1
|
Luo Y, Ma W, Kang Q, Pan H, Shi L, Ma J, Song J, Gong D, Kang K, Jin X. Atrial APD prolongation caused by the upregulation of RAGE and subsequent I NaL increase in diabetic patients. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40109091 DOI: 10.3724/abbs.2025018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Diabetes mellitus (DM) is a risk factor for the development of atrial fibrillation (AF). The action potential duration (APD) has been demonstrated to be prolonged in the atrium of diabetic mice. In contrast, the APD is generally shortened in AF patients. It is unclear what change occurs in the atrial APD of diabetic patients. In this study, we explore the APD change of atrial myocytes from diabetic patients and the underlying molecular mechanisms. The whole-cell patch-clamp technique is used to detect single-cell electrical activity in diabetic and nondiabetic human samples. The results show that both APD 50 and APD 90, the APD at 50% and 90% repolarization, are increased in diabetic patients compared with those in nondiabetic controls. The density of late sodium current ( I NaL) in the atrial myocytes of diabetic patients is greater than that in the myocytes of nondiabetic patients. The expression of receptor for advanced glycation end products (RAGE) is increased in the atria of diabetic patients. In cultured HL-1 cells, high glucose (HG) treatment increases I NaL, and the expression of RAGE prolongs APD. The siRNA-mediated knockdown of RAGE reduces the I NaL and shortens the APD. The APD is prolonged in the atria of diabetic patients because of the upregulation of RAGE and the subsequent increase in I NaL. Our findings provide novel insights into atrial electrical remodeling in diabetic patients.
Collapse
Affiliation(s)
- Yingchun Luo
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wenbo Ma
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Qi Kang
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Han Pan
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ling Shi
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jiudong Ma
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiahui Song
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Dongmei Gong
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xuexin Jin
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| |
Collapse
|
2
|
Hartmann N, Knierim M, Maurer W, Dybkova N, Zeman F, Hasenfuß G, Sossalla S, Streckfuss-Bömeke K. Na V1.8 as Proarrhythmic Target in a Ventricular Cardiac Stem Cell Model. Int J Mol Sci 2024; 25:6144. [PMID: 38892333 PMCID: PMC11172914 DOI: 10.3390/ijms25116144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The sodium channel NaV1.8, encoded by the SCN10A gene, has recently emerged as a potential regulator of cardiac electrophysiology. We have previously shown that NaV1.8 contributes to arrhythmogenesis by inducing a persistent Na+ current (late Na+ current, INaL) in human atrial and ventricular cardiomyocytes (CM). We now aim to further investigate the contribution of NaV1.8 to human ventricular arrhythmogenesis at the CM-specific level using pharmacological inhibition as well as a genetic knockout (KO) of SCN10A in induced pluripotent stem cell CM (iPSC-CM). In functional voltage-clamp experiments, we demonstrate that INaL was significantly reduced in ventricular SCN10A-KO iPSC-CM and in control CM after a specific pharmacological inhibition of NaV1.8. In contrast, we did not find any effects on ventricular APD90. The frequency of spontaneous sarcoplasmic reticulum Ca2+ sparks and waves were reduced in SCN10A-KO iPSC-CM and control cells following the pharmacological inhibition of NaV1.8. We further analyzed potential triggers of arrhythmias and found reduced delayed afterdepolarizations (DAD) in SCN10A-KO iPSC-CM and after the specific inhibition of NaV1.8 in control cells. In conclusion, we show that NaV1.8-induced INaL primarily impacts arrhythmogenesis at a subcellular level, with minimal effects on systolic cellular Ca2+ release. The inhibition or knockout of NaV1.8 diminishes proarrhythmic triggers in ventricular CM. In conjunction with our previously published results, this work confirms NaV1.8 as a proarrhythmic target that may be useful in an anti-arrhythmic therapeutic strategy.
Collapse
Affiliation(s)
- Nico Hartmann
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Maria Knierim
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
- Clinic for Cardio-Thoracic and Vascular Surgery, University Medical Center, 37075 Göttingen, Germany
| | - Wiebke Maurer
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Nataliya Dybkova
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Florian Zeman
- Center for Clinicial Trials, University of Regensburg, 93042 Regensburg, Germany
| | - Gerd Hasenfuß
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Samuel Sossalla
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
- Medical Clinic I, Cardiology and Angiology, Giessen and Department of Cardiology at Kerckhoff Heart and Lung Center, Justus-Liebig-University, 61231 Bad Nauheim, Germany
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
3
|
de Lima Conceição MR, Teixeira-Fonseca JL, Marques LP, Souza DS, da Silva Alcântara F, Orts DJB, Roman-Campos D. Extracellular acidification reveals the antiarrhythmic properties of amiodarone related to late sodium current-induced atrial arrhythmia. Pharmacol Rep 2024; 76:585-599. [PMID: 38619735 DOI: 10.1007/s43440-024-00597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Amiodarone (AMIO) is an antiarrhythmic drug with the pKa in the physiological range. Here, we explored how mild extracellular pH (pHe) changes shape the interaction of AMIO with atrial tissue and impact its pharmacological properties in the classical model of sea anemone sodium channel neurotoxin type 2 (ATX) induced late sodium current (INa-Late) and arrhythmias. METHOD Isolated atrial cardiomyocytes from male Wistar rats and human embryonic kidney cells expressing SCN5A Na+ channels were used for patch-clamp experiments. Isolated right atria (RA) and left atria (LA) tissue were used for bath organ experiments. RESULTS A more acidophilic pHe caused negative inotropic effects on isolated RA and LA atrial tissue, without modification of the pharmacological properties of AMIO. A pHe of 7.0 changed the sodium current (INa) related components of the action potential (AP), which was enhanced in the presence of AMIO. ATXinduced arrhythmias in isolated RA and LA. Also, ATX prolonged the AP duration and enhanced repolarization dispersion in isolated cardiomyocytes in both pHe 7.4 and pHe 7.0. Pre-incubation of the isolated RA and LA and isolated atrial cardiomyocytes with AMIO prevented arrhythmias induced by ATX only at a pHe of 7.0. Moreover, AMIO was able to block INa-Late induced by ATX only at a pHe of 7.0. CONCLUSION The pharmacological properties of AMIO concerning healthy rat atrial tissue are not dependent on pHe. However, the prevention of arrhythmias induced by INa-Late is pHe-dependent. The development of drugs analogous to AMIO with charge stabilization may help to create more effective drugs to treat arrhythmias related to the INa-Late.
Collapse
Affiliation(s)
- Michael Ramon de Lima Conceição
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Jorge Lucas Teixeira-Fonseca
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Leisiane Pereira Marques
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Diego Santos Souza
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Fabiana da Silva Alcântara
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Diego Jose Belato Orts
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Danilo Roman-Campos
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil.
| |
Collapse
|
4
|
Djamgoz MBA. Ranolazine: a potential anti-metastatic drug targeting voltage-gated sodium channels. Br J Cancer 2024; 130:1415-1419. [PMID: 38424164 PMCID: PMC11058819 DOI: 10.1038/s41416-024-02622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Multi-faceted evidence from a range of cancers suggests strongly that de novo expression of voltage-gated sodium channels (VGSCs) plays a significant role in driving cancer cell invasiveness. Under hypoxic conditions, common to growing tumours, VGSCs develop a persistent current (INaP) which can be blocked selectively by ranolazine. METHODS Several different carcinomas were examined. We used data from a range of experimental approaches relating to cellular invasiveness and metastasis. These were supplemented by survival data mined from cancer patients. RESULTS In vitro, ranolazine inhibited invasiveness of cancer cells especially under hypoxia. In vivo, ranolazine suppressed the metastatic abilities of breast and prostate cancers and melanoma. These data were supported by a major retrospective epidemiological study on breast, colon and prostate cancer patients. This showed that risk of dying from cancer was reduced by ca.60% among those taking ranolazine, even if this started 4 years after the diagnosis. Ranolazine was also shown to reduce the adverse effects of chemotherapy on heart and brain. Furthermore, its anti-cancer effectiveness could be boosted by co-administration with other drugs. CONCLUSIONS Ranolazine, alone or in combination with appropriate therapies, could be reformulated as a safe anti-metastatic drug offering many potential advantages over current systemic treatment modalities.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin, 10, Türkiye.
| |
Collapse
|
5
|
Macías Á, Díaz-Larrosa JJ, Blanco Y, Fanjul V, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, da Rocha AM, Ponce-Balbuena D, Allan A, Filgueiras-Rama D, Jalife J, Andrés V. Paclitaxel mitigates structural alterations and cardiac conduction system defects in a mouse model of Hutchinson-Gilford progeria syndrome. Cardiovasc Res 2022; 118:503-516. [PMID: 33624748 PMCID: PMC8803078 DOI: 10.1093/cvr/cvab055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare laminopathy caused by expression of progerin, a lamin A variant, also present at low levels in non-HGPS individuals. HGPS patients age and die prematurely, predominantly from cardiovascular complications. Progerin-induced cardiac repolarization defects have been described previously, although the underlying mechanisms are unknown. METHODS AND RESULTS We conducted studies in heart tissue from progerin-expressing LmnaG609G/G609G (G609G) mice, including microscopy, intracellular calcium dynamics, patch-clamping, in vivo magnetic resonance imaging, and electrocardiography. G609G mouse cardiomyocytes showed tubulin-cytoskeleton disorganization, t-tubular system disruption, sarcomere shortening, altered excitation-contraction coupling, and reductions in ventricular thickening and cardiac index. G609G mice exhibited severe bradycardia, and significant alterations of atrio-ventricular conduction and repolarization. Most importantly, 50% of G609G mice had altered heart rate variability, and sinoatrial block, both significant signs of premature cardiac aging. G609G cardiomyocytes had electrophysiological alterations, which resulted in an elevated action potential plateau and early afterdepolarization bursting, reflecting slower sodium current inactivation and long Ca+2 transient duration, which may also help explain the mild QT prolongation in some HGPS patients. Chronic treatment with low-dose paclitaxel ameliorated structural and functional alterations in G609G hearts. CONCLUSIONS Our results demonstrate that tubulin-cytoskeleton disorganization in progerin-expressing cardiomyocytes causes structural, cardiac conduction, and excitation-contraction coupling defects, all of which can be partially corrected by chronic treatment with low dose paclitaxel.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Anti-Arrhythmia Agents/pharmacology
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Cytoskeleton/drug effects
- Cytoskeleton/metabolism
- Cytoskeleton/pathology
- Disease Models, Animal
- Excitation Contraction Coupling/drug effects
- Female
- Genetic Predisposition to Disease
- Heart Conduction System/drug effects
- Heart Conduction System/metabolism
- Heart Conduction System/physiopathology
- Heart Rate/drug effects
- Lamin Type A/genetics
- Lamin Type A/metabolism
- Male
- Mice, Mutant Strains
- Mutation
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Paclitaxel/pharmacology
- Progeria/drug therapy
- Progeria/genetics
- Progeria/metabolism
- Progeria/physiopathology
- Refractory Period, Electrophysiological/drug effects
- Swine
- Swine, Miniature
- Tubulin/metabolism
- Mice
Collapse
Affiliation(s)
- Álvaro Macías
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - J Jaime Díaz-Larrosa
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Yaazan Blanco
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Víctor Fanjul
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Cristina González-Gómez
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Pilar Gonzalo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - María Jesús Andrés-Manzano
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Andre Monteiro da Rocha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Daniela Ponce-Balbuena
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Andrew Allan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - David Filgueiras-Rama
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Cardiology, Cardiac Electrophysiology Unit, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Myocardial, Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - José Jalife
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
- Myocardial, Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Vicente Andrés
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
6
|
Kistamás K, Hézső T, Horváth B, Nánási PP. Late sodium current and calcium homeostasis in arrhythmogenesis. Channels (Austin) 2021; 15:1-19. [PMID: 33258400 PMCID: PMC7757849 DOI: 10.1080/19336950.2020.1854986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/26/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
The cardiac late sodium current (INa,late) is the small sustained component of the sodium current active during the plateau phase of the action potential. Several studies demonstrated that augmentation of the current can lead to cardiac arrhythmias; therefore, INa,late is considered as a promising antiarrhythmic target. Fundamentally, enlarged INa,late increases Na+ influx into the cell, which, in turn, is converted to elevated intracellular Ca2+ concentration through the Na+/Ca2+ exchanger. The excessive Ca2+ load is known to be proarrhythmic. This review describes the behavior of the voltage-gated Na+ channels generating INa,late in health and disease and aims to discuss the physiology and pathophysiology of Na+ and Ca2+ homeostasis in context with the enhanced INa,late demonstrating also the currently accessible antiarrhythmic choices.
Collapse
Affiliation(s)
- Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Hegyi B, Pölönen RP, Hellgren KT, Ko CY, Ginsburg KS, Bossuyt J, Mercola M, Bers DM. Cardiomyocyte Na + and Ca 2+ mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors. Basic Res Cardiol 2021; 116:58. [PMID: 34648073 PMCID: PMC8516771 DOI: 10.1007/s00395-021-00900-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte Na+ and Ca2+ mishandling, upregulated Ca2+/calmodulin-dependent kinase II (CaMKII), and increased reactive oxygen species (ROS) are characteristics of various heart diseases, including heart failure (HF), long QT (LQT) syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). These changes may form a vicious cycle of positive feedback to promote cardiac dysfunction and arrhythmias. In HF rabbit cardiomyocytes investigated in this study, the inhibition of CaMKII, late Na+ current (INaL), and leaky ryanodine receptors (RyRs) all attenuated the prolongation and increased short-term variability (STV) of action potential duration (APD), but in age-matched controls these inhibitors had no or minimal effects. In control cardiomyocytes, we enhanced RyR leak (by low [caffeine] plus isoproterenol mimicking CPVT) which markedly increased STV and delayed afterdepolarizations (DADs). These proarrhythmic changes were significantly attenuated by both CaMKII inhibition and mitochondrial ROS scavenging, with a slight synergy with INaL inhibition. Inducing LQT by elevating INaL (by Anemone toxin II, ATX-II) caused markedly prolonged APD, increased STV, and early afterdepolarizations (EADs). Those proarrhythmic ATX-II effects were largely attenuated by mitochondrial ROS scavenging, and partially reduced by inhibition of CaMKII and pathological leaky RyRs using dantrolene. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) bearing LQT3 mutation SCN5A N406K, dantrolene significantly attenuated cell arrhythmias and APD prolongation. Targeting critical components of the Na+-Ca2+-CaMKII-ROS-INaL arrhythmogenic vicious cycle may exhibit important on-target and also trans-target effects (e.g., INaL and RyR inhibition can alter INaL-mediated LQT3 effects). Incorporating this vicious cycle into therapeutic strategies provides novel integrated insight for treating cardiac arrhythmias and diseases.
Collapse
Affiliation(s)
- Bence Hegyi
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Risto-Pekka Pölönen
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA ,grid.168010.e0000000419368956Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Kim T. Hellgren
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Christopher Y. Ko
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Kenneth S. Ginsburg
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Julie Bossuyt
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Mark Mercola
- grid.168010.e0000000419368956Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Donald M. Bers
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| |
Collapse
|
8
|
Geng C, Wei J, Wu C. Yap-Hippo pathway regulates cerebral hypoxia-reoxygenation injury in neuroblastoma N2a cells via inhibiting ROCK1/F-actin/mitochondrial fission pathways. Acta Neurol Belg 2020; 120:879-892. [PMID: 29796942 DOI: 10.1007/s13760-018-0944-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023]
Abstract
Yes-associated protein (Yap), a regulator of cellular apoptosis, has been demonstrated to be involved in cerebral ischemia-reperfusion (IR) injury through poorly defined mechanisms. The present study aimed to explore the role of Yap in regulating cerebral IR injury in vitro, with a focus on mitochondrial fission and ROCK1/F-actin pathways. Our data demonstrated that Yap was actually downregulated in N2a cells after cerebral hypoxia-reoxygenation (HR) injury, and that lower expression of Yap was closely associated with increased cell death. However, the reintroduction of Yap was able to suppress the HR-mediated N2a cells death via blocking the mitochondria-related apoptotic signal. At the molecular levels, Yap overexpression sustained mitochondrial potential, normalized the mitochondrial respiratory function, reduced ROS overproduction, limited HtrA2/Omi release from mitochondria into the nucleus, and suppressed pro-apoptotic proteins activation. Subsequently, functional studies have further illustrated that HR-mediated mitochondrial apoptosis was highly regulated by mitochondrial fission, whereas Yap overexpression was able to attenuate HR-mediated mitochondrial fission and, thus, promote N2a cell survival in the context of HR injury. At last, we demonstrated that Yap handled mitochondrial fission via closing ROCK1/F-actin signaling pathways. Activation of ROCK1/F-actin pathways abrogated the protective role of Yap overexpression on mitochondrial homeostasis and N2a cell survival in the setting of HR injury. Altogether, our data identified Yap as the endogenous defender to relieve HR-mediated nerve damage via antagonizing ROCK1/F-actin/mitochondrial fission pathways.
Collapse
Affiliation(s)
- Chizi Geng
- Physician of Neurology Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Jianchao Wei
- Director of Neurology Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chengsi Wu
- Deputy Director of Eurology Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Pabel S, Ahmad S, Tirilomis P, Stehle T, Mustroph J, Knierim M, Dybkova N, Bengel P, Holzamer A, Hilker M, Streckfuss-Bömeke K, Hasenfuss G, Maier LS, Sossalla S. Inhibition of Na V1.8 prevents atrial arrhythmogenesis in human and mice. Basic Res Cardiol 2020; 115:20. [PMID: 32078054 PMCID: PMC7033079 DOI: 10.1007/s00395-020-0780-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
Pharmacologic approaches for the treatment of atrial arrhythmias are limited due to side effects and low efficacy. Thus, the identification of new antiarrhythmic targets is of clinical interest. Recent genome studies suggested an involvement of SCN10A sodium channels (NaV1.8) in atrial electrophysiology. This study investigated the role and involvement of NaV1.8 (SCN10A) in arrhythmia generation in the human atria and in mice lacking NaV1.8. NaV1.8 mRNA and protein were detected in human atrial myocardium at a significant higher level compared to ventricular myocardium. Expression of NaV1.8 and NaV1.5 did not differ between myocardium from patients with atrial fibrillation and sinus rhythm. To determine the electrophysiological role of NaV1.8, we investigated isolated human atrial cardiomyocytes from patients with sinus rhythm stimulated with isoproterenol. Inhibition of NaV1.8 by A-803467 or PF-01247324 showed no effects on the human atrial action potential. However, we found that NaV1.8 significantly contributes to late Na+ current and consequently to an increased proarrhythmogenic diastolic sarcoplasmic reticulum Ca2+ leak in human atrial cardiomyocytes. Selective pharmacological inhibition of NaV1.8 potently reduced late Na+ current, proarrhythmic diastolic Ca2+ release, delayed afterdepolarizations as well as spontaneous action potentials. These findings could be confirmed in murine atrial cardiomyocytes from wild-type mice and also compared to SCN10A-/- mice (genetic ablation of NaV1.8). Pharmacological NaV1.8 inhibition showed no effects in SCN10A-/- mice. Importantly, in vivo experiments in SCN10A-/- mice showed that genetic ablation of NaV1.8 protects against atrial fibrillation induction. This study demonstrates that NaV1.8 is expressed in the murine and human atria and contributes to late Na+ current generation and cellular arrhythmogenesis. Blocking NaV1.8 selectively counteracts this pathomechanism and protects against atrial arrhythmias. Thus, our translational study reveals a new selective therapeutic target for treating atrial arrhythmias.
Collapse
Affiliation(s)
- Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Shakil Ahmad
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
| | - Petros Tirilomis
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
| | - Thea Stehle
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Julian Mustroph
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Maria Knierim
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
| | - Nataliya Dybkova
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
| | - Philipp Bengel
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
| | - Andreas Holzamer
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Michael Hilker
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
| | - Gerd Hasenfuss
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
10
|
Protein kinase/phosphatase balance mediates the effects of increased late sodium current on ventricular calcium cycling. Basic Res Cardiol 2019; 114:13. [DOI: 10.1007/s00395-019-0720-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 02/12/2019] [Indexed: 12/19/2022]
|
11
|
Zhang W, Liu K, Pei Y, Ma J, Tan J, Zhao J. Mst1 regulates non-small cell lung cancer A549 cell apoptosis by inducing mitochondrial damage via ROCK1/F‑actin pathways. Int J Oncol 2018; 53:2409-2422. [PMID: 30320378 PMCID: PMC6203146 DOI: 10.3892/ijo.2018.4586] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Mammalian STE20-like kinase 1 (Mst1) is well recognized as a major tumor suppressor in cancer development, growth, metabolic reprogramming, metastasis, cell death and recurrence. However, the roles of Mst1 in non-small cell lung cancer (NSCLC) A549 cell phenotypic alterations remain to be elucidated. The present study aimed to explore the functional role and underlying mechanisms of Mst1 with regards to A549 cell proliferation, migration and apoptosis; this study focused on mitochondrial homeostasis and Rho-associated coiled-coil containing protein kinase 1 (ROCK1)/F‑actin pathways. The results demonstrated that Mst1 was downregulated in A549 cells compared with in a normal pulmonary epithelial cell line. Subsequently, overexpression of Mst1 in A549 cells reduced cell viability and promoted cell apoptosis. Furthermore, overexpression of Mst1 suppressed A549 cell proliferation and migration. At the molecular level, the reintroduction of Mst1 in A549 cells led to activation of mitochondrial apoptosis, as evidenced by a reduction in mitochondrial potential, overproduction of ROS, cytochrome c release from the mitochondria into the nucleus, and upregulation of pro-apoptotic protein expression. In addition, Mst1 overexpression was closely associated with impaired mitochondrial respiratory function and suppressed cellular energy metabolism. Functional studies illustrated that Mst1 overexpression activated ROCK1/F-actin pathways, which highly regulate mitochondrial function. Inhibition of ROCK1/F-actin pathways in A549 cells sustained mitochondrial homeostasis, alleviated caspase-9-dependent mitochondrial apoptosis, enhanced cancer cell migration and increased cell proliferation. In conclusion, these data firmly established the regulatory role of Mst1 in NSCLC A549 cell survival via the modulation of ROCK1/F-actin pathways, which may provide opportunities for novel treatment modalities in clinical practice.
Collapse
Affiliation(s)
- Weiqiang Zhang
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Keiqiang Liu
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Yingxin Pei
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Jingbo Ma
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Jiang Tan
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Jing Zhao
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| |
Collapse
|
12
|
Li J, Li N, Yan S, Lu Y, Miao X, Gu Z, Shao Y. Melatonin attenuates renal fibrosis in diabetic mice by activating the AMPK/PGC1α signaling pathway and rescuing mitochondrial function. Mol Med Rep 2018; 19:1318-1330. [PMID: 30535482 DOI: 10.3892/mmr.2018.9708] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/30/2018] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial homeostasis is a highly regulated process that serves a critical role in the maintenance of renal structure and function. The growing interest in the field of mitochondrial homeostasis promises to provide more information regarding the mechanisms involved in diabetic renal fibrosis, and aid in the development of novel strategies to combat the disease. In the present study, the effects of melatonin on renal damage in mice with diabetes were evaluated and the underlying mechanisms were investigated. Cellular apoptosis was determined using TUNEL assay and western blotting. Mitochondrial function was measured using fluorescence assay and western blotting. The results indicated that diabetic renal fibrosis was associated with 5'adenosine monophosphate‑activated protein kinase (AMPK) downregulation. However, melatonin administration rescued AMPK activity, reduced diabetic renal fibrosis, alleviated glomerular apoptosis and preserved kidney function. The functional experiments demonstrated that melatonin‑induced AMPK activation enhanced peroxisome proliferator‑activated receptor γ coactivator 1‑α (PGC1α) expression, sustained mitochondrial function and blocked mitochondrial apoptosis, leading to protection of the glomerulus against glucotoxicity. However, loss of AMPK and PGC1α negated the protective effects of melatonin on mitochondrial homeostasis, glomerular survival and diabetic renal fibrosis. In summary, the present study revealed that melatonin rescued impaired mitochondrial function and reduced glomerular apoptosis in the context of diabetic renal fibrosis by activating the AMPK/PGC1α pathway.
Collapse
Affiliation(s)
- Jian Li
- Department of Geriatric Endocrinology, Chinese PLA General Hospital, National Clinical Center of Geriatric Medicine, Beijing 100853, P.R. China
| | - Nan Li
- Department of Geriatric Endocrinology, Chinese PLA General Hospital, National Clinical Center of Geriatric Medicine, Beijing 100853, P.R. China
| | - Shuangtong Yan
- Department of Geriatric Endocrinology, Chinese PLA General Hospital, National Clinical Center of Geriatric Medicine, Beijing 100853, P.R. China
| | - Yanhui Lu
- Department of Geriatric Endocrinology, Chinese PLA General Hospital, National Clinical Center of Geriatric Medicine, Beijing 100853, P.R. China
| | - Xinyu Miao
- Department of Geriatric Endocrinology, Chinese PLA General Hospital, National Clinical Center of Geriatric Medicine, Beijing 100853, P.R. China
| | - Zhaoyan Gu
- Department of Geriatric Endocrinology, Chinese PLA General Hospital, National Clinical Center of Geriatric Medicine, Beijing 100853, P.R. China
| | - Yinghong Shao
- Outpatient Department, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
13
|
Bilginoglu A, Selcuk MFT, Nakkas H, Turan B. Pioglitazone provides beneficial effect in metabolic syndrome rats via affecting intracellular Na + Dyshomeostasis. J Bioenerg Biomembr 2018; 50:437-445. [PMID: 30361824 DOI: 10.1007/s10863-018-9776-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome, is associated impaired blood glucose level, insulin resistance, and dyslipidemia caused by abdominal obesity. Also, it is related with cardiovascular risk accumulation and cardiomyopathy. The hypothesis of this study was to examine the effect of thiazolidinediones such as pioglitazone on intracellular Na+ homeostasis in heart of metabolic syndrome male rats. Abdominal obesity and glucose intolerance had measured as a marker of metabolic syndrome. Intracellular Na+ concentration ([Na+]i) at rest and [Na+]i during pacing with electrical field stimulation were determined in freshly isolated cardiomyocytes. Also, TTX-sensitive Na+- channel current (INa) density and I-V characteristics of these channels were measured to understand [Na+]i homeostasis. We determined the protein levels of Na+/Ca2+ exchanger and Na+-K+ pump to understand the relation between [Na+]i homeostasis. High sucrose intake significantly increased body mass and blood glucose level of the rats in the metabolic syndrome group as compared with control group. There was a decrease in INa density and there were differences in points on activation curve of INa. Basal [Na+]i in metabolic syndrome group significantly increased but there was a significantly decrease in [Na+]i in stimulated cardiomyocytes in metabolic syndrome. Furthermore, pioglitazone induced decreases in the basal [Na+]i and preserved the decrease in INa and [Na+]i in stimulated cardiomyocytes to those of controls. Histologically, metabolic syndrome affected heart and associated tissues together with many other organs. Results of the present study suggest that pioglitazone has significant beneficial effects on metabolic syndrome associated disturbances in the heart via effecting Na+ homeostasis in cardiomyocytes.
Collapse
Affiliation(s)
- Ayca Bilginoglu
- Department of Biophysics, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey.
| | | | - Hilal Nakkas
- Department of Histology and Embriyology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
14
|
Li H, Feng J, Zhang Y, Feng J, Wang Q, Zhao S, Meng P, Li J. Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway. Redox Biol 2018; 20:261-274. [PMID: 30384260 PMCID: PMC6205415 DOI: 10.1016/j.redox.2018.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022] Open
Abstract
Despite extensive research that has been carried out over the past three decades in the field of renal ischaemia-reperfusion (I/R) injury, the pathogenic role of mitochondrial fission in renal I/R injury is poorly understood. The aim of our study is to investigate the molecular mechanism by which mammalian STE20-like kinase 1 (Mst1) participates in renal I/R injury through modifying mitochondrial fission, microtubule cytoskeleton dynamics, and the GSK3β-p53 signalling pathway. Our data demonstrated that genetic ablation of Mst1 improved renal function, alleviated reperfusion-mediated tubular epithelial cell apoptosis, and attenuated the vulnerability of kidney to I/R injury. At the molecular level, Mst1 upregulation exacerbated mitochondrial damage, as evidenced by reduced mitochondrial potential, increased ROS generation, more cyt-c liberation from mitochondria into the cytoplasm, and an activated mitochondrial apoptotic pathway. Furthermore, we demonstrated that I/R-mediated mitochondrial damage resulted from mitochondrial fission, and the blockade of mitochondrial fission preserved mitochondrial homeostasis in the I/R setting. Functional studies have discovered that Mst1 regulated mitochondrial fission through two mechanisms: induction of Drp1 phosphorylation and enhancement of F-actin assembly. Activated Mst1 promoted Drp1 phosphorylation at Ser616, contributing to Drp1 translocation from the cytoplasm to the surface of the mitochondria. Additionally, Mst1 facilitated F-actin polymerization, contributing to mitochondrial contraction. Finally, we confirmed that Mst1 regulated Drp1 post-transcriptional modification and F-actin stabilization via the GSK3β-p53 signalling pathway. Inhibition of GSK3β-p53 signalling provided a survival advantage for the tubular epithelial cell in the context of renal I/R injury by repressing mitochondrial fission. Collectively, our study identified Mst1 as the primary pathogenesis for the development and progression of renal I/R injury via activation of fatal mitochondrial fission by modulating Drp1 phosphorylation, microtubule cytoskeleton dynamics, and the GSK3β-p53 signalling pathway. Mst1 deletion sustains renal function after I/R injury. Excessive mitochondrial fission accounts for Mst1-mediated mitochondrial apoptosis. Mst1 enhances reperfusion-mediated mitochondrial fission via Drp1 phosphorylation and F-actin polymerization. Mst1 regulates Drp1 phosphorylation and F-actin polymerization by activating the GSK3β-p53 axis.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou 510800, China.
| | - Jianxun Feng
- Department of Nephorology, Xuhui DIstrict Centeral Hospital of Shanghai, Shanghai 20031, China
| | - Yunfang Zhang
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou 510800, China
| | - Junxia Feng
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou 510800, China
| | - Qi Wang
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou 510800, China
| | - Shili Zhao
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou 510800, China
| | - Ping Meng
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou 510800, China
| | - Jingchun Li
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou 510800, China
| |
Collapse
|
15
|
Liu J, Xu Y, Wu Q, Ding Q, Fan W. Sirtuin‑1 protects hair follicle stem cells from TNFα-mediated inflammatory stress via activating the MAPK-ERK-Mfn2 pathway. Life Sci 2018; 212:213-224. [PMID: 30292830 DOI: 10.1016/j.lfs.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Stem cell transplantation is a promising tool to treat burn injuries. However, the inflammatory microenvironment in damaged skin limits the efficiency of stem cell-based therapy via poorly understood mechanisms. The aim of our study is to explore the contribution and mechanism of Sirtuin-1 (Sirt1) in TNFα-mediated inflammatory stress in hair follicle stem cells (HFSCs). METHODS Cellular viability was determined using the MTT assay, TUNEL staining, western blot analysis and LDH release assay. Adenovirus-loaded Sirt1 was transduced into HFSCs to overexpress Sirt1 in the presence of TNFα. Mitochondrial function was determined using JC-1 staining, mitochondrial ROS staining, immunofluorescence staining and western blotting. RESULTS Sirt1 was downregulated in response to the TNFα treatment. Additionally, TNFα stress reduced the viability, mobility and proliferation of HFSCs, and these effects were reversed by the overexpression of Sirt1. At the molecular level, Sirt1 overexpression attenuated TNFα-mediated mitochondrial damage, as evidenced by increased mitochondrial energy metabolism, decreased mitochondrial ROS generation, stabilized mitochondrial potential and blockage of the mitochondrial apoptotic pathway. Furthermore, Sirt1 modulated mitochondrial homeostasis by activating the MAPK-ERK-Mfn2 axis; inhibition of this pathway abrogated the protective effects of Sirt1 on HFSC survival, migration and proliferation. SIGNIFICANCE Based on our results, the inflammatory stress-mediated HFSC injury may be associated with a decrease in Sirt1 expression and subsequent mitochondrial dysfunction. Accordingly, strategies designed to enhance Sirt1 expression would be an effective approach to enhance the survival of HFSCs in the inflammatory microenvironment.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Yuxuan Xu
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Qiaofang Wu
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Qi Ding
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Weixin Fan
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China.
| |
Collapse
|
16
|
Xu P, Zhang G, Sha L, Hou S. RETRACTED: DUSP1 alleviates cerebral ischaemia reperfusion injury via inactivating JNK-Mff pathways and repressing mitochondrial fission. Life Sci 2018; 210:251-262. [PMID: 30138595 DOI: 10.1016/j.lfs.2018.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 01/17/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. The article titled “DUSP1 alleviates cerebral ischaemia reperfusion injury via inactivating JNK-Mff pathways and repressing mitochondrial fission” is a near duplicate of a previously published manuscript titled “DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biology. 2018;14:576-587.”
Collapse
Affiliation(s)
- Peng Xu
- The Fourth Department of Geronotology, Jinan Military General Hospital, 25 Shifan Road, Tianqiao District, Jinan City, Shandong Province 250031, China
| | - Guofeng Zhang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Chang Le Road, Xi'an 710032, China
| | - Longgui Sha
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Shuangxing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China.
| |
Collapse
|
17
|
Zhou H, Li D, Zhu P, Ma Q, Toan S, Wang J, Hu S, Chen Y, Zhang Y. Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. J Pineal Res 2018; 65:e12503. [PMID: 29770487 DOI: 10.1111/jpi.12503] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022]
Abstract
The molecular features of necroptosis in cardiac ischemia-reperfusion (IR) injury have been extensively explored. However, there have been no studies investigating the physiological regulatory mechanisms of melatonin acting on necroptosis in cardiac IR injury. This study was designed to determine the role of necroptosis in microvascular IR injury, and investigate the contribution of melatonin in repressing necroptosis and preventing IR-mediated endothelial system collapse. Our results demonstrated that Ripk3 was primarily activated by IR injury and consequently aggravated endothelial necroptosis, microvessel barrier dysfunction, capillary hyperpermeability, the inflammation response, microcirculatory vasospasms, and microvascular perfusion defects. However, administration of melatonin prevented Ripk3 activation and provided a pro-survival advantage for the endothelial system in the context of cardiac IR injury, similar to the results obtained via genetic ablation of Ripk3. Functional investigations clearly illustrated that activated Ripk3 upregulated PGAM5 expression, and the latter increased CypD phosphorylation, which obligated endothelial cells to undergo necroptosis via augmenting mPTP (mitochondrial permeability transition pore) opening. Interestingly, melatonin supplementation suppressed mPTP opening and interrupted endothelial necroptosis via blocking the Ripk3-PGAM5-CypD signal pathways. Taken together, our studies identified the Ripk3-PGAM5-CypD-mPTP axis as a new pathway responsible for reperfusion-mediated microvascular damage via initiating endothelial necroptosis. In contrast, melatonin treatment inhibited the Ripk3-PGAM5-CypD-mPTP cascade and thus reduced cellular necroptosis, conferring a protective advantage to the endothelial system in IR stress. These findings establish a new paradigm in microvascular IR injury and update the concept for cell death management handled by melatonin under the burden of reperfusion attack.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Dandan Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Sam Toan
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California
| | - Jin Wang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Shunying Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Liu J, Yan W, Zhao X, Jia Q, Wang J, Zhang H, Liu C, He K, Sun Z. Sirt3 attenuates post-infarction cardiac injury via inhibiting mitochondrial fission and normalization of AMPK-Drp1 pathways. Cell Signal 2018; 53:1-13. [PMID: 30219671 DOI: 10.1016/j.cellsig.2018.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 01/15/2023]
Abstract
Mitochondrial damage is involved in the pathogenesis of post-infarction cardiac injury. However, the upstream regulators of mitochondrial damage have not yet been identified. The aim of our study is to explore the role of Sirt3 in post-infarction cardiac injury with a particular focus on mitochondrial fission and AMPK-Drp1 pathways. Our results indicated that Sirt3 was downregulated in the progression of post-infarction cardiac injury. Overexpression of Sirt3 attenuated cardiac fibrosis, sustained myocardial function, inhibited the inflammatory response, and reduced cardiomyocyte death. Functional studies illustrated that chronic post-infarction cardiac injury was characterized by increased mitochondrial fission, which triggered mitochondrial oxidative stress, metabolic disorders, mitochondrial potential reduction and caspase-9 apoptosis in cardiomyocytes. However, Sirt3 overexpression attenuated mitochondrial fission and thus preserved mitochondrial homeostasis and cardiomyocyte viability. Furthermore, our results confirmed that Sirt3 repressed mitochondrial fission via normalizing AMPK-Drp1 pathways. Inhibition of AMPK activity re-activated Drp1 and thus abrogated the inhibitory effect of Sirt3 on mitochondrial fission. Altogether, our results indicate that Sirt3 enhancement could be an effective approach to retard the development of post-infarction cardiac injury via disrupting mitochondrial fission and normalizing the AMPK-Drp1 axis.
Collapse
Affiliation(s)
- Jixuan Liu
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Yan
- Department of Geriatric Medicine, The First Affiliated Hospital of Soochow University, Soochow 215000, China
| | - Xiaojing Zhao
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, 100853, China
| | - Qian Jia
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, 100853, China
| | - Jinda Wang
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Huawei Zhang
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Chunlei Liu
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, 100853, China
| | - Kunlun He
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, 100853, China.
| | - Zhijun Sun
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
19
|
Zhou H, Wang J, Hu S, Zhu H, Toanc S, Ren J. BI1 alleviates cardiac microvascular ischemia-reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F-actin pathways. J Cell Physiol 2018; 234:5056-5069. [PMID: 30256421 DOI: 10.1002/jcp.27308] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/01/2018] [Indexed: 12/23/2022]
Abstract
Pathogenesis of cardiac microvascular ischemia-reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies investigating the contribution of BI1 on mitochondrial fission in the setting of cardiac microvascular IR injury. This study was undertaken to establish the action of BI1 on the cardiac microvascular reperfusion injury and figure out whether BI1 sustained endothelial viability via inhibiting mitochondrial fission. Our observation indicated that BI1 was downregulated in reperfused hearts and overexpression of BI1 attenuated microvascular IR injury. Mechanistically, reperfusion injury elevated the levels of xanthine oxidase (XO), an effect that was followed by increased reactive oxygen species (ROS) production. Subsequently, oxidative stress mediated F-actin depolymerization and the latter promoted mitochondrial fission. Aberrant fission caused mitochondrial dysfunction and ultimately activated mitochondrial apoptosis in cardiac microvascular endothelial cells. By comparison, BI1 overexpression repressed XO expression and thus neutralized ROS, interrupting F-actin-mediated mitochondrial fission. The inhibitory effect of BI1 on mitochondrial fission sustained endothelial viability, reversed endothelial barrier integrity, attenuated the microvascular inflammation response, and maintained microcirculation patency. Altogether, we conclude that BI1 is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular IR injury. Deregulated BI1 via the XO/ROS/F-actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Medical School of Chinese PLA Hospital, Beijing, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - Jin Wang
- Department of Cardiology, Medical School of Chinese PLA Hospital, Beijing, China
| | - Shunying Hu
- Department of Cardiology, Medical School of Chinese PLA Hospital, Beijing, China
| | - Hong Zhu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - Sam Toanc
- Department of Chemical and Environmental Engineering, University of California, Riverside, California
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming
| |
Collapse
|
20
|
Zhao H, Luo Y, Chen L, Zhang Z, Shen C, Li Y, Xu R. Sirt3 inhibits cerebral ischemia-reperfusion injury through normalizing Wnt/β-catenin pathway and blocking mitochondrial fission. Cell Stress Chaperones 2018; 23:1079-1092. [PMID: 29862442 PMCID: PMC6111081 DOI: 10.1007/s12192-018-0917-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 12/19/2022] Open
Abstract
Cerebral ischemia-reperfusion injury (IRI) potentiates existing brain damage and increases mortality and morbidity via poorly understood mechanisms. The aim of our study is to investigate the role of Sirtuin 3 (Sirt3) in the development and progression of cerebral ischemia-reperfusion injury with a focus on mitochondrial fission and the Wnt/β-catenin pathway. Our data indicated that Sirt3 was downregulated in response to cerebral IRI. However, the overexpression of Sirt3 reduced the brain infarction area and repressed IRI-mediated neuron apoptosis. Functional assays demonstrated that IRI augmented mitochondrial fission, which induced ROS overproduction, redox imbalance, mitochondrial pro-apoptotic protein leakage, and caspase-9-dependent cell death pathway activation. However, the overexpression of Sirt3 blocked mitochondrial fission and induced pro-survival signals in neurons subjected to IRI. At the molecular level, our data further illustrated that the Wnt/β-catenin pathway is required for the neuroprotection exerted by Sirt3 overexpression. Wnt/β-catenin pathway activation via inhibiting β-catenin phosphorylation attenuates mitochondrial fission and mitochondrial apoptosis. Collectively, our data show that cerebral IRI is associated with Sirt3 downregulation, Wnt/β-catenin pathway phosphorylated inactivation, and mitochondrial fission initiation, causing neurons to undergo caspase-9-dependent cell death. Based on this, strategies for enhancing Sirt3 activity and activating the Wnt/β-catenin pathway could be therapeutic targets for treating cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Neurosurgery, PLA Army General Hospital, No.5 Nanmencang Hutong, Dongcheng District, Beijing, 100730, China
| | - Yongchun Luo
- Department of Neurosurgery, PLA Army General Hospital, No.5 Nanmencang Hutong, Dongcheng District, Beijing, 100730, China
| | - Lihua Chen
- Department of Neurosurgery, PLA Army General Hospital, No.5 Nanmencang Hutong, Dongcheng District, Beijing, 100730, China
| | - Zhenhai Zhang
- Department of Neurosurgery, PLA Army General Hospital, No.5 Nanmencang Hutong, Dongcheng District, Beijing, 100730, China
| | - Chunsen Shen
- Department of Neurosurgery, PLA Army General Hospital, No.5 Nanmencang Hutong, Dongcheng District, Beijing, 100730, China
| | - Yunjun Li
- Department of Neurosurgery, PLA Army General Hospital, No.5 Nanmencang Hutong, Dongcheng District, Beijing, 100730, China
| | - Ruxiang Xu
- Department of Neurosurgery, PLA Army General Hospital, No.5 Nanmencang Hutong, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
21
|
He L, Gu K. Tanshinone IIA regulates colorectal cancer apoptosis via attenuation of Parkin‑mediated mitophagy by suppressing AMPK/Skp2 pathways. Mol Med Rep 2018; 18:1692-1703. [PMID: 29845197 DOI: 10.3892/mmr.2018.9087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/04/2018] [Indexed: 11/05/2022] Open
Abstract
Mitophagy is important for cancer development. Notably, the role of Parkin‑mediated mitophagy in colorectal cancer (CRC) mortality has not been fully determined. Therefore, the present study aimed to investigate the effect of Parkin‑mediated mitophagy on CRC apoptosis. In addition, the present study investigated the therapeutic effects of Tanshinone IIA (Tan IIA) on the regulation of CRC cell death via mitophagy. Cellular apoptosis was measured following Tan IIA treatment. In addition, mitophagy activity was evaluated by immunofluorescence and western blotting. The results of the present study revealed that Tan IIA may enhance CRC cell death. In addition, the results demonstrated that Tan IIA enhanced mitochondrial apoptosis, as demonstrated by reduced mitochondrial membrane potential, elevated mitochondrial permeability transition pore opening, and increased oxidative stress, mitochondrial energy disorder and proapoptotic factor expression. Furthermore, the results of the present study demonstrated that Tan IIA induced mitochondrial apoptosis via inhibition of mitophagy. In addition, it was revealed that mitophagy could suppress mitochondrial apoptosis. Functional assays revealed that Tan IIA suppressed the adenosine monophosphate‑activated protein kinase (AMPK) pathway, resulting in the inactivation of S‑phase kinase associated protein 2 (Skp2). Furthermore, reduced levels of Skp2 failed to activate Parkin, thus resulting in inhibition of mitophagy. Conversely, reactivation of AMPK and overexpression of Skp2 rescued mitophagy activity and thus attenuated the Tan IIA‑induced apoptosis of CRC cells. In conclusion, the results of the present study demonstrated the beneficial role of mitophagy in CRC cell survival and suggested that Tan IIA may be an effective therapeutic agent, which suppresses mitophagy activity and enhances CRC apoptosis.
Collapse
Affiliation(s)
- Lili He
- Department of Infectious Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Kebo Gu
- Hematology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
22
|
Howard T, Greer-Short A, Satroplus T, Patel N, Nassal D, Mohler PJ, Hund TJ. CaMKII-dependent late Na + current increases electrical dispersion and arrhythmia in ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2018; 315:H794-H801. [PMID: 29932771 DOI: 10.1152/ajpheart.00197.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mechanisms underlying Ca2+/calmodulin-dependent protein kinase II (CaMKII)-induced arrhythmias in ischemia-reperfusion (I/R) are not fully understood. We tested the hypothesis that CaMKII increases late Na+ current ( INa,L) via phosphorylation of Nav1.5 at Ser571 during I/R, thereby increasing arrhythmia susceptibility. To test our hypothesis, we studied isolated, Langendorff-perfused hearts from wild-type (WT) mice and mice expressing Nav channel variants Nav1.5-Ser571E (S571E) and Nav1.5-Ser571A (S571A). WT hearts showed a significant increase in the levels of phosphorylated CaMKII and Nav1.5 at Ser571 [p-Nav1.5(S571)] after 15 min of global ischemia (just before the onset of reperfusion). Optical mapping experiments revealed an increase in action potential duration (APD) and APD dispersion without changes in conduction velocity during I/R in WT and S571E compared with S571A hearts. At the same time, WT and S571E hearts showed an increase in spontaneous arrhythmia events (e.g., premature ventricular contractions) and an increase in the inducibility of reentrant arrhythmias during reperfusion. Pretreatment of WT hearts with the Na+ channel blocker mexiletine (10 μM) normalized APD dispersion and reduced arrhythmia susceptibility during I/R. We conclude that CaMKII-dependent phosphorylation of Nav1.5 is a crucial driver for increased INa,L, arrhythmia triggers, and substrate during I/R. Selective targeting of this CaMKII-dependent pathway may have therapeutic potential for reducing arrhythmias in the setting of I/R. NEW & NOTEWORTHY Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of Nav1.5 at Ser571 leads to a prolongation of action potential duration (APD), increased APD dispersion, and increased arrhythmia susceptibility after ischemia-reperfusion in isolated mouse hearts. Genetic ablation of the CaMKII-dependent phosphorylation site Ser571 on Nav1.5 or low-dose mexiletine (to inhibit late Na+ current) reduced APD dispersion, arrhythmia triggers, and ventricular tachycardia inducibility.
Collapse
Affiliation(s)
- Taylor Howard
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Tony Satroplus
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Nehal Patel
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Drew Nassal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center , Columbus, Ohio
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Wexner Medical Center , Columbus, Ohio
| |
Collapse
|
23
|
Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, Ren J, Chen Y. NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α. Basic Res Cardiol 2018; 113:23. [DOI: 10.1007/s00395-018-0682-1] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/09/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
|
24
|
Wang X, Song Q. Mst1 regulates post-infarction cardiac injury through the JNK-Drp1-mitochondrial fission pathway. Cell Mol Biol Lett 2018; 23:21. [PMID: 29760744 PMCID: PMC5941482 DOI: 10.1186/s11658-018-0085-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Background Post-infarction cardiac injury is closely associated with cardiac remodeling and heart dysfunction. Mammalian STE20-like kinase 1 (Mst1), a regulator of cellular apoptosis, is involved in cardiac remodeling in post-infarction heart, but the mechanisms remain poorly defined. We aimed to explore the role of Mst1 in regulating chronic post-infarction cardiac injury, with a focus on mitochondrial homoeostasis. Methods Wild-type (WT) and Mst1-knockout mice were as the cardiac myocardial infarction model. Cardiac fibrosis, myocardial inflammation response, heart dysfunction and cardiomyocyte death were measured in vivo using immunohistochemistry, immunofluorescence, western blot, qPCR and TUNEL assays. Cardiomyocytes were isolated from WT and Mst1-knockout mice, and a chronic hypoxia model was used to induce damage. Mitochondrial function was determined via JC1 staining, ROS measurement, cyt-c leakage detection and mitochondrial apoptotic pathways analysis. Mitochondrial fission was observed using immunofluorescence. A pathway activator and inhibitor were applied to establish the signaling pathways involved in regulating mitochondrial homeostasis. Results Our study demonstrated that Mst1 expression was significantly upregulated in the heart post-infarction. Activated Mst1 induced cardiac fibrosis, an excessive inflammatory response, and cardiomyocyte death, whereas the genetic ablation of Mst1 protected the myocardium against chronic post-infarction injury. Function assays showed that upregulation of Mst1 activity contributed to JNK pathway activation, which led to Drp1 migration from the cytoplasm onto the surface of the mitochondria, indicative of mitochondrial fission activation. Excessive mitochondrial fission caused mitochondrial fragmentation, resulting in mitochondrial potential collapse, ROS overproduction, mitochondrial pro-apoptotic leakage into the cytoplasm, and the initiation of caspase-9-mediated mitochondrial apoptosis. By contrast, Mst1 deletion helped to maintain mitochondrial structure and function, sending pro-survival signals to the cardiomyocytes. Conclusions Our results identify Mst1 as a malefactor in the development of post-infarction cardiac injury and that it acts through the JNK-Drp1-mitochondrial fission pathway.
Collapse
Affiliation(s)
- Xisong Wang
- Department of Critical Care Medicine, the Chinese PLA General Hospital, Beijing, China
| | - Qing Song
- Department of Critical Care Medicine, the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Mitochondrial Dysfunctions Contribute to Hypertrophic Cardiomyopathy in Patient iPSC-Derived Cardiomyocytes with MT-RNR2 Mutation. Stem Cell Reports 2018; 10:808-821. [PMID: 29456182 PMCID: PMC5918198 DOI: 10.1016/j.stemcr.2018.01.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 01/19/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common cause of sudden cardiac death in young individuals. A potential role of mtDNA mutations in HCM is known. However, the underlying molecular mechanisms linking mtDNA mutations to HCM remain poorly understood due to lack of cell and animal models. Here, we generated induced pluripotent stem cell-derived cardiomyocytes (HCM-iPSC-CMs) from human patients in a maternally inherited HCM family who carry the m.2336T>C mutation in the mitochondrial 16S rRNA gene (MT-RNR2). The results showed that the m.2336T>C mutation resulted in mitochondrial dysfunctions and ultrastructure defects by decreasing the stability of 16S rRNA, which led to reduced levels of mitochondrial proteins. The ATP/ADP ratio and mitochondrial membrane potential were also reduced, thereby elevating the intracellular Ca2+ concentration, which was associated with numerous HCM-specific electrophysiological abnormalities. Our findings therefore provide an innovative insight into the pathogenesis of maternally inherited HCM. Generation of HCM-specific iPSC-CMs carrying the m.2336T>C mutation in MT-RNR2 m.2336T>C mutation results in mitochondrial dysfunctions Mitochondrial dysfunctions lead to increased [Ca2+]i and decreased ICaL Abnormal Ca2+ homeostasis is associated with HCM-specific abnormalities
Collapse
|
26
|
Report on the Ion Channel Symposium : Organized by the German Cardiac Society Working Group on Cellular Electrophysiology (AG 18). Herzschrittmacherther Elektrophysiol 2018; 29:4-13. [PMID: 29313139 DOI: 10.1007/s00399-017-0549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
To support scientific exchange and activity in the field of cardiac cellular electrophysiology, the German Cardiac Society Working Group on Cellular Electrophysiology (AG 18) established a two-day symposium to be held every 2 years. The second Ion Channel Symposium entitled "Göttingen Channels 2017-Of Benches and Beds" took place in Göttingen from September 22nd to 23rd under the auspices of the German Cardiac Society. A group of national and international experts presented scientific advances in cardiac electrophysiology and rhythmology. The symposium's primary focus was the significance of cellular electrophysiology findings for the optimization of diagnostic and therapeutic strategies against cardiac arrhythmias. To this end, speakers, chairpersons and attendees discussed the contribution of specific molecular alterations to the initiation and perpetuation of atrial and ventricular arrhythmias. Furthermore, the meeting highlighted how discoveries in electrophysiological research may lead to novel therapeutic targets. The interdisciplinary assessment of mechanisms and therapeutic strategies of cardiac arrhythmias represented a key feature of the meeting. A unique combination of topics and speakers representing both basic science and clinical electrophysiology ensured the scientific success of the "Göttingen Channels 2017" symposium. The next Ion Channel Symposium is planned to be hosted by the incoming co-chair of the German Cardiac Society Working Group on Cellular Electrophysiology in fall 2019.
Collapse
|