1
|
Arash A, Dehgan F, Zamanlui Benisi S, Jafari-Nodoushan M, Pezeshki-Modaress M. Polysaccharide base electrospun nanofibrous scaffolds for cartilage tissue engineering: Challenges and opportunities. Int J Biol Macromol 2024; 277:134054. [PMID: 39038580 DOI: 10.1016/j.ijbiomac.2024.134054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Polysaccharides, known as naturally abundant macromolecular materials which can be easily modified chemically, have always attracted scientists' interest due to their outstanding properties in tissue engineering. Moreover, their intrinsic similarity to cartilage ECM components, biocompatibility, and non-harsh processing conditions make polysaccharides an excellent option for cartilage tissue engineering. Imitating the natural ECM structure to form a fibrous scaffold at the nanometer scale in order to recreate the optimal environment for cartilage regeneration has always been attractive for researchers in the past few years. However, there are some challenges for polysaccharides electrospun nanofibers preparation, such as poor solubility (Alginate, cellulose, chitin), high viscosity (alginate, chitosan, and Hyaluronic acid), high surface tension, etc. Several methods are reported in the literature for facing polysaccharide electrospinning issues, such as using carrier polymers, modification of polysaccharides, and using different solvent systems. In this review, considering the importance of polysaccharide-based electrospun nanofibers in cartilage tissue engineering applications, the main achievements in the past few years, and challenges for their electrospinning process are discussed. After careful investigation of reported studies in the last few years, alginate, chitosan, hyaluronic acid, chondroitin sulfate, and cellulose were chosen as the main polysaccharide base electrospun nanofibers used for cartilage regeneration.
Collapse
Affiliation(s)
- Atefeh Arash
- Department of Biomedical Engineering, Faculty of Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Fatemeh Dehgan
- Department of Biomedical Engineering, Faculty of Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran; Stem cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Milad Jafari-Nodoushan
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran; Hard Tissue Engineering Resarch Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mohamad Pezeshki-Modaress
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Onu I, Gherghel R, Nacu I, Cojocaru FD, Verestiuc L, Matei DV, Cascaval D, Serban IL, Iordan DA, Tucaliuc A, Galaction AI. Can Combining Hyaluronic Acid and Physiotherapy in Knee Osteoarthritis Improve the Physicochemical Properties of Synovial Fluid? Biomedicines 2024; 12:449. [PMID: 38398051 PMCID: PMC10886650 DOI: 10.3390/biomedicines12020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Known as the degenerative disease of the knee with the highest prevalence, knee osteoarthritis (KOA) is characterized by a gradual destructive mechanism that, in severe cases, can provoke the need for total knee substitution. As the disease progresses, various enzymatic, immunological, and inflammatory processes abnormally degrade hyaluronic acid (HA), SF's main component, and affect the concentrations of specific proteins, with the final results seriously endangering synovial fluid (SF)'s rheological and tribological features and characteristics. No effective treatments have been found to stop the progression of KOA, but the injection of HA-based viscoelastic gels has been considered (alone or combined with physiotherapy (PT)) as an alternative to symptomatic therapies. In order to evaluate the effect of viscosupplementation and PT on the characteristics of SF, SF aspirated from groups treated for KOA (HA Kombihylan® and groups that received Kombihylan® and complex PT) was analyzed and compared from analytical, spectrophotometrical, and rheological perspectives. In the patients treated with PT, the SF extracted 6 weeks after viscosupplementation had a superior elastic modulus (G') and viscous moduli (G″), as well as a homogeneous distribution of proteins and polysaccharides. The viscosupplementation fluid improved the bioadhesive properties of the SF, and the use of the viscosupplementation fluid in conjunction with PT was found to be favorable for the distribution of macromolecules and phospholipids, contributing to the lubrication process and the treatment of OA-affected joints.
Collapse
Affiliation(s)
- Ilie Onu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
- Department of Physiotherapy, Micromedica Clinic, 610119 Piatra Neamt, Romania
| | - Robert Gherghel
- Department of Physiotherapy, Micromedica Clinic, 610119 Piatra Neamt, Romania
- Department of Morpho-Functional Sciences II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Isabella Nacu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
- Petru Poni Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Florina-Daniela Cojocaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| | - Daniela-Viorelia Matei
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| | - Dan Cascaval
- Department of Organic, Biochemical and Food Engineering, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, Technical University “Gheorghe Asachi”, 700050 Iasi, Romania; (D.C.); (A.T.)
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Daniel Andrei Iordan
- Department of Individual Sports and Kinetotherapy, Faculty of Physical Education and Sport, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
- Center of Physical Therapy and Rehabilitation, “Dunărea de Jos” University of Galati, 800008 Galati, Romania
| | - Alexandra Tucaliuc
- Department of Organic, Biochemical and Food Engineering, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, Technical University “Gheorghe Asachi”, 700050 Iasi, Romania; (D.C.); (A.T.)
| | - Anca-Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| |
Collapse
|
3
|
Srivastava N, Choudhury AR. Stimuli-Responsive Polysaccharide-Based Smart Hydrogels and Their Emerging Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
| |
Collapse
|
4
|
Lei Y, Zhang Q, Kuang G, Wang X, Fan Q, Ye F. Functional biomaterials for osteoarthritis treatment: From research to application. SMART MEDICINE 2022; 1:e20220014. [PMID: 39188730 PMCID: PMC11235767 DOI: 10.1002/smmd.20220014] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 08/28/2024]
Abstract
Osteoarthritis (OA) is a common disease that endangers millions of middle-aged and elderly people worldwide. Researchers from different fields have made great efforts and achieved remarkable progress in the pathogenesis and treatment of OA. However, there is still no cure for OA. In this review, we discuss the pathogenesis of OA and summarize the current clinical therapies. Moreover, we introduce various natural and synthetic biomaterials for drug release, cartilage transplantation, and joint lubricant during the OA treatment. We also present our perspectives and insights on OA treatment in the future. We hope that this review will foster communication and collaboration among biological, clinical, and biomaterial researchers, paving the way for OA therapeutic breakthroughs.
Collapse
Affiliation(s)
- Yang Lei
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Qingfei Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Gaizheng Kuang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Xiaochen Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Hamdi M, Elmowafy E, Abdel-Bar HM, ElKashlan AM, Al-Jamal KT, Awad GAS. Hyaluronic acid-entecavir conjugates-core/lipid-shell nanohybrids for efficient macrophage uptake and hepatotropic prospects. Int J Biol Macromol 2022; 217:731-747. [PMID: 35841964 DOI: 10.1016/j.ijbiomac.2022.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
Drug covalently bound to polymers had formed, lately, platforms with great promise in drug delivery. These drug polymer conjugates (DPC) boosted drug loading and controlled medicine release with targeting ability. Herein, the ability of entecavir (E) conjugated to hyaluronic acid (HA) forming the core of vitamin E coated lipid nanohybrids (EE-HA LPH), to target Kupffer cells and hepatocyte had been proved. The drug was associated to HA with efficiency of 93.48 ± 3.14 % and nanohybrids loading of 22.02 ± 2.3 %. DiI labelled lipidic nanohybrids improved the macrophage uptake in J774 cells with a 21 day hepatocytes retention post intramuscular injection. Finally, in vivo biocompatibility and safety with respect to body weight, organs indices and histopathological alterations were demonstrated. Coating with vitamin E and conjugation of E to HA (a CD44 ligand), could give grounds for prospective application for vectored nano-platform in hepatitis B.
Collapse
Affiliation(s)
- Mohamed Hamdi
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Egypt; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, United Kingdom.
| | - Akram M ElKashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Egypt
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - Gehanne A S Awad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| |
Collapse
|
6
|
Vahedi P, Moghaddamshahabi R, Webster TJ, Calikoglu Koyuncu AC, Ahmadian E, Khan WS, Jimale Mohamed A, Eftekhari A. The Use of Infrapatellar Fat Pad-Derived Mesenchymal Stem Cells in Articular Cartilage Regeneration: A Review. Int J Mol Sci 2021; 22:9215. [PMID: 34502123 PMCID: PMC8431575 DOI: 10.3390/ijms22179215] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cartilage is frequently damaged with a limited capacity for repair. Current treatment strategies are insufficient as they form fibrocartilage as opposed to hyaline cartilage, and do not prevent the progression of degenerative changes. There is increasing interest in the use of autologous mesenchymal stem cells (MSC) for tissue regeneration. MSCs that are used to treat articular cartilage defects must not only present a robust cartilaginous production capacity, but they also must not cause morbidity at the harvest site. In addition, they should be easy to isolate from the tissue and expand in culture without terminal differentiation. The source of MSCs is one of the most important factors that may affect treatment. The infrapatellar fat pad (IPFP) acts as an important reservoir for MSC and is located in the anterior compartment of the knee joint in the extra-synovial area. The IPFP is a rich source of MSCs, and in this review, we discuss studies that demonstrate that these cells have shown many advantages over other tissues in terms of ease of isolation, expansion, and chondrogenic differentiation. Future studies in articular cartilage repair strategies and suitable extraction as well as cell culture methods will extend the therapeutical application of IPFP-derived MSCs into additional orthopedic fields, such as osteoarthritis. This review provides the latest research concerning the use of IPFP-derived MSCs in the treatment of articular cartilage damage, providing critical information for the field to grow.
Collapse
Affiliation(s)
- Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh 78151-55158, Iran;
| | - Rana Moghaddamshahabi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta 99628, North Cyprus, Turkey;
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Ayse Ceren Calikoglu Koyuncu
- Materials and Metallurgical Engineering Department, Faculty of Technology, Marmara University, Istanbul 34722, Turkey;
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 51666-15731, Iran;
| | - Wasim S. Khan
- Division of Trauma & Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ali Jimale Mohamed
- Department of Pharmacology, Faculty of Medicine, Somali National University, Mogadishu 801, Somalia;
| | - Aziz Eftekhari
- Department of Toxicology and Pharmacology, Maragheh University of Medical Sciences, Maragheh 78151-55158, Iran
- Department of Synthesis and Characterization of Polymers, Polymer Institute, Slovak Academy of Sciences (SAS), Dúbravská cesta, 9, 845 41 Bratislava, Slovakia
| |
Collapse
|
7
|
Lin W, Klein J. Recent Progress in Cartilage Lubrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005513. [PMID: 33759245 DOI: 10.1002/adma.202005513] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Indexed: 05/18/2023]
Abstract
Healthy articular cartilage, covering the ends of bones in major joints such as hips and knees, presents the most efficiently-lubricated surface known in nature, with friction coefficients as low as 0.001 up to physiologically high pressures. Such low friction is indeed essential for its well-being. It minimizes wear-and-tear and hence the cartilage degradation associated with osteoarthritis, the most common joint disease, and, by reducing shear stress on the mechanotransductive, cartilage-embedded chondrocytes (the only cell type in the cartilage), it regulates their function to maintain homeostasis. Understanding the origins of such low friction of the articular cartilage, therefore, is of major importance in order to alleviate disease symptoms, and slow or even reverse its breakdown. This progress report considers the relation between frictional behavior and the cellular mechanical environment in the cartilage, then reviews the mechanism of lubrication in the joints, in particular focusing on boundary lubrication. Following recent advances based on hydration lubrication, a proposed synergy between different molecular components of the synovial joints, acting together in enabling the low friction, has been proposed. Additionally, recent development of natural and bio-inspired lubricants is reviewed.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jacob Klein
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
8
|
Wiegand MJ, Khullar P, Mercuri JJ, Gilbert JL. Synthetic periprosthetic synovial fluid development for in vitro cell-tribocorrosion testing using the Taguchi array approach. J Biomed Mater Res A 2020; 109:551-561. [PMID: 32946189 DOI: 10.1002/jbm.a.37039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022]
Abstract
Synovial fluid is dynamic in vivo with biological components changing in ratio and size depending on the health of the joint space, making it difficult to model in vitro. Previous efforts to develop synthetic synovial fluid have typically focused on single organic-tribological interactions with implant surfaces, thus ignoring interplay between multiple solution components. Using a Taguchi orthogonal array, we were able to isolate the individual effects of five independent synovial fluid composition variables: ratios of (1) hyaluronic acid to phospholipids (HA:PL) and (2) albumin to globulin (A:G), and concentrations of (3) hydrogen peroxide (H2 O2 ), (4) cobalt (Co2+ ) and (5) chromium (Cr3+ ) ions on macrophage viability and reduced glutathione production, local solution pH and the comprehensive CoCrMo alloy electrochemical response. While no single synovial fluid variable significantly affected the collective response, HA:PL ratio resulted in the largest impact factor (Δ) on 12 of the 13 measured responses with significant effects (p < .05) on the average macrophage survival rate and electrochemical capacitive state of the CoCrMo surface. Cluster analysis separated significant responses from all trials into three groups, corresponding to healthy, mild, or severely inflamed fluids, respectively; with the healthy synovial fluid composition having mid-range HA:PL ratios with no Co2+ ions, and the severely inflamed fluids consisting of low and high HA:PL ratios with H2 O2 and Co2+ ions. By utilizing the Taguchi approach in combination with cluster analysis, we were able to advance our knowledge of complex multivariate synthetic synovial fluids influence on macrophage and electrochemical behavior at the cell-solution-metal interface.
Collapse
Affiliation(s)
- Michael J Wiegand
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,The Clemson University-Medical University of South Carolina Program in Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Piyush Khullar
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,The Clemson University-Medical University of South Carolina Program in Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Jeremy J Mercuri
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Jeremy L Gilbert
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,The Clemson University-Medical University of South Carolina Program in Bioengineering, Clemson University, Charleston, South Carolina, USA
| |
Collapse
|
9
|
The Role of Hyaluronic Acid in Cartilage Boundary Lubrication. Cells 2020; 9:cells9071606. [PMID: 32630823 PMCID: PMC7407873 DOI: 10.3390/cells9071606] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023] Open
Abstract
Hydration lubrication has emerged as a new paradigm for lubrication in aqueous and biological media, accounting especially for the extremely low friction (friction coefficients down to 0.001) of articular cartilage lubrication in joints. Among the ensemble of molecules acting in the joint, phosphatidylcholine (PC) lipids have been proposed as the key molecules forming, in a complex with other molecules including hyaluronic acid (HA), a robust layer on the outer surface of the cartilage. HA, ubiquitous in synovial joints, is not in itself a good boundary lubricant, but binds the PC lipids at the cartilage surface; these, in turn, massively reduce the friction via hydration lubrication at their exposed, highly hydrated phosphocholine headgroups. An important unresolved issue in this scenario is why the free HA molecules in the synovial fluid do not suppress the lubricity by adsorbing simultaneously to the opposing lipid layers, i.e., forming an adhesive, dissipative bridge between them, as they slide past each other during joint articulation. To address this question, we directly examined the friction between two hydrogenated soy PC (HSPC) lipid layers (in the form of liposomes) immersed in HA solution or two palmitoyl-oleoyl PC (POPC) lipid layers across HA-POPC solution using a surface force balance (SFB). The results show, clearly and surprisingly, that HA addition does not affect the outstanding lubrication provided by the PC lipid layers. A possible mechanism indicated by our data that may account for this is that multiple lipid layers form on each cartilage surface, so that the slip plane may move from the midplane between the opposing surfaces, which is bridged by the HA, to an HA-free interface within a multilayer, where hydration lubrication is freely active. Another possibility suggested by our model experiments is that lipids in synovial fluid may complex with HA, thereby inhibiting the HA molecules from adhering to the lipids on the cartilage surfaces.
Collapse
|
10
|
Cook SG, Bonassar LJ. Interaction with Cartilage Increases the Viscosity of Hyaluronic Acid Solutions. ACS Biomater Sci Eng 2020; 6:2787-2795. [PMID: 33463274 DOI: 10.1021/acsbiomaterials.0c00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Injection of hyaluronic acid (HA) viscosupplements is a prevalent treatment for patients suffering from mild to moderate osteoarthritis. The efficacy of these supplements is attributed to increased synovial fluid viscosity, which leads to improved lubrication and reduced pain. Therefore, viscosity is a key parameter to consider in the development of HA supplements. HA localizes near the cartilage surface, resulting in a viscosity gradient with heightened viscosity near the surface. Traditional rheological measurements confine HA between metal fixtures and therefore do not capture the effect of HA localization that occurs on cartilage. In these experiments, we investigate the effect of modifying rheometer fixtures with cartilage surface coatings on the effective viscosity of HA solutions. Our results demonstrate up to a 20-fold increase in effective viscosity when HA was confined between cartilage surfaces compared to steel surfaces. For low-molecular-weight HA, the effective viscosity was dependent on the gap height between the rheometer plates, which is consistent with the formation of a viscous boundary film. Together, these results indicate that this method for assessing HA viscosity may be more relevant to lubrication than traditional methods and may provide a more accurate method for predicting the viscosity of HA viscosupplements in vivo where HA is able to interact with the cartilage surface.
Collapse
Affiliation(s)
- Sierra G Cook
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Todorova N, Bentvelzen A, Yarovsky I. Electromagnetic field modulates aggregation propensity of amyloid peptides. J Chem Phys 2020; 152:035104. [DOI: 10.1063/1.5126367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- N. Todorova
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia
- Australian Centre for Electromagnetic Bioeffects Research, Australia
| | - A. Bentvelzen
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia
- Australian Centre for Electromagnetic Bioeffects Research, Australia
| | - I. Yarovsky
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia
- Australian Centre for Electromagnetic Bioeffects Research, Australia
| |
Collapse
|
12
|
Biolubrication synergy: Hyaluronan - Phospholipid interactions at interfaces. Adv Colloid Interface Sci 2019; 274:102050. [PMID: 31669714 DOI: 10.1016/j.cis.2019.102050] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 11/24/2022]
Abstract
The manner in which nature has solved lubrication issues has fascinated scientists for centuries, in particular when considering that lubrication is achieved in aqueous media. The most outstanding system in this respect is likely the synovial joint, where close to frictionless motion is realized under different loads and shear rates. This review article focuses on two components present in the synovial area, hyaluronan and phospholipids. We recapitulate what has been learned about their interactions at interfaces from recent experiments, with focus on results obtained using reflectivity techniques at large scale facilities. In parallel, modelling experiments have been carried out and from these efforts new detailed knowledge about how hyaluronan and phospholipids interact has been gained. In this review we combine findings from modelling and experiments to gain deeper insight. Finally, we summarize what has been learned of the lubrication performance of mixtures of phospholipids and hyaluronan.
Collapse
|
13
|
Shah SA, Sohail M, Khan S, Minhas MU, de Matas M, Sikstone V, Hussain Z, Abbasi M, Kousar M. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. Int J Biol Macromol 2019; 139:975-993. [PMID: 31386871 DOI: 10.1016/j.ijbiomac.2019.08.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Non-healing, chronic wounds place a huge burden on healthcare systems as well as individual patients. These chronic wounds especially diabetic wounds will ultimately lead to compromised mobility, amputation of limbs and even death. Currently, wounds and limb ulcers associated with diabetes remain significant health issues; the associated healthcare cost ultimately leads to the increased clinical burden. The presence of diabetes interrupts a highly coordinated cascade of events in the wound closure process. Advances in the understanding of pathophysiological conditions associated with diabetic wounds lead to the development of drug delivery systems which can enhance wound healing by targeting various phases of the impaired processes. Wound environments typically contain degradative enzymes, along with an elevated pH and demonstrate a physiological cascade involved in the regeneration of tissue, which requires the application of an effective delivery system. This article aims to review the pathophysiological conditions associated with chronic and diabetic wounds. The delivery systems, involved in their treatment are described, highlighting potential biomaterials and polymers for establishing drug delivery systems, specifically for the treatment of diabetic wounds and the promotion of the associated mechanisms involved in advanced wound healing. Emerging approaches and engineered devices for effective wound care are reported. The discussion will give insight into the mechanisms relevant to all stages of wound healing.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan.
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409, USA.; Discipline of Pharmaceutical Sciences, School of Health Sciences, UKZN, Durban, South Africa
| | | | - Marcel de Matas
- SEDA Pharmaceutical Development Services, The BioHub at Alderley Park, Cheshire, UK
| | - Victoria Sikstone
- Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, UK
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| |
Collapse
|
14
|
Understanding the Unique Role of Phospholipids in the Lubrication of Natural Joints: An Interfacial Tension Study. COATINGS 2019. [DOI: 10.3390/coatings9040264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Some solid lubricants are characterized by a layered structure with weak (van der Waals) inter-interlayer forces which allow for easy, low-strength shearing. Solid lubricants in natural lubrication are characterized by phospholipid bilayers in the articular joints and phospholipid lamellar phases in synovial fluid. The influence of the acid–base properties of the phospholipid bilayer on the wettability and properties of the surface have been explained by studying the interfacial tension of spherical lipid bilayers based on a model membrane. In this paper, we show that the phospholipid multi-bilayer can act as an effective solid lubricant in every aspect, ranging from a ‘corrosion inhibitor’ in the stomach to a load-bearing lubricant in bovine joints. We present evidence of the outstanding performance of phospholipids and argue that this is due to their chemical inertness and hydrophilic–hydrophobic structure, which makes them amphoteric and provides them with the ability to form lamellar structures that can facilitate functional sliding. Moreover, the friction coefficient can significantly change for a given phospholipid bilayer so it leads to a lamellar-repulsive mechanism under highly charged conditions. After this, it is quickly transformed to result in stable low-friction conditions.
Collapse
|
15
|
Bełdowski P, Kruszewska N, Yuvan S, Dendzik Z, Goudoulas T, Gadomski A. Capstan-like mechanism in hyaluronan-phospholipid systems. Chem Phys Lipids 2018; 216:17-24. [PMID: 30144435 DOI: 10.1016/j.chemphyslip.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022]
Abstract
Functionality of articular cartilage results from complex interactions between its molecular components. Among many biomolecules, two are of prime importance for lubrication: hyaluronic acid (HA) and phospholipids (PL). The purpose of this study is to discuss a mechanism of interaction between these two components and how their synergies contribute to nanobiolubrication of articular cartilage. Preliminary molecular dynamics simulations have been performed to investigate these interactions by adopting a capstan-like mechanism of action. By applying a constant pulling force to both ends of a HA molecule, wrapped around a PL micelle, we viewed the rotation of the PL micelle. The simulations were performed upon two physicochemical constraints: force- and solvent-dependency. The results show the efficiency of rotation from intermolecular bond creation and annihilation. We found a direct relation between the available surface of the micelle and the magnitude of the force, which varies significantly through the unwinding. The movement of the attached molecules is characterized by a slide-to-roll relation, which is affected by the viscosity of the surrounding medium. As a consequence, two solvents were studied for specific force conditions and the molecular dynamics simulation exhibited double the slide-to-roll coefficient for the viscous solvent as compared to its low-viscosity limit.
Collapse
Affiliation(s)
- P Bełdowski
- UTP University of Science and Technology, Institute of Mathematics and Physics, Kaliskiego 7, PL-85796 Bydgoszcz, Poland.
| | - N Kruszewska
- UTP University of Science and Technology, Institute of Mathematics and Physics, Kaliskiego 7, PL-85796 Bydgoszcz, Poland.
| | - S Yuvan
- Department of Physics, East Carolina University, Greenville, NC 27858, USA
| | - Z Dendzik
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - T Goudoulas
- Technical University of Munich, School of Life Sciences Weihenstephan, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
| | - A Gadomski
- UTP University of Science and Technology, Institute of Mathematics and Physics, Kaliskiego 7, PL-85796 Bydgoszcz, Poland
| |
Collapse
|
16
|
The Anomalies of Hyaluronan Structures in Presence of Surface Active Phospholipids-Molecular Mass Dependence. Polymers (Basel) 2018; 10:polym10030273. [PMID: 30966308 PMCID: PMC6414856 DOI: 10.3390/polym10030273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 01/23/2023] Open
Abstract
Interactions between hyaluronan (A-) and phospholipids play a key role in many systems in the human body. One example is the articular cartilage system, where the synergistic effect of such interactions supports nanoscale lubrication. A molecular dynamics simulation has been performed to understand the process of formation of hydrogen bonds inside the hyaluronan network, both in the presence and absence of phospholipids. Additionally, the effect of the molecular mass of (A-) was analyzed. The main finding of this work is a robust demonstration of the optimal parameters (H-bond energy, molecular mass) influencing the facilitated lubrication mechanism of the articular cartilage system. Simulation results show that the presence of phospholipids has the greatest influence on hyaluronan at low molecular mass. We also show the specific sites of H-bonding between chains. Simulation results can help to understand how hyaluronan and phospholipids interact at several levels of articular cartilage system functioning.
Collapse
|
17
|
Bełdowski P, Weber P, Andrysiak T, Augé Ii WK, Ledziński D, De Leon T, Gadomski A. Anomalous Behavior of Hyaluronan Crosslinking Due to the Presence of Excess Phospholipids in the Articular Cartilage System of Osteoarthritis. Int J Mol Sci 2017; 18:E2779. [PMID: 29261165 PMCID: PMC5751377 DOI: 10.3390/ijms18122779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022] Open
Abstract
Lubrication of articular cartilage is a complex multiscale phenomenon in synovial joint organ systems. In these systems, synovial fluid properties result from synergistic interactions between a variety of molecular constituent. Two molecular classes in particular are of importance in understanding lubrication mechanisms: hyaluronic acid and phospholipids. The purpose of this study is to evaluate interactions between hyaluronic acid and phospholipids at various functionality levels during normal and pathological synovial fluid conditions. Molecular dynamic simulations of hyaluronic acid and phospholipids complexes were performed with the concentration of hyaluronic acid set at a constant value for two organizational forms, extended (normal) and coiled (pathologic). The results demonstrated that phospholipids affect the crosslinking mechanisms of hyaluronic acid significantly and the influence is higher during pathological conditions. During normal conditions, hyaluronic acid and phospholipid interactions seem to have no competing mechanism to that of the interaction between hyaluronic acid to hyaluronic acid. On the other hand, the structures formed under pathologic conditions were highly affected by phospholipid concentration.
Collapse
Affiliation(s)
- Piotr Bełdowski
- Institute of Mathematics and Physics, UTP University of Science and Technology, PL 85796 Bydgoszcz, Poland.
| | - Piotr Weber
- Atomic and Optical Physics Division, Department of Atomic, Molecular and Optical Physics, Gdańsk University of Technology, PL 80233 Gdańsk, Poland.
| | - Tomasz Andrysiak
- Faculty of Telecommunications, Computer Science and Technology, UTP University of Science and Technology, PL 85796 Bydgoszcz, Poland.
| | - Wayne K Augé Ii
- Department of Research and Development, NuOrtho Surgical, Inc., Boston, MA 02723, USA.
| | - Damian Ledziński
- Faculty of Telecommunications, Computer Science and Technology, UTP University of Science and Technology, PL 85796 Bydgoszcz, Poland.
| | - Tristan De Leon
- College of Mathematics, Natural Sciences and Technology, Delaware State University, Dover, DE 19901, USA.
| | - Adam Gadomski
- Institute of Mathematics and Physics, UTP University of Science and Technology, PL 85796 Bydgoszcz, Poland.
| |
Collapse
|
18
|
Siódmiak J, Bełdowski P, Augé WK, Ledziński D, Śmigiel S, Gadomski A. Molecular Dynamic Analysis of Hyaluronic Acid and Phospholipid Interaction in Tribological Surgical Adjuvant Design for Osteoarthritis. Molecules 2017; 22:E1436. [PMID: 28869569 PMCID: PMC6151699 DOI: 10.3390/molecules22091436] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/25/2017] [Indexed: 11/30/2022] Open
Abstract
Tribological surgical adjuvants constitute a therapeutic discipline made possible by surgical advances in the treatment of damaged articular cartilage beyond palliative care. The purpose of this study is to analyze interactions between hyaluronic acid and phospholipid molecules, and the formation of geometric forms, that play a role in the facilitated lubrication of synovial joint organ systems. The analysis includes an evaluation of the pathologic state to detail conditions that may be encountered by adjuvants during surgical convalescence. The synovial fluid changes in pH, hyaluronic acid polydispersity, and phospholipid concentration associated with osteoarthritis are presented as features that influence the lubricating properties of adjuvant candidates. Molecular dynamic simulation studies are presented, and the Rouse model is deployed, to rationalize low molecular weight hyaluronic acid behavior in an osteoarthritic environment of increased pH and phospholipid concentration. The results indicate that the hyaluronic acid radius of gyration time evolution is both pH- and phospholipid concentration-dependent. Specifically, dipalmitoylphosphatidylcholine induces hydrophobic interactions in the system, causing low molecular weight hyaluronic acid to shrink and at high concentration be absorbed into phospholipid vesicles. Low molecular weight hyaluronic acid appears to be insufficient for use as a tribological surgical adjuvant because an increased pH and phospholipid concentration induces decreased crosslinking that prevents the formation of supramolecular lubricating forms. Dipalmitoylphosphatidylcholine remains an adjuvant candidate for certain clinical situations. The need to reconcile osteoarthritic phenotypes is a prerequisite that should serve as a framework for future adjuvant design and subsequent tribological testing.
Collapse
Affiliation(s)
- Jacek Siódmiak
- Institute of Mathematics and Physics, UTP University of Science and Technology, 85-796 Bydgoszcz, Poland.
| | - Piotr Bełdowski
- Institute of Mathematics and Physics, UTP University of Science and Technology, 85-796 Bydgoszcz, Poland.
| | - Wayne K Augé
- Department of Research and Development, NuOrtho Surgical, Inc., Boston, MA 02723, USA.
| | - Damian Ledziński
- Faculty of Telecommunications, Computer Science and Technology, UTP University of Science and Technology, 85-796 Bydgoszcz, Poland.
| | - Sandra Śmigiel
- Faculty of Mechanical Engineering, UTP University of Science and Technology, 85-796 Bydgoszcz, Poland.
| | - Adam Gadomski
- Institute of Mathematics and Physics, UTP University of Science and Technology, 85-796 Bydgoszcz, Poland.
| |
Collapse
|
19
|
Lu Y, Shi XF, Salsbury FR, Derreumaux P. Small static electric field strength promotes aggregation-prone structures in amyloid-β(29-42). J Chem Phys 2017; 146:145101. [DOI: 10.1063/1.4979866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yan Lu
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Xiao-Feng Shi
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Philippe Derreumaux
- Laboratoire de Biochimie Theorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Universite Paris Diderot, Sorbonne Paris Cite, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
20
|
Abstract
In living organisms the aqueous medium is used for providing low friction forces. This is achieved by synergistic actions of different biomolecules that together accomplish a high load bearing capacity and sustain an easily sheared water layer.
Collapse
Affiliation(s)
- Andra Dėdinaitė
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Chemistry
- Division of Surface and Corrosion Science
- Drottning Kristinas väg 51
| | - Per M. Claesson
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Chemistry
- Division of Surface and Corrosion Science
- Drottning Kristinas väg 51
| |
Collapse
|