1
|
Shrivastava S, Patra MR, Das A. A systematic approach for surfactant system selection and optimization for cleaning electronic assemblies’ residues. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
El Founi M, Laroui H, Canup BSB, Ametepe JS, Vanderesse R, Acherar S, Babin J, Ferji K, Chevalot I, Six JL. Doxorubicin Intracellular Release Via External UV Irradiation of Dextran- g-poly( o-nitrobenzyl acrylate) Photosensitive Nanoparticles. ACS APPLIED BIO MATERIALS 2021; 4:2742-2751. [PMID: 35014313 DOI: 10.1021/acsabm.0c01644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, innovative doxorubicin-loaded nanoparticles (NPs) made of a photosensitive poly(o-nitrobenzyl acrylate) (PNBA) hydrophobic matrix and an hydrophilic dextran (Dex) shell were first formulated by the emulsion-solvent evaporation process. Doxorubicin (DOX), a very well-known anticancer drug, was herein chosen as the model. DOX-loaded NPs were successfully produced by covering the hydrophobic PNBA core with Dex chains either physically adsorbed or covalently linked by changing process parameters as the presence of a catalyst (CuBr or CuSO4/ascorbic acid). It was then proved that the neutralization of DOX optimized drug loading. DOX loading and release were independent of the coverage mechanism if the catalyst used to covalently link the shell to the core was correctly chosen. Second, the kinetics of DOX release were investigated by simple diffusion or light irradiation of the NPs. Experiments showed that less than 20% of DOX was released by simple diffusion after 48 h in PBS or DMEM media when 45% of DOX released after only 30 s of light irradiation of the NPs. Finally, the impact of the phototriggered DOX release on cell viability was investigated on various cell lines [Caco-2, HepG2, HCT-116, and HT-29 cells as well as murine macrophages (RAW 264.7)]. Cellular mortality was evaluated to be dependent on the cell lines tested. Our approach provided an improved DOX release toward the human liver cancer cell line, and a high internalization of the PNBA-based NPs into HepG2 cells was observed using fluorescence microscopy.
Collapse
Affiliation(s)
| | - Hamed Laroui
- Department of Chemistry/Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Brandon S B Canup
- Department of Chemistry/Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Joseph S Ametepe
- Department of Chemistry/Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | | | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| | - Jérome Babin
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| | | | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| |
Collapse
|
3
|
Shrivastava S, Das A. Interaction between ethoxylated emulsifiers and propylene glycol based solvents: Gelation and rheology study. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Soliman SMA, El Founi M, Vanderesse R, Acherar S, Ferji K, Babin J, Six JL. Light-sensitive dextran-covered PNBA nanoparticles to continuously or discontinuously improve the drug release. Colloids Surf B Biointerfaces 2019; 182:110393. [DOI: 10.1016/j.colsurfb.2019.110393] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/07/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
|
5
|
Ma X, Liu J, Lei L, Yang H, Lei Z. Synthesis of light and dual‐redox triple‐stimuli‐responsive core‐crosslinked micelles as nanocarriers for controlled release. J Appl Polym Sci 2019. [DOI: 10.1002/app.47946] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiao Ma
- Key Laboratory of Applied Surface and Colloid ChemistrySchool of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Jiangtao Liu
- College of PharmacyShaanxi University of Chinese Medicine Xianyang 712046 China
| | - Lei Lei
- Key Laboratory of Applied Surface and Colloid ChemistrySchool of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Hong Yang
- Basic Experimental Teaching CenterShaanxi Normal University Xi'an 710062 China
| | - Zhongli Lei
- Key Laboratory of Applied Surface and Colloid ChemistrySchool of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
6
|
Yang W, Lu H, Liao L, Fan G, Ma Q, Huang J. Synthesis, and single crystal structure of fully-substituted polynitrobenzene derivatives for high-energy materials. RSC Adv 2018; 8:2203-2208. [PMID: 35542598 PMCID: PMC9077242 DOI: 10.1039/c7ra13346d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/06/2018] [Accepted: 01/03/2018] [Indexed: 11/21/2022] Open
Abstract
Novel energetic fully-substituted polynitrobenzene derivatives were synthesized from economical TCTNB and exhibit good thermal stabilities coupled with reasonable detonation performance.
Collapse
Affiliation(s)
- Wei Yang
- Department of Chemistry and Chemical Biology
- Harvard University
- Cambridge
- USA
| | - Huanchang Lu
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- China
| | - Longyu Liao
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- China
| | - Guijuan Fan
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- China
| | - Qing Ma
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- China
| | - Jinglun Huang
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- China
| |
Collapse
|
7
|
Grimm O, Wendler F, Schacher FH. Micellization of Photo-Responsive Block Copolymers. Polymers (Basel) 2017; 9:E396. [PMID: 30965699 PMCID: PMC6418654 DOI: 10.3390/polym9090396] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022] Open
Abstract
This review focuses on block copolymers featuring different photo-responsive building blocks and self-assembly of such materials in different selective solvents. We have subdivided the specific examples we selected: (1) according to the wavelength at which the irradiation has to be carried out to achieve photo-response; and (2) according to whether irradiation with light of a suitable wavelength leads to reversible or irreversible changes in material properties (e.g., solubility, charge, or polarity). Exemplarily, an irreversible change could be the photo-cleavage of a nitrobenzyl, pyrenyl or coumarinyl ester, whereas the photo-mediated transition between spiropyran and merocyanin form as well as the isomerization of azobenzenes would represent reversible response to light. The examples presented cover applications including drug delivery (controllable release rates), controlled aggregation/disaggregation, sensing, and the preparation of photochromic hybrid materials.
Collapse
Affiliation(s)
- Oliver Grimm
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
| | - Felix Wendler
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany.
| |
Collapse
|
8
|
Telitel S, Blasco E, Bangert LD, Schacher FH, Goldmann AS, Barner-Kowollik C. Photo-reversible bonding and cleavage of block copolymers. Polym Chem 2017. [DOI: 10.1039/c7py00843k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We introduce a synthetic avenue for the completely photoreversible formation of block copolymers based on anthracene chemistry.
Collapse
Affiliation(s)
- Siham Telitel
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Eva Blasco
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Lukas D. Bangert
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Anja S. Goldmann
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| |
Collapse
|