1
|
Yu B, Cao Y, Lin P, Zhang L, Chen M. Enhancement of Ndrg2 promotes hypertrophic scar fibrosis by regulating PI3K/AKT signaling pathway. Cell Signal 2025; 129:111659. [PMID: 39956247 DOI: 10.1016/j.cellsig.2025.111659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Hypertrophic scar (HTS) is a prevalent chronic inflammatory skin disorder characterized by abnormal proliferation and extracellular matrix deposition. N-Myc downstream regulated gene 2 (Ndrg2) is a cell stress response gene related to cell proliferation, differentiation and various fibrotic diseases. However, the role of Ndrg2 in HTS is unknown and warrants further investigation. In this study, we confirmed that the expression of Ndrg2 was increased in HTS of human and a bleomycin-induced fibrosis mouse model. We then used Ndrg2 knockout mice and found Ndrg2 deletion could significantly reduce the synthesis of collagen and alleviate skin fibrosis. In addition, the proliferation and migration of Ndrg2-interfered HTS-derived fibroblasts decreased and those of Ndrg2-overexpressed normal skin-derived fibroblasts increased. Further, by western blot analysis, we verified that the expression of phosphorylated-PI3K, PI3K, phosphorylated-AKT and AKT were all increased after Ndrg2 overexpressed in normal skin-derived fibroblasts. Moreover, PI3K inhibitor (LY294002) administration significantly rescued the effect of Ndrg2 overexpression on skin fibrosis. In summary, our results demonstrated that Ndrg2 could promote HTS fibrosis by mediating PI3K/AKT signaling pathway. Our data suggest that Ndrg2 may be a promising therapeutic target for HTS.
Collapse
Affiliation(s)
- Boya Yu
- Department of Plastic and Reconstructive Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Chinese PLA Medical School, Beijing 100853, China.
| | - Yalei Cao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Pianpian Lin
- Department of Plastic and Reconstructive Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Chinese PLA Medical School, Beijing 100853, China
| | - Lixia Zhang
- Department of Plastic and Reconstructive Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Chinese PLA Medical School, Beijing 100853, China.
| | - Minliang Chen
- Department of Plastic and Reconstructive Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Chinese PLA Medical School, Beijing 100853, China.
| |
Collapse
|
2
|
Hartley B, Bassiouni W, Roczkowsky A, Fahlman R, Schulz R, Julien O. N-Terminomic Identification of Intracellular MMP-2 Substrates in Cardiac Tissue. J Proteome Res 2024; 23:4188-4202. [PMID: 38647137 PMCID: PMC11460328 DOI: 10.1021/acs.jproteome.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Proteases are enzymes that induce irreversible post-translational modifications by hydrolyzing amide bonds in proteins. One of these proteases is matrix metalloproteinase-2 (MMP-2), which has been shown to modulate extracellular matrix remodeling and intracellular proteolysis during myocardial injury. However, the substrates of MMP-2 in heart tissue are limited, and lesser known are the cleavage sites. Here, we used degradomics to investigate the substrates of intracellular MMP-2 in rat ventricular extracts. First, we designed a novel, constitutively active MMP-2 fusion protein (MMP-2-Fc) that we expressed and purified from mammalian cells. Using this protease, we proteolyzed ventricular extracts and used subtiligase-mediated N-terminomic labeling which identified 95 putative MMP-2-Fc proteolytic cleavage sites using mass spectrometry. The intracellular MMP-2 cleavage sites identified in heart tissue extracts were enriched for proteins primarily involved in metabolism, as well as the breakdown of fatty acids and amino acids. We further characterized the cleavage of three of these MMP-2-Fc substrates based on the gene ontology analysis. We first characterized the cleavage of sarco/endoplasmic reticulum calcium ATPase (SERCA2a), a known MMP-2 substrate in myocardial injury. We then characterized the cleavage of malate dehydrogenase (MDHM) and phosphoglycerate kinase 1 (PGK1), representing new cardiac tissue substrates. Our findings provide insights into the intracellular substrates of MMP-2 in cardiac cells, suggesting that MMP-2 activation plays a role in cardiac metabolism.
Collapse
Affiliation(s)
- Bridgette Hartley
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Wesam Bassiouni
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Andrej Roczkowsky
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Richard Fahlman
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Richard Schulz
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
- Department
of Pediatrics, University of Alberta, Edmonton T6G 2S2, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
3
|
Tao W, Lu Y, Xiao R, Zhang J, Hu P, Zhao N, Peng W, Qian K, Liu F. LncRNA HMOX1 alleviates renal ischemia-reperfusion-induced ferroptotic injury via the miR-3587/HMOX1 axis. Cell Signal 2024; 119:111165. [PMID: 38583746 DOI: 10.1016/j.cellsig.2024.111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) play significant roles in renal ischemia reperfusion (RIR) injury. However, the specific mechanisms by which lncRNAs regulate ferroptosis in renal tubular epithelial cells remain largely unknown. The objective of this study was to investigate the biological function of lncRNA heme oxygenase 1 (lnc-HMOX1) in RIR and its potential molecular mechanism. Our findings demonstrated that the expression of HMOX1-related lnc-HMOX1 was reduced in renal tubular epithelial cells treated with hypoxia-reoxygenation (HR). Furthermore, the over-expression of lnc-HMOX1 mitigated ferroptotic injury in renal tubular epithelial cells in vivo and in vitro. Mechanistically, lnc-HMOX1, as a competitive endogenous RNA (ceRNA), promoted the expression of HMOX1 by sponging miR-3587. Furthermore, the inhibition of HMOX1 effectively impeded the aforementioned effects exerted by lnc-HMOX1. Ultimately, the inhibitory or mimic action of miR-3587 reversed the promoting or refraining influence of silenced or over-expressed lnc-HMOX1 on ferroptotic injury during HR. In summary, our findings contribute to a comprehensive comprehension of the mechanism underlying ferroptotic injury mediated by lnc-HMOX1 during RIR. Significantly, we identified a novel lnc-HMOX1-miR-3587-HMOX1 axis, which holds promise as a potential therapeutic target for RIR injury.
Collapse
Affiliation(s)
- Wenqiang Tao
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yuanhua Lu
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Rui Xiao
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jianguo Zhang
- Department of Critical Care Medicine, Linyi People's Hospital, Linyi 276034, China
| | - Ping Hu
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ning Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Wei Peng
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Kejian Qian
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330052, China.
| |
Collapse
|
4
|
Wang Z, Zhang G, Hu S, Fu M, Zhang P, Zhang K, Hao L, Chen S. Research progress on the protective effect of hormones and hormone drugs in myocardial ischemia-reperfusion injury. Biomed Pharmacother 2024; 176:116764. [PMID: 38805965 DOI: 10.1016/j.biopha.2024.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Ischemic heart disease (IHD) is a condition where the heart muscle does not receive enough blood flow, leading to cardiac dysfunction. Restoring blood flow to the coronary artery is an effective clinical therapy for myocardial ischemia. This strategy helps lower the size of the myocardial infarction and improves the prognosis of patients. Nevertheless, if the disrupted blood flow to the heart muscle is restored within a specific timeframe, it leads to more severe harm to the previously deprived heart tissue. This condition is referred to as myocardial ischemia/reperfusion injury (MIRI). Until now, there is a dearth of efficacious strategies to prevent and manage MIRI. Hormones are specialized substances that are produced directly into the circulation by endocrine organs or tissues in humans and animals, and they have particular effects on the body. Hormonal medications utilize human or animal hormones as their active components, encompassing sex hormones, adrenaline medications, thyroid hormone medications, and others. While several studies have examined the preventive properties of different endocrine hormones, such as estrogen and hormone analogs, on myocardial injury caused by ischemia-reperfusion, there are other hormone analogs whose mechanisms of action remain unexplained and whose safety cannot be assured. The current study is on hormones and hormone medications, elucidating the mechanism of hormone pharmaceuticals and emphasizing the cardioprotective effects of different endocrine hormones. It aims to provide guidance for the therapeutic use of drugs and offer direction for the examination of MIRI in clinical therapy.
Collapse
Affiliation(s)
- Zhongyi Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Gaojiang Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Meilin Fu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Pingyuan Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Kuo Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Sichong Chen
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
5
|
Bonazzola R, Ferrante E, Ravikumar N, Xia Y, Keavney B, Plein S, Syeda-Mahmood T, Frangi AF. Unsupervised ensemble-based phenotyping enhances discoverability of genes related to left-ventricular morphology. NAT MACH INTELL 2024; 6:291-306. [PMID: 38523678 PMCID: PMC10957472 DOI: 10.1038/s42256-024-00801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/25/2024] [Indexed: 03/26/2024]
Abstract
Recent genome-wide association studies have successfully identified associations between genetic variants and simple cardiac morphological parameters derived from cardiac magnetic resonance images. However, the emergence of large databases, including genetic data linked to cardiac magnetic resonance facilitates the investigation of more nuanced patterns of cardiac shape variability than those studied so far. Here we propose a framework for gene discovery coined unsupervised phenotype ensembles. The unsupervised phenotype ensemble builds a redundant yet highly expressive representation by pooling a set of phenotypes learnt in an unsupervised manner, using deep learning models trained with different hyperparameters. These phenotypes are then analysed via genome-wide association studies, retaining only highly confident and stable associations across the ensemble. We applied our approach to the UK Biobank database to extract geometric features of the left ventricle from image-derived three-dimensional meshes. We demonstrate that our approach greatly improves the discoverability of genes that influence left ventricle shape, identifying 49 loci with study-wide significance and 25 with suggestive significance. We argue that our approach would enable more extensive discovery of gene associations with image-derived phenotypes for other organs or image modalities.
Collapse
Affiliation(s)
- Rodrigo Bonazzola
- Centre for Computational Imaging and Simulation Technologies in Biomedicine, School of Computing and School of Medicine, University of Leeds, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Enzo Ferrante
- Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL/CONICET, Santa Fe, Argentina
| | - Nishant Ravikumar
- Centre for Computational Imaging and Simulation Technologies in Biomedicine, School of Computing and School of Medicine, University of Leeds, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Yan Xia
- Centre for Computational Imaging and Simulation Technologies in Biomedicine, School of Computing and School of Medicine, University of Leeds, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | | | - Alejandro F. Frangi
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Computer Science, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Medical Imaging Research Center (MIRC), University Hospital Gasthuisberg. Cardiovascular Sciences and Electrical Engineering Departments, KU Leuven, Leuven, Belgium
- Alan Turing Institute, London, UK
| |
Collapse
|
6
|
Elzamzami FD, Samal A, Arun AS, Dharmaraj T, Prasad NR, Rendon-Jonguitud A, DeVine L, Walston JD, Cole RN, Wilson KL. Native lamin A/C proteomes and novel partners from heart and skeletal muscle in a mouse chronic inflammation model of human frailty. Front Cell Dev Biol 2023; 11:1240285. [PMID: 37936983 PMCID: PMC10626543 DOI: 10.3389/fcell.2023.1240285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023] Open
Abstract
Clinical frailty affects ∼10% of people over age 65 and is studied in a chronically inflamed (Interleukin-10 knockout; "IL10-KO") mouse model. Frailty phenotypes overlap the spectrum of diseases ("laminopathies") caused by mutations in LMNA. LMNA encodes nuclear intermediate filament proteins lamin A and lamin C ("lamin A/C"), important for tissue-specific signaling, metabolism and chromatin regulation. We hypothesized that wildtype lamin A/C associations with tissue-specific partners are perturbed by chronic inflammation, potentially contributing to dysfunction in frailty. To test this idea we immunoprecipitated native lamin A/C and associated proteins from skeletal muscle, hearts and brains of old (21-22 months) IL10-KO versus control C57Bl/6 female mice, and labeled with Tandem Mass Tags for identification and quantitation by mass spectrometry. We identified 502 candidate lamin-binding proteins from skeletal muscle, and 340 from heart, including 62 proteins identified in both tissues. Candidates included frailty phenotype-relevant proteins Perm1 and Fam210a, and nuclear membrane protein Tmem38a, required for muscle-specific genome organization. These and most other candidates were unaffected by IL10-KO, but still important as potential lamin A/C-binding proteins in native heart or muscle. A subset of candidates (21 in skeletal muscle, 30 in heart) showed significantly different lamin A/C-association in an IL10-KO tissue (p < 0.05), including AldoA and Gins3 affected in heart, and Lmcd1 and Fabp4 affected in skeletal muscle. To screen for binding, eleven candidates plus prelamin A and emerin controls were arrayed as synthetic 20-mer peptides (7-residue stagger) and incubated with recombinant purified lamin A "tail" residues 385-646 under relatively stringent conditions. We detected strong lamin A binding to peptides solvent exposed in Lmcd1, AldoA, Perm1, and Tmem38a, and plausible binding to Csrp3 (muscle LIM protein). These results validated both proteomes as sources for native lamin A/C-binding proteins in heart and muscle, identified four candidate genes for Emery-Dreifuss muscular dystrophy (CSRP3, LMCD1, ALDOA, and PERM1), support a lamin A-interactive molecular role for Tmem38A, and supported the hypothesis that lamin A/C interactions with at least two partners (AldoA in heart, transcription factor Lmcd1 in muscle) are altered in the IL10-KO model of frailty.
Collapse
Affiliation(s)
- Fatima D. Elzamzami
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arushi Samal
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adith S. Arun
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tejas Dharmaraj
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Neeti R. Prasad
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alex Rendon-Jonguitud
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeremy D. Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert N. Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine L. Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Xiao Z, Wei S, Huang J, Liu J, Liu J, Zhang B, Li W. Noncoding RNA-Associated Competing Endogenous RNA Networks in Doxorubicin-Induced Cardiotoxicity. DNA Cell Biol 2022; 41:657-670. [PMID: 35593913 DOI: 10.1089/dna.2022.0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence has indicated that noncoding RNAs (ncRNAs) are involved in doxorubicin-induced cardiotoxicity (DIC). However, the ncRNA-associated competing endogenous RNA (ceRNA)-mediated regulatory mechanisms in DIC remain unclear. In this study, we aimed to systematically investigate the alterations in expression levels of long noncoding RNA (lncRNA), circular RNA (circRNA), microRNA (miRNA), and mRNA in a DIC mouse model through deep RNA sequencing (RNA-seq). The results showed that 217 lncRNAs, 41 circRNAs, 11 miRNAs and 3633 mRNAs were aberrantly expressed. Moreover, the expression of 12 randomly selected transcripts was determined by real-time quantitative polymerase chain reaction to test the reliability of RNA-seq data. Based on the interaction between miRNAs and mRNAs, as well as lncRNAs/circRNAs and miRNAs, we constructed comprehensive lncRNA or circRNA-associated ceRNA networks in DIC mice. Moreover, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses for differentially expressed genes. In conclusion, these identified ceRNA interactions provide new insight into the underlying mechanism and may be crucial therapeutic targets of DIC.
Collapse
Affiliation(s)
- Zijun Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jie Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
8
|
Zhao J, Zhao Q, Mao S. N-myc downstream regulated gene 2 ameliorates myocardial remodeling and cardiac function in heart failure rats. Hum Exp Toxicol 2021; 40:1296-1307. [PMID: 33583230 DOI: 10.1177/0960327121993208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aims to explore the effect of NDRG2 (N-myc downstream regulated gene 2)-mediated Transforming growth factor-beta 1 (TGF-β1)/ Sma- and Mad-related protein (Smad) pathway in heart failure (HF) rats. HF rat models were established and treated with AdEGFP (adenovirus encoding enhanced green fluorescent protein) or AdNDRG2 (adenovirus encoding NDRG2). The echocardiography and hemodynamic parameters were detected, and the infarct size was calculated via 2,3,5-triphenyltetrazolium chloride (TTC) staining. Masson staining was performed to observe the collagen volume fraction (CVF), quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to detect the expression of Collagen I (Col-I) and Collagen III (Col-III), and Transferase (TdT)-mediated D-UTP-biotin nick end labeling (TUNEL) staining to evaluate the apoptosis. Rats in the Model group presented with the decreases in left ventricular ejection fraction (LVEF), left ventricular shortening fraction (LVFS), left ventricular systolic pressure (LVSP) and maximal/minimum rate of left ventricular pressure (±dp/dt max), and significant increases in left ventricular end-diastolic pressure (LVEDP) and CVF. At the meantime, the expression of Col-I and Col-III as well as the apoptotic rate of myocardial cells was also elevated with increased infarct size in the Model group. The Model rats also had the significant reduction in the expression of NDRG2 and up-regulations of TGF-β1, p-Smad2/Smad2, p-Smad3/Smad3 and tissue inhibitor of metalloproteinases-2 (TIMP-2). However, model rats treated with AdNDRG2 had evident amelioration in aforementioned indicators. In conclusion, NDRG2 reduces the apoptosis of myocardial cells and improves the heart function and myocardial remodeling in HF rats via inhibiting the activity of TGF-β1/Smad.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Critical Care Medicine, Yantai City Yantai Mountain Hospital, Yantai, Shandong, China
| | - Qin Zhao
- Medical Center, Weifang People's Hospital, Brain Hospital, Weifang, Shandong, China
| | - Shuai Mao
- Department of Cardiovascular Medicine, Affiliated Hospital of 372527Weifang Medical College, Weifang, Shandong, China
| |
Collapse
|
9
|
Zhou N, Chen X, Xi J, Ma B, Leimena C, Stoll S, Qin G, Wang C, Qiu H. Genomic characterization reveals novel mechanisms underlying the valosin-containing protein-mediated cardiac protection against heart failure. Redox Biol 2020; 36:101662. [PMID: 32795937 PMCID: PMC7426568 DOI: 10.1016/j.redox.2020.101662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic hypertension is a key risk factor for heart failure. However, the underlying molecular mechanisms are not fully understood. Our previous studies found that the valosin-containing protein (VCP), an ATPase-associated protein, was significantly decreased in the hypertensive heart tissues. In this study, we tested the hypothesis that restoration of VCP protected the heart against pressure overload-induced heart failure. With a cardiac-specific transgenic (TG) mouse model, we showed that a moderate increase of VCP was able to attenuate chronic pressure overload-induced maladaptive cardiac hypertrophy and dysfunction. RNA sequencing and a comprehensive bioinformatic analysis further demonstrated that overexpression of VCP in the heart normalized the pressure overload-stimulated hypertrophic signals and repressed the stress-induced inflammatory response. In addition, VCP overexpression promoted cell survival by enhancing the mitochondria resistance to the oxidative stress via activating the Rictor-mediated-gene networks. VCP was also found to be involved in the regulation of the alternative splicing and differential isoform expression for some genes that are related to ATP production and protein synthesis by interacting with long no-coding RNAs and histone deacetylases, indicating a novel epigenetic regulation of VCP in integrating coding and noncoding genomic network in the stressed heart. In summary, our study demonstrated that the rescuing of a deficient VCP in the heart could prevent pressure overload-induced heart failure by rectifying cardiac hypertrophic and inflammatory signaling and enhancing the cardiac resistance to oxidative stress, which brought in novel insights into the understanding of the mechanism of VCP in protecting patients from hypertensive heart failure. Deficiency of VCP contributes to the pathogenesis of hypertensive heart failure. Rescue of VCP prevents stress-induced cardiac remodeling and cell death. VCP attenuates stress-induced inflammatory and hypertrophic signaling. VCP promotes cardiac resistance to oxidative stress. VCP mediates a novel epigenetic integrating regulation in the stressed heart.
Collapse
Affiliation(s)
- Ning Zhou
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xin Chen
- Center for Genomics & Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jing Xi
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Ben Ma
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA
| | - Christiana Leimena
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Charles Wang
- Center for Genomics & Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
10
|
Wozniak JM, Silva TA, Thomas D, Siqueira-Neto JL, McKerrow JH, Gonzalez DJ, Calvet CM. Molecular dissection of Chagas induced cardiomyopathy reveals central disease associated and druggable signaling pathways. PLoS Negl Trop Dis 2020; 14:e0007980. [PMID: 32433643 PMCID: PMC7279607 DOI: 10.1371/journal.pntd.0007980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/08/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Chagas disease, the clinical presentation of T. cruzi infection, is a major human health concern. While the acute phase of Chagas disease is typically asymptomatic and self-resolving, chronically infected individuals suffer numerous sequelae later in life. Cardiomyopathies in particular are the most severe consequence of chronic Chagas disease and cannot be reversed solely by parasite load reduction. To prioritize new therapeutic targets, we unbiasedly interrogated the host signaling events in heart tissues isolated from a Chagas disease mouse model using quantitative, multiplexed proteomics. We defined the host response to infection at both the proteome and phospho-proteome levels. The proteome showed an increase in the immune response and a strong repression of several mitochondrial proteins. Complementing the proteome studies, the phospho-proteomic survey found an abundance of phospho-site alterations in plasma membrane and cytoskeletal proteins. Bioinformatic analysis of kinase activity provided substantial evidence for the activation of NDRG2 and JNK/p38 kinases during Chagas disease. A significant activation of DYRK2 and AMPKA2 and the inhibition of casein family kinases were also predicted. We concluded our analyses by linking the diseased heart proteome profile to known therapeutic interventions, uncovering a potential to target mitochondrial proteins, secreted immune effectors and core kinases for the treatment of chronic Chagas disease. Together, this study provides molecular insight into host proteome and phospho-proteome responses to T. cruzi infection in the heart for the first time, highlighting pathways that can be further validated for functional contributions to disease and suitability as drug targets.
Collapse
Affiliation(s)
- Jacob M. Wozniak
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
| | - Tatiana Araújo Silva
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - David J. Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
- * E-mail: (DJG); (CMC)
| | - Claudia M. Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
- * E-mail: (DJG); (CMC)
| |
Collapse
|
11
|
Neuroprotective Influence of miR-301a Inhibition in Experimental Cerebral Ischemia/Reperfusion Rat Models Through Targeting NDRG2. J Mol Neurosci 2019; 68:144-152. [PMID: 30895440 DOI: 10.1007/s12031-019-01293-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/07/2019] [Indexed: 12/27/2022]
Abstract
The objective of this study is to find out the potential influence of miR-301a in an experimental cerebral ischemia-reperfusion (I/R) rat model through targeting NDRG2. Rats with cerebral I/R injury were constructed and classified into model, miR-301a inhibitor, miR-301a mimic, NC (negative control), siNDRG2, NDRG2, and miR-301a inhibitor + si-NDRG2 groups, as well as another sham group. Cerebral infarct volume and cell apoptosis were observed by TTC staining and TUNEL staining. The targeting relationship between miR-301a and NDRG2 was verified by luciferase assay. ELISA, qRT-PCR, and Western blot were used to detect the expressions of related molecules. Compared with sham group, rats in the model group had elevated neurological function score and infarct volume; meanwhile, the cell apoptosis rate and inflammatory response were also increased with enhanced expression of miR-301a and NDRG2 (all P < 0.05). These changes were worsened in the miR-301a mimic and si-NDRG2 groups. Conversely, those rats in the miR-301a inhibitor and NDRG2 groups presented increased NDRG2, and at the same time, other above concerning factors also exhibited opposite tendencies (all P < 0.05). Dual-luciferase reporter gene assay confirmed that NDRG2 was a target gene of miR-301a, and si-NDRG2 could reverse the neuroprotective effect of miR-301a inhibitor in rats with cerebral I/R injury. Inhibiting miR-301a has a neuroprotective effect on rats with cerebral I/R injury to ameliorate cell apoptosis and inflammatory response through possibly targeting NDRG2.
Collapse
|
12
|
Wen L, Liu L, Li J, Tong L, Zhang K, Zhang Q, Li C. NDRG4 protects against cerebral ischemia injury by inhibiting p53-mediated apoptosis. Brain Res Bull 2019; 146:104-111. [DOI: 10.1016/j.brainresbull.2018.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
|
13
|
Knecht C, Balaban CL, Rodríguez JV, Ceccarelli EA, Guibert EE, Rosano GL. Proteome variation of the rat liver after static cold storage assayed in an ex vivo model. Cryobiology 2018; 85:47-55. [PMID: 30296410 DOI: 10.1016/j.cryobiol.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/28/2022]
Abstract
Cold storage is a common procedure for liver preservation in a transplant setting. However, during cold ischemia, the liver suffers molecular alterations that can affect its performance. Also, deleterious mechanisms set forth in the storage phase are exacerbated during reperfusion. This study aimed to identify liver proteins associated with injury during cold storage and/or normothermic reperfusion using the isolated perfused rat liver model. Livers from male rats were subjected to either (1) cold storage for 24 h, (2) ex vivo normothermic reperfusion for 90 min or (3) cold storage for 24 h followed by ex vivo normothermic reperfusion for 90 min. Then, the livers were homogenized and proteins were extracted. Protein expression between each experimental group and the control (freshly resected livers) was compared by two-dimensional (2D) gel electrophoresis. Protein identification was carried out by matrix-assisted laser desorption/ionization time-of-flight spectrometry (MALDI-TOF/TOF) using MASCOT as the search engine. 23 proteins were detected with significantly altered levels of expression among the different treatments, including molecular chaperones, antioxidant enzymes, and proteins involved in energy metabolism. Some of them have been postulated as biomarkers for liver damage while others had been identified in other organs subjected to ischemia and reperfusion injury. The whole data set will be a useful resource for studying deleterious molecular mechanisms that result in diminished liver function during storage and subsequent reperfusion.
Collapse
Affiliation(s)
- Camila Knecht
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina; Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Cecilia L Balaban
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina; Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Joaquín V Rodríguez
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Eduardo A Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Edgardo E Guibert
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Germán L Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| |
Collapse
|
14
|
Zhang M, Liu X, Wang Q, Ru Y, Xiong X, Wu K, Yao L, Li X. NDRG2 acts as a PERK co-factor to facilitate PERK branch and ERS-induced cell death. FEBS Lett 2017; 591:3670-3681. [DOI: 10.1002/1873-3468.12861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Xiping Liu
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
- Department of Biochemistry and Molecular Biology; Zunyi Medical College; China
| | - Qinhao Wang
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Yi Ru
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Xin Xiong
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology; Department of Gastroenterology; Xijing Hospital; The Fourth Military Medical University; Xi'an China
| | - Libo Yao
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Xia Li
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| |
Collapse
|
15
|
Hu J, Zhang L, Zhao Z, Zhang M, Lin J, Wang J, Yu W, Man W, Li C, Zhang R, Gao E, Wang H, Sun D. OSM mitigates post-infarction cardiac remodeling and dysfunction by up-regulating autophagy through Mst1 suppression. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1951-1961. [PMID: 27825852 DOI: 10.1016/j.bbadis.2016.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/17/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
The incidence and prevalence of heart failure (HF) in the world are rapidly rising possibly attributed to the worsened HF following myocardial infarction (MI) in recent years. Here we examined the effects of oncostatin M (OSM) on postinfarction cardiac remodeling and the underlying mechanisms involved. MI model was induced using left anterior descending coronary artery (LAD) ligation. In addition, cultured neonatal mouse cardiomyocytes were subjected to simulated MI. Our results revealed that OSM alleviated left ventricular remodeling, promoted cardiac function, restored mitochondrial cristae density and architecture disorders after 4weeks of MI. Enhanced autophagic flux was indicated in cardiomyocytes transduced with Ad-GFP -LC3 in the OSM treated group as compared with the MI group. OSM receptor Oβ knockout blocked the beneficial effects of OSM in postinfarction cardiac remodeling and cardiomyocytes autophagy. OSM pretreatment significantly alleviated left ventricular remodeling and dysfunction in Mst1 transgenic mice, while it failed to reverse further the postinfarction left ventricular dilatation and cardiac function in the Mst1 knockout mice. Our data revealed that OSM alleviated postinfarction cardiac remodeling and dysfunction by enhancing cardiomyocyte autophagy. OSM holds promise as a therapeutic target in treating HF after MI through Oβ receptor by inhibiting Mst1 phosphorylation.
Collapse
Affiliation(s)
- Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhijing Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiaxing Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjun Yu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wanrong Man
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Rongqing Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Dongdong Sun
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
16
|
Lindholm ME, Giacomello S, Werne Solnestam B, Fischer H, Huss M, Kjellqvist S, Sundberg CJ. The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts. PLoS Genet 2016; 12:e1006294. [PMID: 27657503 PMCID: PMC5033478 DOI: 10.1371/journal.pgen.1006294] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023] Open
Abstract
Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity. Skeletal muscle is the most abundant tissue of the healthy human body. It is also highly adaptable to different environmental stimuli, e.g. regular exercise. Exercise training improves overall health and muscle function, and can be used to prevent and treat several common diseases e.g. cardiovascular disease and type II diabetes. Therefore, it is of great importance to understand the molecular mechanisms behind adaptation processes in human skeletal muscle. In this study, we show that different expression variants from the same gene can be regulated in different directions with training, implicating alternative protein functions from one single gene. Such findings are emblematic of the complex mechanisms regulating the effects of training. We also find that training changes the activity of functionally unknown parts of the genome, with the potential for new proteins involved in the health-enhancing effects of exercise. Additionally, our results challenge the belief of a skeletal muscle memory, where previous training can affect the response to a subsequent training period. Overall, we provide understanding of the skeletal muscle biology and novel insights into the mechanisms behind the massive benefits of regular exercise on the human skeletal muscle transcriptome, inspiring further studies for deeper investigation.
Collapse
Affiliation(s)
- Maléne E Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MEL); (CJS)
| | - Stefania Giacomello
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Beata Werne Solnestam
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Helene Fischer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Huss
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Sanela Kjellqvist
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MEL); (CJS)
| |
Collapse
|
17
|
Li J, Ren Y, Shi E, Tan Z, Xiong J, Yan L, Jiang X. Inhibition of the Let-7 Family MicroRNAs Induces Cardioprotection Against Ischemia-Reperfusion Injury in Diabetic Rats. Ann Thorac Surg 2016; 102:829-835. [PMID: 27217295 DOI: 10.1016/j.athoracsur.2016.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/27/2015] [Accepted: 02/08/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND The expression of the let-7 family microRNAs in the myocardium of streptozotocin-induced diabetic rats was measured, and the cardioprotection of inhibition of let-7 microRNAs against ischemia-reperfusion injury was investigated. METHODS The diabetic rats and nondiabetic rats were subjected to 30 minutes of coronary artery occlusion followed by 120 minutes of reperfusion. The infarct size was determined by triphenyltetrazolium chloride staining. The expression of let-7 was measured by quantitative real-time polymerase chain reaction, and expressions of insulin receptor (InsR), insulin-like growth factor-1 receptor (IGF-1R), glucose transporter type 4 (GLUT4), and the phosphorylation states of Akt and the mammalian target of rapamycin (mTOR) were analyzed using Western blot. Inhibition of let-7 was performed by local transfection of lentivirus gene transfer vectors containing let-7 antimiR. RESULTS Compared with nondiabetic rats, the expression of let-7 was enhanced in the myocardium of diabetic rats (p = 0.029), whereas expressions of InsR, IGF-1R, and GLUT4 were decreased after ischemia-reperfusion (p < 0.01). Local transfection of the let-7 antimiR markedly inhibited the expression of let-7 (p = 0.038) and improved expressions of InsR, IGF-1R, and GLUT4 in the myocardium of diabetic rats (p < 0.01). The infarct size of diabetic rats was much higher than that of nondiabetic rats (p < 0.0001). Transfection of the let-7 antimiR significantly reduced the infarct size of diabetic rats (p < 0.0001), and such an antiinfarct effect was abolished completely by pretreatment of Akt inhibitor LY294002 or mTOR inhibitor rapamycin. CONCLUSIONS Inhibition of the let-7 family microRNAs improves glucose uptake and insulin resistance in the diabetic myocardium and induces cardioprotection against ischemia-reperfusion injury through Akt and mTOR pathways.
Collapse
Affiliation(s)
- Juchen Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, China; Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yixing Ren
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Enyi Shi
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Zhibin Tan
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jian Xiong
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Lihui Yan
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaojing Jiang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Machhada A, Marina N, Korsak A, Stuckey DJ, Lythgoe MF, Gourine AV. Origins of the vagal drive controlling left ventricular contractility. J Physiol 2016; 594:4017-30. [PMID: 26940639 PMCID: PMC4945717 DOI: 10.1113/jp270984] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 03/01/2016] [Indexed: 01/22/2023] Open
Abstract
Key points The strength, functional significance and origins of parasympathetic innervation of the left ventricle remain controversial. This study tested the hypothesis that parasympathetic control of left ventricular contractility is provided by vagal preganglionic neurones of the dorsal motor nucleus (DVMN). Under β‐adrenoceptor blockade combined with spinal cord (C1) transection (to remove sympathetic influences), systemic administration of atropine increased left ventricular contractility in rats anaesthetized with urethane, confirming the existence of a tonic inhibitory muscarinic influence on cardiac inotropy. Increased left ventricular contractility in anaesthetized rats was observed when DVMN neurones were silenced. Functional neuroanatomical mapping revealed that vagal preganglionic neurones that have an impact on left ventricular contractility are located in the caudal region of the left DVMN. These neurones provide functionally significant parasympathetic control of left ventricular inotropy.
Abstract The strength, functional significance and origins of direct parasympathetic innervation of the left ventricle (LV) remain controversial. In the present study we used an anaesthetized rat model to first confirm the presence of tonic inhibitory vagal influence on LV inotropy. Using genetic neuronal targeting and functional neuroanatomical mapping we tested the hypothesis that parasympathetic control of LV contractility is provided by vagal preganglionic neurones located in the dorsal motor nucleus (DVMN). It was found that under systemic β‐adrenoceptor blockade (atenolol) combined with spinal cord (C1) transection (to remove sympathetic influences), intravenous administration of atropine increases LV contractility in rats anaesthetized with urethane, but not in animals anaesthetized with pentobarbital. Increased LV contractility in rats anaesthetized with urethane was also observed when DVMN neurones targeted bilaterally to express an inhibitory Drosophila allatostatin receptor were silenced by application of an insect peptide allatostatin. Microinjections of glutamate and muscimol to activate or inhibit neuronal cell bodies in distinct locations along the rostro‐caudal extent of the left and right DVMN revealed that vagal preganglionic neurones, which have an impact on LV contractility, are located in the caudal region of the left DVMN. Changes in LV contractility were only observed when this subpopulation of DVMN neurones was activated or inhibited. These data confirm the existence of a tonic inhibitory muscarinic influence on LV contractility. Activity of a subpopulation of DVMN neurones provides functionally significant parasympathetic control of LV contractile function. The strength, functional significance and origins of parasympathetic innervation of the left ventricle remain controversial. This study tested the hypothesis that parasympathetic control of left ventricular contractility is provided by vagal preganglionic neurones of the dorsal motor nucleus (DVMN). Under β‐adrenoceptor blockade combined with spinal cord (C1) transection (to remove sympathetic influences), systemic administration of atropine increased left ventricular contractility in rats anaesthetized with urethane, confirming the existence of a tonic inhibitory muscarinic influence on cardiac inotropy. Increased left ventricular contractility in anaesthetized rats was observed when DVMN neurones were silenced. Functional neuroanatomical mapping revealed that vagal preganglionic neurones that have an impact on left ventricular contractility are located in the caudal region of the left DVMN. These neurones provide functionally significant parasympathetic control of left ventricular inotropy.
Collapse
Affiliation(s)
- Asif Machhada
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK.,UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Daniel J Stuckey
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
19
|
Xing Y, Tang B, Zhu C, Li W, Li Z, Zhao J, Gong WD, Wu ZQ, Zhu CC, Zhang YQ. N-myc downstream-regulated gene 4, up-regulated by tumor necrosis factor-α and nuclear factor kappa B, aggravates cardiac ischemia/reperfusion injury by inhibiting reperfusion injury salvage kinase pathway. Basic Res Cardiol 2016; 111:11. [PMID: 26780215 DOI: 10.1007/s00395-015-0519-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/08/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022]
Abstract
N-myc downstream-regulated gene 4 (NDRG4) is expressed weakly in heart and has been reported to modulate cardiac development and QT interval duration, but the role of NDRG4 in myocardial ischemia/reperfusion (I/R) injury remains unknown. In the present study, we analyzed the expression as well as potential function of cardiac NDRG4 and investigated how NDRG4 expression is regulated by inflammation. We found that NDRG4 was weakly expressed in cardiomyocytes and that its expression increased significantly both in I/R injured heart and in hypoxia-reoxygenation (H/R) injured neonatal rat ventricular myocytes (NRVMs). The increased NDRG4 expression aggravated myocardial I/R injury by inhibiting the activation of the reperfusion injury salvage kinase (RISK) pathway. Forced over-expression of NDRG4 inhibited RISK activation and exacerbated injury not only in I/R injured heart, but also in H/R treated NRVMs, whereas short hairpin RNA (shRNA)-mediated knock-down of NDRG4 enhanced RISK activation and attenuated injury. Upon injury, myocardial NDRG4 expression was induced by tumor necrosis factor-α (TNF-α) through nuclear factor kappa B (NF-κB), and we found that pre-treatment with inhibitors of either TNF-α or NF-κB blocked NDRG4 expression as well as I/R injury in vivo and H/R injury in vitro. Our study indicates that up-regulation of NDRG4 aggravates myocardial I/R injury by inhibiting activation of the RISK pathway, thereby identifying NDRG4 as a potential therapeutic target in I/R injury.
Collapse
Affiliation(s)
- Yuan Xing
- Department of Physiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Tang
- Department of International Medical, China-Japan Frindship Hospital, Beijing, 100029, China
| | - Chao Zhu
- Institute of Orthopaedics, Xi'jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Li
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen Li
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jie Zhao
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei-dong Gong
- Department of Interventional Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zhi-qun Wu
- Department of Interventional Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Chu-chao Zhu
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yuan-qiang Zhang
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
20
|
Hu W, Fan C, Jiang P, Ma Z, Yan X, Di S, Jiang S, Li T, Cheng Y, Yang Y. Emerging role of N-myc downstream-regulated gene 2 (NDRG2) in cancer. Oncotarget 2016; 7:209-223. [PMID: 26506239 PMCID: PMC4807993 DOI: 10.18632/oncotarget.6228] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor and cell stress-related gene. NDRG2 is associated with tumor incidence, progression, and metastasis. NDRG2 regulates tumor-associated genes and is regulated by multiple conditions, treatments, and protein/RNA entities, including hyperthermia, trichostatin A and 5-aza-2'-deoxycytidine, which are promising potential cancer therapeutics. In this review, we discuss the expression as well as the clinical and pathological significance of NDRG2 in cancer. The pathological processes and molecular pathways regulated by NDRG2 are also summarized. Moreover, mechanisms for increasing NDRG2 expression in tumors and the potential directions of future NDRG2 research are discussed. The information reviewed here should assist in experimental design and increase the potential of NDRG2 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Peng Jiang
- Department of Orthopaedics, The 82th Hospital of PLA, Huaian, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Yedong Cheng
- Department of Orthopaedics, The 82th Hospital of PLA, Huaian, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Wei C, Qiu J, Zhou Y, Xue Y, Hu J, Ouyang K, Banerjee I, Zhang C, Chen B, Li H, Chen J, Song LS, Fu XD. Repression of the Central Splicing Regulator RBFox2 Is Functionally Linked to Pressure Overload-Induced Heart Failure. Cell Rep 2015; 10:1521-1533. [PMID: 25753418 DOI: 10.1016/j.celrep.2015.02.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/02/2014] [Accepted: 01/31/2015] [Indexed: 12/21/2022] Open
Abstract
Heart failure is characterized by the transition from an initial compensatory response to decompensation, which can be partially mimicked by transverse aortic constriction (TAC) in rodent models. Numerous signaling molecules have been shown to be part of the compensatory program, but relatively little is known about the transition to decompensation that leads to heart failure. Here, we show that TAC potently decreases the RBFox2 protein in the mouse heart, and cardiac ablation of this critical splicing regulator generates many phenotypes resembling those associated with decompensation in the failing heart. Global analysis reveals that RBFox2 regulates splicing of many genes implicated in heart function and disease. A subset of these genes undergoes developmental regulation during postnatal heart remodeling, which is reversed in TAC-treated and RBFox2 knockout mice. These findings suggest that RBFox2 may be a critical stress sensor during pressure overload-induced heart failure.
Collapse
Affiliation(s)
- Chaoliang Wei
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Yuanchao Xue
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jing Hu
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Kunfu Ouyang
- Department of Medicine University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Indroneal Banerjee
- Department of Medicine University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Caimei Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Hairi Li
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Ju Chen
- Department of Medicine University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA 92093-0651, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA.
| |
Collapse
|
22
|
Sun Z, Tong G, Kim TH, Ma N, Niu G, Cao F, Chen X. PEGylated exendin-4, a modified GLP-1 analog exhibits more potent cardioprotection than its unmodified parent molecule on a dose to dose basis in a murine model of myocardial infarction. Am J Cancer Res 2015; 5:240-50. [PMID: 25553112 PMCID: PMC4279188 DOI: 10.7150/thno.10226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/14/2014] [Indexed: 01/22/2023] Open
Abstract
A Site-specifically PEGylated exendin-4 (denoted as PEG-Ex4) is an exendin-4 (denoted as Ex4) analog we developed by site-specific PEGylation of exendin-4 with a high molecular weight trimeric poly(ethylene glycol) (tPEG). It has been shown to possess prolonged half-life in vivo with similar receptor binding affinity compared to unmodified exendin-4 by our previous work. This study is sought to test whether PEG-Ex4 is suitable for treating myocardial infarction (MI). In the MI model, PEG-Ex4 was administered every 3 days while equivalent amount of Ex4 was administered every 3 days or twice daily. Animal survival rate, heart function, remodeling and neoangiogenesis were evaluated and compared. Tube formation was examined in endothelial cells. In addition, Western blotting and histology were performed to determine the markers of cardiac hypertrophy and angiogenesis and to explore the possible molecular mechanism involved. PEG-Ex4 and Ex4 showed comparable binding affinity to GLP-1 receptor. In MI mice, PEG-Ex4 given at 3 days interval achieved similar extent of protection as Ex4 given twice daily, while Ex4 given at 3 days interval failed to produce protection. PEG-Ex4 elevated endothelial tube formation in vitro and capillary density in the border area of MI. PEG-Ex4 increased Akt activity and VEGF production in a GLP-1R dependent manner in endothelial cells and antagonism of GLP-1R, Akt or VEGF abolished the protection of PEG-Ex4 in the MI model. PEG-Ex4 is a potent long-acting GLP-1 receptor agonist for the treatment of chronic heart disease. Its protection might be attributed to enhanced angiogenesis mediated by the activation of Akt and VEGF.
Collapse
|
23
|
Yao H, Han X, Han X. The cardioprotection of the insulin-mediated PI3K/Akt/mTOR signaling pathway. Am J Cardiovasc Drugs 2014; 14:433-42. [PMID: 25160498 DOI: 10.1007/s40256-014-0089-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis occurs frequently in myocardial infarction, oxidative stress injury, and ischemia/reperfusion injury, and plays a pivotal role in the development of heart diseases. Inhibition of apoptosis alone does not necessarily lead to meaningful rescue in terms of either cardiomyocyte survival or function. Activation of the PI3K/Akt signaling pathway induced by insulin not only inhibits cardiomyocyte apoptosis but also substantially preserves and even improves regional and overall cardiac function. Insulin can protect cardiomyocytes from apoptosis by regulating a number of signaling molecules, such as eNOS, FOXOs, Bad, GSK-3β, mTOR, NDRG2, and Nrf2, through activating PI3K and Akt. This review focuses on the protective mechanisms and targets of insulin identified in the prevention and treatment of myocardial injury.
Collapse
|
24
|
Inhibition of N-myc Downstream–regulated Gene-2 Is Involved in an Astrocyte-specific Neuroprotection Induced by Sevoflurane Preconditioning. Anesthesiology 2014; 121:549-62. [PMID: 24866406 DOI: 10.1097/aln.0000000000000314] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Background:
Mechanism of sevoflurane preconditioning–induced cerebral ischemic tolerance is unclear. This study investigates the role of N-myc downstream–regulated gene-2 (NDRG2) in the neuroprotection of sevoflurane preconditioning in ischemic model both in vivo and in vitro.
Methods:
At 2 h after sevoflurane (2%) preconditioning for 1 h, rats were subjected to middle cerebral artery occlusion for 120 min. Neurobehavioral scores (n = 10), infarct volumes (n = 10), cellular apoptosis (n = 6), and NDRG2 expression (n = 6) were determined at 24 h after reperfusion. In vitro, cultural astrocytes were exposed to oxygen–glucose deprivation for 4 h. Cellular viability, cytotoxicity, apoptosis, and NDRG2 expression (n = 6) were evaluated in the presence or absence of NDRG2-specific small interfering RNA or NDRG2 overexpression plasmid.
Results:
Sevoflurane preconditioning decreased apoptosis (terminal deoxynucleotidyl transferase–mediated 2’-deoxyuridine 5’-triphosphate nick-end labeling–positive cells reduced to 31.2 ± 5.3% and cleaved Caspase-3 reduced to 1.42 ± 0.21 fold) and inhibited NDRG2 expression (1.28 ± 0.15 fold) and nuclear translocation (2.21 ± 0.29 fold) in ischemic penumbra. Similar effects were observed in cultural astrocytes exposed to oxygen–glucose deprivation. NDRG2 knockdown by small interfering RNA attenuated oxygen–glucose deprivation–induced injury (cell viability increased to 80.5 ± 4.1%; lactate dehydrogenase release reduced to 30.5 ± 4.0%) and cellular apoptosis (cleaved Caspase-3 reduced to 1.55 ± 0.21 fold; terminal deoxynucleotidyl transferase–mediated 2’-deoxyuridine 5’-triphosphate nick-end labeling–positive cells reduced to 18.2 ± 4.3%), whereas NDRG2 overexpression reversed the protective effects of sevoflurane preconditioning. All the data are presented as mean ± SD.
Conclusion:
Sevoflurane preconditioning inhibits NDRG2 up-regulation and nuclear translocation in astrocytes to induce cerebral ischemic tolerance via antiapoptosis, which represents one new mechanism of sevoflurane preconditioning and provides a novel target for neuroprotection.
Collapse
|
25
|
Ma J, Liu W, Guo H, Li S, Cao W, Du X, Lei S, Hou W, Xiong L, Yao L, Li N, Li Y. N-myc downstream-regulated gene 2 expression is associated with glucose transport and correlated with prognosis in breast carcinoma. Breast Cancer Res 2014; 16:R27. [PMID: 24636131 PMCID: PMC4053222 DOI: 10.1186/bcr3628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 03/11/2014] [Indexed: 01/01/2023] Open
Abstract
Introduction N-myc downstream-regulated gene 2 (NDRG2), a novel tumour suppressor and cell stress-related gene, is involved in many cell metabolic processes, such as hormone, ion and fluid metabolism. We investigated whether NDRG2 is involved in any glucose-dependent energy metabolism, as well as the nature of its correlation with breast carcinoma. Methods The correlations between NDRG2 expression and glucose transporter 1 (GLUT1) expression in clinical breast carcinoma tissues were analysed. The effects of NDRG2 on glucose uptake were assessed in breast cancer cells and xenograft tumours. The consequences of NDRG2-induced regulation of GLUT1 at the transcription and translation levels and the interaction between NDRG2 and GLUT1 were examined. Results Data derived from clinical breast carcinoma specimens revealed that (1) patients with high NDRG2 expression had better disease-free survival and overall survival than those with low NDRG2 expression and (2) NDRG2 expression was negatively correlated with GLUT1 expression in these breast carcinoma tissues. NDRG2 inhibited glucose uptake by promoting GLUT1 protein degradation without affecting GLUT1 transcription in both breast cancer cells and xenograft tumours. In addition, NDRG2 protein interacted and partly colocalised with GLUT1 protein in cell cytoplasm areas. Conclusions The results of our study support the notion that NDRG2 plays an important role in tumour glucose metabolism, in which GLUT1 is a likely candidate contributor to glucose uptake suppression and tumour growth. Targeting the actions of NDRG2 in cell glucose-dependent energy delivery may provide an attractive strategy for therapeutic intervention in human breast carcinoma.
Collapse
|
26
|
Fan W, Zhang J, Zhang Z, Wang Q, Cao F. Adaptive inflammatory microenvironment for cell-based regeneration in ischemic cardiovascular disease. Organogenesis 2013; 9:121-4. [PMID: 23974172 DOI: 10.4161/org.25586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell-based therapy has emerged to be a promising strategy for alleviating the heavy burden of ischemic cardiovascular disease for nearly two decades, despite a variety of pending questions about its availability and efficacy. One question is whether and how the cells behave for regeneration in vivo, which could be limited or potentiated by the inflammatory microenvironment following myocardial infarction or critical limb ischemia. To this end, we hypothesize that the "adaptive inflammatory microenvironment" is pertinent to the cell-based regeneration, and make a brief comment on it based upon recent evidence.
Collapse
Affiliation(s)
- Weiwei Fan
- Department of Cardiology & Molecular Imaging Program; Xijing Hospital; Fourth Military Medical University; Xi'an, PR China
| | | | | | | | | |
Collapse
|