conclusion, MK could be an effective agent in reducing the severity of ACS and associated complications. Experimental, preclinical, and clinical studies are recommended to confirm the potential therapeutic of MK in the management of ACS.
Collapse
|
3
|
Abstract
The inherited and acquired long QT is a risk marker for potential serious cardiac arrhythmias and sudden cardiac death. Smartwatches are becoming more popular and are increasingly used for monitoring human health. The present study aimed to assess the feasibility and reliability of evaluating the QT interval in lead I, lead II, and V2 lead using a commercially available Apple Watch. One hundred nineteen patients admitted to our Cardiology Division were studied. I, II, and V2 leads were obtained after recording a standard 12-lead ECG. Lead I was recorded with the smartwatch on the left wrist and the right index finger on the crown. Lead II was obtained with the smartwatch on the left lower abdomen and the right index finger on the crown. The V2 lead was recorded with the smartwatch in the fourth intercostal space left parasternal with the right index finger on the crown. There was agreement among the QT intervals of I, II, and V2 leads and the QT mean using the smartwatch and the standard ECG with Spearman’s correlations of 0.886; 0.881; 0.793; and 0.914 (p < 0.001), respectively. The reliability of the QTc measurements between standard and smartwatch ECG was also demonstrated with a Bland–Altman analysis using different formulas. These data show that a smartwatch can feasibly and reliably assess QT interval. These results could have an important clinical impact when frequent QT interval monitoring is required.
Collapse
|
4
|
Spaccarotella C, Mazzitelli M, Migliarino S, Curcio A, De Rosa S, Torti C, Indolfi C. Therapy with RAS inhibitors during the COVID-19 pandemic. J Cardiovasc Med (Hagerstown) 2021; 22:329-334. [PMID: 33795584 DOI: 10.2459/jcm.0000000000001160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the novel coronavirus first identified in Wuhan, China. The global number of confirmed cases of COVID-19 has surpassed 28,285,700 with mortality that appears higher than for seasonal influenza. About 20% of COVID-19 patients have experienced cardiac involvement and myocardial infarction in patients infected with SARS-CoV-2 had a worse prognosis. Furthermore, the widespread use of antiviral drugs can be linked to a worsening of heart function. Arrhythmias and hypertension have also been reported in patients with Covid-19. On the other hand, previous cardiac diseases are present in 30% of patients infected with SARS-CoV-2. There is uncertainty in the use of ace inhibitors and angiotensin II (Ang II) antagonists in the COVID-19 era. The mechanism of action of SARS-CoV-2 has been elucidated. It has been demonstrated that angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for the new coronavirus SARS-CoV-2 and it is required for host cell entry and subsequent viral replication. The effect of the SARS-CoV-2 infection is the downregulation of ACE2 that may contribute to the severity of lung pathologies as well as the cardiac function. ACE2, a homolog of ACE, is a monocarboxypeptidase that converts Ang II into angiotensin 1-7 (Ang 1-7) that with its vasodilatory, antifibrotic, antihypertrophic effects counterbalances the negative effects of Ang II. On the other hand, angiotensin-converting enzyme inhibitors (ACEi) and AT1R blockers have been shown to upregulate the expression of ACE2. Based on the mechanism of action of SARS-CoV-2, the use of renin angiotensin system (RAS) inhibitors was questioned although all scientific societies did not recommend discontinuation when clinically recommended. The BRACE CORONA, a phase 4, randomized study tested two strategies: temporarily stopping the ACE inhibitor/angiotensin receptor blockers (ARB) for 30 days versus continuing ACE inhibitors/ARBs in patients who were taking these medications chronically and were hospitalized with a confirmed diagnosis of COVID-19 was also discussed. Therefore, the goal of this review is to summarize recent laboratory and clinical investigations concerning the use of ACEi and ARBs during the COVID-19 pandemic. The available data, based also on a randomized trial, suggest that ACEIs or ARBs, when clinically indicated, should be regularly used in the COVID-19 era.
Collapse
Affiliation(s)
| | - Maria Mazzitelli
- Division of Infectious and Tropical Diseases, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | | | - Antonio Curcio
- Division of Cardiology, University Magna Graecia, Catanzaro
| | | | - Carlo Torti
- Division of Infectious and Tropical Diseases, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Ciro Indolfi
- Division of Cardiology, University Magna Graecia, Catanzaro
| |
Collapse
|
5
|
Spaccarotella C, Migliarino S, Mongiardo A, Curcio A, de Rosa S, Corcione N, Quirino A, Barreca GS, Giancotti A, Peronace C, Marascio N, Matera G, Indolfi C. Fast-track ruling in/out SARS-CoV-2 infection with rapid 0/1.5 h molecular test in patients with acute coronary syndromes. J Cardiovasc Med (Hagerstown) 2020; 21:975-979. [PMID: 33156158 DOI: 10.2459/jcm.0000000000001117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Patients with acute coronary syndrome (ACS) often arrive in the catheterization (cath) lab directly from the field or an emergency department without an accurate triage for Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.Although in the pandemic period the treatment in the cath laboratory of high-risk ACS should not be delayed because the operators wear special protection systems, the subsequent risk of contagion in a non-Covid coronary care unit could be high in the case of patients positive for SARS-CoV-2. METHODS We tested the possibility of a fast-track protocol in 51 consecutive patients (mean age 65 ± 12 years) transferred from spokes centres or from the field to our HUB centre and admitted to our coronary care unit (CCU). Once the patient had arrived in the cath lab, the nasopharyngeal swab was performed. The real-time PCR to extract RNA for SARS-CoV-2 detection was performed with an automated rapid molecular Xpert Xpress test. Meanwhile, coronary angiography or percutaneous coronary intervention was performed if necessary. RESULTS In this fast-track protocol, the time to perform nasopharyngeal swab was 11 ± 11 min; time spent to transport nasopharyngeal swab to the laboratory was 29 ± 20 min; time to detect viral nucleic acid was 68 ± 16 min. The overall time from the execution of nasopharyngeal swab to the result was 109 ± 26 min. The results were immediately put into the hospital computer system and made readily available. Depending on the test result, patients were then transferred to the regular CCU or Covid area. CONCLUSION This study demonstrates that 0-1.5 h fast-track triage for coronavirus disease 2019 (COVID 19) is feasible in patients with ACS. The execution of nasopharyngeal swab in the cath lab and its analysis with a rapid molecular test allows rapid stratification of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carmen Spaccarotella
- Division of Cardiology.,Center for Cardiovascular Research University, Magna Graecia, Catanzaro
| | | | | | - Antonio Curcio
- Division of Cardiology.,Center for Cardiovascular Research University, Magna Graecia, Catanzaro
| | - Salvatore de Rosa
- Division of Cardiology.,Center for Cardiovascular Research University, Magna Graecia, Catanzaro
| | - Nicola Corcione
- Division of Cardiology Clinica Pineta Mare, Castel Volturno, Neaples, Italy
| | - Angela Quirino
- Department of Health Sciences, Unit of Clinical Microbiology, "Magna Graecia" University, Catanzaro
| | - Giorgio Settimo Barreca
- Department of Health Sciences, Unit of Clinical Microbiology, "Magna Graecia" University, Catanzaro
| | - Aida Giancotti
- Department of Health Sciences, Unit of Clinical Microbiology, "Magna Graecia" University, Catanzaro
| | - Cinzia Peronace
- Department of Health Sciences, Unit of Clinical Microbiology, "Magna Graecia" University, Catanzaro
| | - Nadia Marascio
- Department of Health Sciences, Unit of Clinical Microbiology, "Magna Graecia" University, Catanzaro
| | - Giovanni Matera
- Department of Health Sciences, Unit of Clinical Microbiology, "Magna Graecia" University, Catanzaro
| | - Ciro Indolfi
- Division of Cardiology.,Center for Cardiovascular Research University, Magna Graecia, Catanzaro.,Mediterranea Cardiocentro, Naples
| |
Collapse
|
6
|
Yu D, Wang T, Huang J, Fang X, Fan H, Yi G, Liu Q, Zhang Y, Zeng X, Liu Q. MicroRNA‐9 overexpression suppresses vulnerable atherosclerotic plaque and enhances vascular remodeling through negative regulation of the p38MAPK pathway via OLR1 in acute coronary syndrome. J Cell Biochem 2019; 121:49-62. [DOI: 10.1002/jcb.27830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Dao‐Rui Yu
- Department of Pharmacology School of Basic Medicine and Life Science, Hainan Medical University Haikou China
| | - Tao Wang
- Department of nursing humanities, International Nursing School, Hainan Medical University
| | - Jing Huang
- Department of Pharmacology School of Basic Medicine and Life Science, Hainan Medical University Haikou China
| | - Xing‐Yue Fang
- Department of Pharmacology School of Basic Medicine and Life Science, Hainan Medical University Haikou China
| | - Hao‐Fei Fan
- Department of Pharmacology School of Basic Medicine and Life Science, Hainan Medical University Haikou China
| | - Guo‐Hui Yi
- Instrument testing center, Public Research Laboratory, Hainan Medical University
| | - Qiang Liu
- Department of Pharmacology School of Basic Medicine and Life Science, Hainan Medical University Haikou China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University
| | - Xiang‐Zhou Zeng
- Department of Pharmacology School of Basic Medicine and Life Science, Hainan Medical University Haikou China
| | - Qi‐Bing Liu
- Department of Pharmacology School of Basic Medicine and Life Science, Hainan Medical University Haikou China
| |
Collapse
|
7
|
Guo SZ, Liu WJ. Constructing differential co-expression network to predict key pathways for myocardial infarction. Exp Ther Med 2019; 17:3029-3034. [PMID: 30936974 PMCID: PMC6434241 DOI: 10.3892/etm.2019.7321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/05/2019] [Indexed: 12/27/2022] Open
Abstract
New thoughts are warranted to develop efficient diagnosis and optimal therapeutics to combat unstable angina (UA)/myocardial infarction (MI). Therefore, the gene data of patients with UA or MI were used in this study to identify the optimal pathways which can provide comprehensive information for UA/MI development. Differentially expressed genes (DEGs) between UA and MI were detected using LIMMA package, and pathway enrichment analysis was conducted for the DEGs, based on the DAVID tool, to detect the significant pathways. Then, differential co-expression network (DCN) and sub-DCN for the DEGs were constructed. Subsequently, informative pathways were extracted using guilt-by-association (GBA) principle relying on the area under the curve (AUC), and the pathway categories with AUC >0.8 were defined as the informative pathways. Finally, we selected the optimal pathways based on the traditional pathway analysis and the sub-DCN-based-GBA pathway prediction method. A total of 203 and 266 DEGs were identified from the expression profile of blood of MI samples comparing with UAs in the time-point 1 and time-point 2 groups. Moreover, 7 and 10 informative pathway terms were identified based on AUC>0.8. Significantly, cytokine-cytokine receptor interaction, as well as MAPK signaling pathway were the common optimal pathways in the two groups. Calcium signaling pathway was unique to the whole blood of patients with acute coronary syndrome (ACS) taken at 30 days post-ACS. In conclusion, the optimal pathways (MAPK signaling pathway, cytokine-cytokine receptor interaction, and calcium signaling pathway) might play important roles in the progression of UA/MI.
Collapse
Affiliation(s)
- Su-Zhen Guo
- Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Wen-Jie Liu
- Department of Geriatrics, Chendong Hospital, Quanzhou First Hospital, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
8
|
Ghatge M, Nair J, Sharma A, Vangala RK. Integrative gene ontology and network analysis of coronary artery disease associated genes suggests potential role of ErbB pathway gene EGFR. Mol Med Rep 2018; 17:4253-4264. [PMID: 29328373 PMCID: PMC5802197 DOI: 10.3892/mmr.2018.8393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022] Open
Abstract
Coronary artery disease (CAD) is a major cause of mortality in India, more importantly the young Indians. Combinatorial and integrative approaches to evaluate pathways and genes to gain an improved understanding and potential biomarkers for risk assessment are required. Therefore, 608 genes from the CADgene database version 2.0, classified into 12 functional classes representing the atherosclerotic disease process, were analyzed. Homology analysis of the unique list of gene ontologies (GO) from each functional class gave 8 GO terms represented in 11 and 10 functional classes. Using disease ontology analysis 80 genes belonging to 8 GO terms, using FunDO suggested that 29 of them were identified to be associated with CAD. Extended network analysis of these genes using STRING version 9.1 gave 328 nodes and 4,525 interactions of which the top 5% had a node degree of ≥75 associated with pathways including the ErbB signaling pathway with epidermal growth factor receptor (EGFR) gene as the central hub. Evaluation of EFGR protein levels in age and gender-matched 342 CAD patients vs. 342 control subjects demonstrated significant differences [controls=149.76±2.47 pg/ml and CAD patients stratified into stable angina (SA)=161.65±3.40 pg/ml and myocardial infarction (MI)=171.51±4.26 pg/ml]. Logistic regression analysis suggested that increased EGFR levels exhibit 3-fold higher risk of CAD [odds ratio (OR) 3.51, 95% confidence interval [CI] 1.96–6.28, P≤0.001], upon adjustment for hypertension, diabetes and smoking. A unit increase in EGFR levels increased the risk by 2-fold for SA (OR 2.58, 95% CI 1.25–5.33, P=0.01) and 3.8-fold for MI (OR 3.82, 95% CI 1.94–7.52, P≤0.001) following adjustment. Thus, the use of ontology mapping and network analysis in an integrative manner aids in the prioritization of biomarkers of complex disease.
Collapse
Affiliation(s)
- Madankumar Ghatge
- Tata Proteomics and Coagulation Unit, Thrombosis Research Institute, Narayana Hrudayalaya Hospital, Bengaluru, Karnataka 560099, India
| | - Jiny Nair
- Mary and Garry Weston Functional Genomics Unit, Thrombosis Research Institute, Bengaluru, Karnataka 560099, India
| | - Ankit Sharma
- Manipal University, Manipal, Karnataka 576104, India
| | - Rajani Kanth Vangala
- Tata Proteomics and Coagulation Unit, Thrombosis Research Institute, Narayana Hrudayalaya Hospital, Bengaluru, Karnataka 560099, India
| |
Collapse
|
9
|
De Rosa S, Indolfi C. Circulating microRNAs as Biomarkers in Cardiovascular Diseases. EXPERIENTIA SUPPLEMENTUM (2012) 2015; 106:139-149. [PMID: 26608202 DOI: 10.1007/978-3-0348-0955-9_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
MicroRNAs, key regulators of biological processes, are involved in the pathophysiological mechanisms underlying human diseases, including cardiovascular diseases. Their recent discovery revealed a previously unknown layer of pathophysiologic regulators, which also play a key role in the regulation of several aspects of cardiovascular diseases. More recently, it was demonstrated that circulating microRNAs can be measured in the blood. Hence, the potential use of microRNAs as disease biomarkers attracted many research groups. Indeed, their unusual stability in the bloodstream and during prolonged storage make circulating miRs very interesting as potential biomarkers. Circulating microRNAs are emerging as the next generation "smart" biomarkers and could be helpful in further improving the diagnostic and therapeutic processes of cardiovascular diseases. The present chapter summarizes the most relevant experimental evidence on circulating microRNAs in cardiovascular diseases, including arterial remodeling, restenosis, coronary artery disease, acute coronary syndromes, hypertension, heart failure, and ischemic stroke, highlighting potential pathophysiological correlations to the mechanisms underlying cardiovascular diseases.
Collapse
Affiliation(s)
- Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy. .,URT-CNR, Magna Graecia University, Catanzaro, 88100, Italy.
| |
Collapse
|
10
|
Flego D, Severino A, Trotta F, Previtero M, Ucci S, Zara C, Pedicino D, Massaro G, Biasucci LM, Liuzzo G, Crea F. Altered CD31 expression and activity in helper T cells of acute coronary syndrome patients. Basic Res Cardiol 2014; 109:448. [PMID: 25344833 DOI: 10.1007/s00395-014-0448-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
Abstract
In acute coronary syndrome (ACS), T cell abnormalities are associated to a worse outcome. Loss of inhibitory activity of CD31, an Ig-like adhesion molecule, on peripheral leukocytes has been found to enhance atherosclerosis in experimental models. In this study, we examined the expression of CD31 on T cells, and its role on TCR signaling in 35 patients with non-ST elevation ACS, in 35 patients with stable angina (SA), and in 35 controls. Furthermore, 10 ACS and 10 SA patients were re-analyzed at 1-year follow-up. Flow-cytometry analysis showed that in ACS patients, CD31 expression was reduced on total CD4(+) and CD4(+)CD28(null) (P < 0.001, ACS vs. SA), on naïve (P < 0.001, ACS vs. SA) and on central-memory and effector-memory CD4(+) T cells (P < 0.05, ACS vs. SA and controls). The immunomodulatory effect of CD31 on TCR signaling of CD4(+) and CD4(+)CD28(null) T cells, was lower in ACS than SA patients (P < 0.05, for both comparisons). At 1-year follow-up, CD31 expression and function increased in ACS becoming similar to that found in SA. CD31 recruitment in the immunological synapse was lower in ACS than controls (P = 0.012). Moreover, CD31 modulated MAPK signaling and reduced the expression of T bet and Rorγ-t, necessary for Th1 and Th17 differentiation. Finally, we studied TCR signaling in CD31(+) naïve and primed T cell subsets observing a different pattern of protein phosphorylation. A CD31-mediated regulatory pathway is enhanced in SA and temporarily downregulated in ACS. As CD31 modulates both T cell activation, by increasing the threshold for TCR stimulation, and T cell differentiation, it might represent a novel molecular target to treat T cell abnormalities in ACS.
Collapse
Affiliation(s)
- Davide Flego
- Institute of Cardiology, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Baban B, Liu JY, Mozaffari MS. SGK-1 regulates inflammation and cell death in the ischemic-reperfused heart: pressure-related effects. Am J Hypertens 2014; 27:846-56. [PMID: 24429675 DOI: 10.1093/ajh/hpt269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Systemic hypertension and the associated increased myocardial load/mechanical stress are common in patients with coronary heart disease. Thus, unraveling of mechanosensitive molecular mechanisms that determine cell fate in the setting of cardiac tissue injury is of scientific and clinical relevance. We tested the hypothesis that the prosurvival, mechanosensitive, serum glucocorticoid-regulated kinase-1 (SGK-1) is a pivotal determinant of pressure-related inflammatory response and cell fate in the ischemic-reperfused heart. METHODS Langendorff-perfused rat hearts were subjected to an ischemia reperfusion (IR) insult, at 80 or 160cm water, with perfusate lacking or containing the SGK-1 inhibitor GSK650394A (1 μM); normoxic hearts served as controls. Thereafter, hearts tissues were used for Western blotting or cardiac cells were prepared for flow cytometry and immunofluorescent studies. RESULTS An IR insult (i) reduced phosphoSGK-1 (active and protective) in association with disruption of mitochondrial membrane potential (ψm) and increased apoptosis and necrosis and (ii) increased expressions of growth-arrest and DNA damage-associated protein 153 (GADD153; a determinant of inflammation and cell death) and the proinflammatory cytokine interleukin (IL) 17; these effects were greater at high pressure. On the other hand, the anti-inflammatory cytokines IL-10 and IL-27 increased more in ischemic-reperfused hearts subjected to low pressure. SGK-1 inhibition further reduced phosphoSGK-1, increased GADD153 and IL-17, and reduced IL-10 and IL-27 in association with augmented disruption of ψm and exacerbated cell death; these effects were greater at low pressure. CONCLUSIONS The results indicate a major pressure-related role for SGK-1 in regulating inflammation and cell fate in the ischemic-reperfused heart.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, Georgia, USA
| | | | | |
Collapse
|
12
|
Affiliation(s)
- Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University
| | - Antonio Curcio
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University
- URT-CNR, Magna Graecia University
| |
Collapse
|
13
|
Curcio A, Torella D, Iaconetti C, Pasceri E, Sabatino J, Sorrentino S, Giampà S, Micieli M, Polimeni A, Henning BJ, Leone A, Catalucci D, Ellison GM, Condorelli G, Indolfi C. MicroRNA-1 downregulation increases connexin 43 displacement and induces ventricular tachyarrhythmias in rodent hypertrophic hearts. PLoS One 2013; 8:e70158. [PMID: 23922949 PMCID: PMC3724819 DOI: 10.1371/journal.pone.0070158] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 06/19/2013] [Indexed: 01/11/2023] Open
Abstract
Downregulation of the muscle-specific microRNA-1 (miR-1) mediates the induction of pathologic cardiac hypertrophy. Dysfunction of the gap junction protein connexin 43 (Cx43), an established miR-1 target, during cardiac hypertrophy leads to ventricular tachyarrhythmias (VT). However, it is still unknown whether miR-1 and Cx43 are interconnected in the pro-arrhythmic context of hypertrophy. Thus, in this study we investigated whether a reduction in the extent of cardiac hypertrophy could limit the pathological electrical remodeling of Cx43 and the onset of VT by modulating miR-1 levels. Wistar male rats underwent mechanical constriction of the ascending aorta to induce pathologic left ventricular hypertrophy (LVH) and afterwards were randomly assigned to receive 10mg/kg valsartan, VAL (LVH+VAL) delivered in the drinking water or placebo (LVH) for 12 weeks. Sham surgery was performed for control groups. Programmed ventricular stimulation reproducibly induced VT in LVH compared to LVH+VAL group. When compared to sham controls, rats from LVH group showed a significant decrease of miR-1 and an increase of Cx43 expression and its ERK1/2-dependent phosphorylation, which displaces Cx43 from the gap junction. Interestingly, VAL administration to rats with aortic banding significantly reduced cardiac hypertrophy and prevented miR-1 down-regulation and Cx43 up-regulation and phosphorylation. Gain- and loss-of-function experiments in neonatal cardiomyocytes (NCMs) in vitro confirmed that Cx43 is a direct target of miR-1. Accordingly, in vitro angiotensin II stimulation reduced miR-1 levels and increased Cx43 expression and phosphorylation compared to un-stimulated NCMs. Finally, in vivo miR-1 cardiac overexpression by an adenoviral vector intra-myocardial injection reduced Cx43 expression and phosphorylation in mice with isoproterenol-induced LVH. In conclusion, miR-1 regulates Cx43 expression and activity in hypertrophic cardiomyocytes in vitro and in vivo. Treatment of pressure overload-induced myocyte hypertrophy reduces the risk of life-threatening VT by normalizing miR-1 expression levels with the consequent stabilization of Cx43 expression and activity within the gap junction.
Collapse
Affiliation(s)
- Antonio Curcio
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Daniele Torella
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
- Biostem Unit, RISES, Liverpool John Moores University, Liverpool, United Kingdom
| | - Claudio Iaconetti
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Eugenia Pasceri
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Jolanda Sabatino
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Sabato Sorrentino
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Salvatore Giampà
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Mariella Micieli
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Alberto Polimeni
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Beverley J. Henning
- Biostem Unit, RISES, Liverpool John Moores University, Liverpool, United Kingdom
| | - Angelo Leone
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, Rozzano, Milan, and National Research Council, Italy
| | - Georgina M. Ellison
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
- Biostem Unit, RISES, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Center, Rozzano, Milan, and National Research Council, Italy
| | - Ciro Indolfi
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
- URT - National Research Council, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
14
|
Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res Cardiol 2012; 107:296. [PMID: 22890560 DOI: 10.1007/s00395-012-0296-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 01/07/2023]
Abstract
The role of miR-92a on vascular remodelling after injury is currently unknown. Thus, the aim of the present study was to evaluate the role of miR-92a on rat endothelial and vascular smooth muscle cells proliferation and migration in vitro as well as after balloon injury or arterial stenting in vivo. MiR-92a was highly expressed in RAO-ECs and vascular endothelium, but not in RAO-SMCs or medial smooth muscle as assessed by real-time RT-PCR. Importantly, BrdU incorporation and wound healing assay provide evidence that functional inhibition of miR-92a resulted in an increased RAO-ECs proliferation and migration, but had no effect on RAO-SMCs proliferation or migration in vitro. Immunoblotting analysis revealed an increased phosphorylation of ERK1/2, JNK/SAPK as well as eNOS and phospho-eNOS increased expression level in RAO-ECs as a consequence of miR-92a inhibition. Using gain and loss of function experiments, we showed that miR-92a modulates regulation of KLF4 and MKK4 expression level in endothelial cells. Finally, in vivo administration of antagomiR-92a significantly enhanced re-endothelialization in injured carotid arteries and reduced neointimal formation after balloon injury or arterial stenting. These data provide the first evidence that inhibition of miR-92a may represent a novel strategy to improve endothelial regeneration and reduce restenosis after vascular injury.
Collapse
|
15
|
Burn-induced apoptosis of cardiomyocytes is survivin dependent and regulated by PI3K/Akt, p38 MAPK and ERK pathways. Basic Res Cardiol 2011; 106:1207-20. [DOI: 10.1007/s00395-011-0199-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/07/2011] [Accepted: 06/17/2011] [Indexed: 01/17/2023]
|