1
|
Meng Y, Xu L, Cheng G. Bioelectronics hydrogels for implantable cardiac and brain disease medical treatment application. Int J Biol Macromol 2025; 299:139945. [PMID: 39837454 DOI: 10.1016/j.ijbiomac.2025.139945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Hydrogel-based bioelectronic systems offer significant benefits for point-of-care diagnosis, treatment of cardiac and cerebral disease, surgical procedures, and other medical applications, ushering in a new era of advancements in medical technology. Progress in hydrogel-based bioelectronics has advanced from basic instrument and sensing capabilities to sophisticated multimodal perceptions and feedback systems. Addressing challenges related to immune responses and inflammation regulation after implantation, physiological dynamic mechanism, biological toxicology as well as device size, power consumption, stability, and signal conversion is crucial for the practical implementation of hydrogel-based bioelectronics in medical implants. Therefore, further exploration of hydrogel-based bioelectronics is imperative, and a comprehensive review is necessary to steer the development of these technologies for use in implantable therapies for cardiac and brain/neural conditions. In this review, a concise overview is provided on the fundamental principles underlying ionic electronic and ionic bioelectronic mechanisms. Additionally, a comprehensive examination is conducted on various bioelectronic materials integrated within hydrogels for applications in implantable medical treatments. The analysis encompasses a detailed discussion on the representative structures and physical attributes of hydrogels. This includes an exploration of their intrinsic properties such as mechanical strength, dynamic capabilities, shape-memory features, stability, stretchability, and water retention characteristics. Moreover, the discussion extends to properties related to interactions with tissues or the environment, such as adhesiveness, responsiveness, and degradability. The intricate relationships between the structure and properties of hydrogels are thoroughly examined, along with an elucidation of how these properties influence their applications in implantable medical treatments. The review also delves into the processing techniques and characterization methods employed for hydrogels. Furthermore, recent breakthroughs in the applications of hydrogels are logically explored, covering aspects such as materials, structure, properties, functions, fabrication procedures, and hybridization with other materials. Finally, the review concludes by outlining the future prospects and challenges associated with hydrogels-based bioelectronics systems.
Collapse
Affiliation(s)
- Yanfang Meng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Lin Xu
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
2
|
Shibayama M. Physics of polymer gels: Toyoichi Tanaka and after. SOFT MATTER 2025. [PMID: 39898871 DOI: 10.1039/d4sm01418a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
This review revisits the works of Toyoichi Tanaka on the physics of polymer gels and discusses their scientific significance with the keywords of volume phase transition, structure, dynamics, kinetics and inhomogeneities, followed by some recent topics including defect-free homogeneous gels. Then, the modern physics of polymer gels will be considered from the viewpoints of cross-linking, networking, and percolation, along with the scope of future directions of polymer gels and polymer networks.
Collapse
Affiliation(s)
- Mitsuhiro Shibayama
- Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan.
| |
Collapse
|
3
|
Masubuchi Y, Ishida T, Koide Y, Uneyama T. Phantom chain simulations for the fracture of star polymer networks with various strand densities. SOFT MATTER 2024; 20:7103-7110. [PMID: 39176458 DOI: 10.1039/d4sm00726c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Despite many attempts, the relationship between the fracture and structure of polymer networks is yet to be clarified. For this problem, a recent study on phantom chain simulations [Y. Masubuchi et al., Macromolecules, 2023, 56, 9359-9367.] has demonstrated that the fracture characteristics obtained for polymer networks with various node functionalities and conversion ratios lie on master curves if they are plotted against cycle rank, which is the number of closed loops in the network per network node. In this study, we extended the simulation to the effect of prepolymer concentration c on the relationships between the cycle rank and fracture characteristics within the concentration range of 1 ≲ c/c* ≲ 10, concerning the overlapping concentration c*. We created networks from sols of star-branched phantom bead-spring chains via an end-linking reaction between different chains through Brownian dynamics simulations upon varying the number of branching arms f from 1 to 8, and the conversion ratio φc from 0.6 to 0.95. For the resultant networks, the cycle rank ξ was consistent with the mean-field theory. The networks were uniaxially stretched with energy minimization until break to obtain modulus G, strain at break εb, stress at break σb, and work for fracture Wb. As reported earlier, εb data for various f and φc are located on a master curve if plotted against ξ. The other quantities also draw master curves as functions of ξ if normalized by the branch point density υbr. The master curves depend on c; as c increases, all the mechanical characteristics monotonically increase. If we plot σb/υbr and Wb/υbr against G/υbr, the data for various f and φc lie on master curves but depending on c. Consequently, the fracture characteristics are not solely described by the modulus.
Collapse
Affiliation(s)
- Yuichi Masubuchi
- Department of Materials Physics, Nagoya University, Nagoya 4649603, Japan.
| | - Takato Ishida
- Department of Materials Physics, Nagoya University, Nagoya 4649603, Japan.
| | - Yusuke Koide
- Department of Materials Physics, Nagoya University, Nagoya 4649603, Japan.
| | - Takashi Uneyama
- Department of Materials Physics, Nagoya University, Nagoya 4649603, Japan.
| |
Collapse
|
4
|
Salthouse D, Goulding PD, Reay SL, Jackson EL, Xu C, Ahmed R, Mearns-Spragg A, Novakovic K, Hilkens CMU, Ferreira AM. Amine-reactive crosslinking enhances type 0 collagen hydrogel properties for regenerative medicine. Front Bioeng Biotechnol 2024; 12:1391728. [PMID: 39132253 PMCID: PMC11310005 DOI: 10.3389/fbioe.2024.1391728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Collagen is extensively utilised in regenerative medicine due to its highly desirable properties. However, collagen is typically derived from mammalian sources, which poses several limitations, including high cost, potential risk of immunogenicity and transmission of infectious diseases, and ethical and religious constraints. Jellyfish-sourced type 0 collagen represents a safer and more environmentally sustainable alternative collagen source. Methods Thus, we investigated the potential of jellyfish collagen-based hydrogels, obtained from Rhizostoma pulmo (R. pulmo) jellyfish, to be utilised in regenerative medicine. A variety of R. pulmo collagen hydrogels (RpCol hydrogels) were formed by adding a range of chemical crosslinking agents and their physicochemical and biological properties were characterised to assess their suitability for regenerative medicine applications. Results and Discussion The characteristic chemical composition of RpCol was confirmed by Fourier-transform infrared spectroscopy (FTIR), and the degradation kinetics, morphological, and rheological properties of RpCol hydrogels were shown to be adaptable through the addition of specific chemical crosslinking agents. The endotoxin levels of RpCol were below the Food and Drug Administration (FDA) limit for medical devices, thus allowing the potential use of RpCol in vivo. 8-arm polyethylene glycol succinimidyl carboxyl methyl ester (PEG-SCM)-crosslinked RpCol hydrogels preserved the viability and induced a significant increase in the metabolic activity of immortalised human mesenchymal stem/stromal cells (TERT-hMSCs), therefore demonstrating their potential to be utilised in a wide range of regenerative medicine applications.
Collapse
Affiliation(s)
- Daniel Salthouse
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Peter D. Goulding
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Sophie L. Reay
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Emma L. Jackson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chenlong Xu
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | | - Katarina Novakovic
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Catharien M. U. Hilkens
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
5
|
Yao X, Vishnu JA, Lupfer C, Hoenders D, Skarsetz O, Chen W, Dattler D, Perrot A, Wang WZ, Gao C, Giuseppone N, Schmid F, Walther A. Scalable Approach to Molecular Motor-Polymer Conjugates for Light-Driven Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403514. [PMID: 38613525 DOI: 10.1002/adma.202403514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Indexed: 04/15/2024]
Abstract
The integration of molecular machines and motors into materials represents a promising avenue for creating dynamic and functional molecular systems, with potential applications in soft robotics or reconfigurable biomaterials. However, the development of truly scalable and controllable approaches for incorporating molecular motors into polymeric matrices has remained a challenge. Here, it is shown that light-driven molecular motors with sensitive photo-isomerizable double bonds can be converted into initiators for Cu-mediated controlled/living radical polymerization enabling the synthesis of star-shaped motor-polymer conjugates. This approach enables scalability, precise control over the molecular structure, block copolymer structures, and high-end group fidelity. Moreover, it is demonstrated that these materials can be crosslinked to form gels with quasi-ideal network topology, exhibiting light-triggered contraction. The influence of arm length and polymer structure is investigated, and the first molecular dynamics simulation framework to gain deeper insights into the contraction processes is developed. Leveraging this scalable methodology, the creation of bilayer soft robotic devices and cargo-lifting artificial muscles is showcased, highlighting the versatility and potential applications of this advanced polymer chemistry approach. It is anticipated that the integrated experimental and simulation framework will accelerate scalable approaches for active polymer materials based on molecular machines, opening up new horizons in materials science and bioscience.
Collapse
Affiliation(s)
- Xuyang Yao
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
| | - Jude Ann Vishnu
- KOMET 1, Institute of Physics, Johannes Gutenberg University of Mainz, D 55099, Mainz, Germany
| | - Claudius Lupfer
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Daniel Hoenders
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Oliver Skarsetz
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Weixiang Chen
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Damien Dattler
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Alexis Perrot
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Wen-Zhi Wang
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Chuan Gao
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Nicolas Giuseppone
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| | - Friederike Schmid
- KOMET 1, Institute of Physics, Johannes Gutenberg University of Mainz, D 55099, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
| |
Collapse
|
6
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
7
|
Kong V, Staunton TA, Laaser JE. Effect of Cross-Link Homogeneity on the High-Strain Behavior of Elastic Polymer Networks. Macromolecules 2024; 57:4670-4679. [PMID: 38827963 PMCID: PMC11140753 DOI: 10.1021/acs.macromol.3c02565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/07/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Cross-link heterogeneity and topological defects have been shown to affect the moduli of polymer networks in the low-strain regime. Probing their role in the high-strain regime, however, has been difficult because of premature network fracture. Here, we address this problem by using a double-network approach to investigate the high-strain behavior of both randomly and regularly cross-linked networks with the same backbone chemistry. Randomly cross-linked poly(n-butyl acrylate) networks with target molecular weights between cross-links of 5-30 kg/mol were synthesized via free-radical polymerization, while regularly cross-linked poly(n-butyl acrylate) networks with molecular weights between cross-links of 7-38 kg/mol were synthesized via cross-linking of tetrafunctional star polymers. Both types of networks were then swollen in a monomer/cross-linker mixture, polymerized to form double networks, and characterized via uniaxial tensile testing. The onset of strain stiffening was found to occur later in regular networks than in random networks with the same modulus but was well-predicted by the target molecular weight between cross-links of each sample. These results indicate that the low- and high-strain behavior of polymer networks result from different molecular-scale features of the material and suggest that controlling network architecture offers new opportunities to both further fundamental understanding of architecture-property relationships and design materials with independently controlled moduli and strain stiffening responses.
Collapse
Affiliation(s)
- Victoria
A. Kong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Thomas A. Staunton
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer E. Laaser
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Mitsuhashi K, Inagaki NF, Ito T. Moldable Tissue-Sealant Hydrogels Composed of In Situ Cross-Linkable Polyethylene Glycol via Thiol-Michael Addition and Carbomers. ACS Biomater Sci Eng 2024; 10:3343-3354. [PMID: 38695560 DOI: 10.1021/acsbiomaterials.3c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Moldable tissue-sealant hydrogels were developed herein by combining the yield stress fluidity of a Carbomer and in situ cross-linking of 3-arm PEG-thiol (PEG-SH) and 4-arm PEG-acrylate (PEG-AC). The Carbomer was mixed with each PEG oligomer to form two aqueous precursors: Carbomer/PEG-SH and Carbomer/PEG-AC. The two hydrogel precursors exhibited sufficient yield stress (>100 Pa) to prevent dripping from their placement on the tissue surface. Moreover, these hydrogel precursors exhibited rapid restructuring when the shear strain was repeatedly changed. These rheological properties contribute to the moldability of these hydrogel precursors. After mixing these two precursors, they were converted from yield-stress fluids to chemically cross-linked hydrogels, Carbomer/PEG hydrogel, via thiol-Michael addition. The gelation time was 5.0 and 11.2 min at 37 and 25 °C, respectively. In addition, the Carbomer/PEG hydrogels exhibited higher cellular viability than the pure Carbomer. They also showed stable adhesiveness and burst pressure resistance to various tissues, such as the skin, stomach, colon, and cecum of pigs. The hydrogels showed excellent tissue sealing in a cecum ligation and puncture model in mice and improved the survival rate due to their tissue adhesiveness and biocompatibility. The Carbomer/PEG hydrogel is a potential biocompatible tissue sealant that surgeons can mold. It was revealed that the combination of in situ cross-linkable PEG oligomers and yield stress fluid such as Carbomer is effective for developing the moldable tissue sealant without dripping of its hydrogel precursors.
Collapse
Affiliation(s)
- Kento Mitsuhashi
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Natsuko F Inagaki
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Li Y, Zhao W, Cheng Z, Sun ZY, Liu H. Structural heterogeneity in tetra-armed gels revealed by computer simulation: Evidence from a graph theory assisted characterization. J Chem Phys 2024; 160:144902. [PMID: 38591682 DOI: 10.1063/5.0198388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Designing homogeneous networks is considered one typical strategy for solving the problem of strength and toughness conflict of polymer network materials. Experimentalists have proposed the hypothesis of obtaining a structurally homogeneous hydrogel by crosslinking tetra-armed polymers, whose homogeneity was claimed to be verified by scattering characterization and other methods. Nevertheless, it is highly desirable to further evaluate this issue from other perspectives. In this study, a coarse-grained molecular dynamics simulation coupled with a stochastic reaction model is applied to reveal the topological structure of a polymer network synthesized by tetra-armed monomers as precursors. Two different scenarios, distinguished by whether internal cross-linking is allowed, are considered. We introduce the Dijkstra algorithm from graph theory to precisely characterize the network structure. The microscopic features of the network structure, e.g., loop size, dispersity, and size distribution, are obtained via the Dijkstra algorithm. By comparing the two reaction scenarios, Scenario II exhibits an overall more idealized structure. Our results demonstrate the feasibility of the Dijkstra algorithm for precisely characterizing the polymer network structure. We expect this work will provide a new insight for the evaluation and description of gel networks and further help to reveal the dynamic process of network formation.
Collapse
Affiliation(s)
- Yingxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wenbo Zhao
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Zhiyuan Cheng
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
10
|
Meng Z, Löser L, Saalwächter K, Gasser U, Klok HA. Disulfide-Cross-Linked Tetra-PEG Gels. Macromolecules 2024; 57:3058-3065. [PMID: 38616809 PMCID: PMC11008237 DOI: 10.1021/acs.macromol.3c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
The preparation of polymer gels via cross-linking of four-arm star-shaped poly(ethylene glycol) (Tetra-PEG) precursors is an attractive strategy to prepare networks with relatively well-defined topologies. Typically, Tetra-PEG gels are obtained by cross-linking heterocomplementary reactive Tetra-PEG precursors. This study, in contrast, explores the cross-linking of self-reactive, thiol-end functional Tetra-PEG macromers to form disulfide-cross-linked gels. The structure of the disulfide-cross-linked Tetra-PEG gels was studied with multiple-quantum NMR (MQ-NMR) spectroscopy and small-angle neutron scattering (SANS) experiments. In line with earlier simulation studies, these experiments showed a strong dependence of the relative fractions of the different network connectivities on the concentration of the thiol-end functional Tetra-PEG macromer that was used for the synthesis of the networks. Disulfide-cross-linked Tetra-PEG gels prepared at macromer concentrations below the overlap concentration (c = 0.66c*) primarily feature defect connectivity motifs, such as primary loops and dangling ends. For networks prepared at macromer concentrations above the overlap concentration, the fraction of single-link connectivities was found to be similar to that in amide-cross-linked Tetra-PEG gels obtained by heterocomplementary cross-linking of N-hydroxysuccinimide ester and amine functional Tetra-PEG macromers. Since disulfide bonds are susceptible to reductive cleavage, these disulfide-cross-linked gels are of interest, e.g., as reduction-sensitive hydrogels for a variety of biomedical applications.
Collapse
Affiliation(s)
- Zhao Meng
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
- Swiss
National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Lucas Löser
- Institut
für Physik - NMR, Martin-Luther Universität
Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
| | - Kay Saalwächter
- Institut
für Physik - NMR, Martin-Luther Universität
Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
| | - Urs Gasser
- Laboratory
for Neutron Scattering and Imaging (LNS), Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Harm-Anton Klok
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
- Swiss
National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
11
|
Ohya Y, Dohi R, Seko F, Nakazawa Y, Mizuguchi KI, Shinzaki K, Yasui T, Ogawa H, Kato S, Yoshizaki Y, Murase N, Kuzuya A. Synthesis of Topological Gels by Penetrating Polymerization Using a Molecular Net. Angew Chem Int Ed Engl 2024; 63:e202317045. [PMID: 38191829 DOI: 10.1002/anie.202317045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Topological gels possess structures that are cross-linked only via physical constraints; ideally, no attractive intermolecular interactions act between their components, which yields interesting physical properties. However, most reported previous topological gels were synthesized based on supramolecular interlocked structures such as polyrotaxane, for which attractive intermolecular interactions are essential. Here, we synthesize a water-soluble "molecular net" (MN) with a large molecular weight and three-dimensional network structure using poly(ethylene glycol). When a water-soluble monomer (N-isopropylacrylamide) is polymerized in the presence of the MNs, the extending polymer chains penetrates the MNs to form an ideal topological MN gel with no specific attractive interactions between its components. The MN gels show unique physical properties as well a significantly high degree of swelling and high extensibility due to slipping of the physical cross-linking. We postulate this method to yield a new paradigm in gel science with unprecedented physical properties.
Collapse
Affiliation(s)
- Yuichi Ohya
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
- Kansai University Medical Polymer Research Center, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Ryota Dohi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Fumika Seko
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Yuto Nakazawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Ken-Ichiro Mizuguchi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Kosei Shinzaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Takahiko Yasui
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Hiroaki Ogawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Shizuka Kato
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Yuta Yoshizaki
- Organization for Research & Development of Innovative Science & Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
- Current address: Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Nobuo Murase
- Organization for Research & Development of Innovative Science & Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Akinori Kuzuya
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
- Kansai University Medical Polymer Research Center, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| |
Collapse
|
12
|
Chremos A, Horkay F. Coexistence of Crumpling and Flat Sheet Conformations in Two-Dimensional Polymer Networks: An Understanding of Aggrecan Self-Assembly. PHYSICAL REVIEW LETTERS 2023; 131:138101. [PMID: 37832020 DOI: 10.1103/physrevlett.131.138101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/12/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
We investigate the conformational properties of self-avoiding two-dimensional (2D) ideal polymer networks with tunable mesh sizes as a model of self-assembled structures formed by aggrecan. Polymer networks having few branching points and large enough mesh tend to crumple, resulting in a fractal dimension of d_{f}≈2.7. The flat sheet behavior (d_{f}=2) emerges in 2D polymer networks having more branching points at large length scales; however, it coexists with crumpling conformations at intermediate length scales, a feature found in scattering profiles of aggrecan solutions. Our findings bridge the long-standing gap between theories and simulations of polymer sheets.
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Burroughs MC, Schloemer TH, Congreve DN, Mai DJ. Gelation Dynamics during Photo-Cross-Linking of Polymer Nanocomposite Hydrogels. ACS POLYMERS AU 2022; 3:217-227. [PMID: 37065714 PMCID: PMC10103194 DOI: 10.1021/acspolymersau.2c00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/10/2022]
Abstract
Embedding nanomaterials into polymer hydrogels enables the design of functional materials with tailored chemical, mechanical, and optical properties. Nanocapsules that protect interior cargo and disperse readily through a polymeric matrix have drawn particular interest for their ability to integrate chemically incompatible systems and to further expand the parameter space for polymer nanocomposite hydrogels. The properties of polymer nanocomposite hydrogels depend on the material composition and processing route, which were explored systematically in this work. The gelation kinetics of network-forming polymer solutions with and without silica-coated nanocapsules bearing polyethylene glycol (PEG) surface ligands were investigated using in situ dynamic rheology measurements. Network-forming polymers comprised either 4-arm or 8-arm star PEG with terminal anthracene groups, which dimerize upon irradiation with ultraviolet (UV) light. The PEG-anthracene solutions exhibited rapid gel formation upon UV exposure (365 nm); gel formation was observed as a crossover from liquid-like to solid-like behavior during in situ small-amplitude oscillatory shear rheology. This crossover time was non-monotonic with polymer concentration. Far below the overlap concentration (c/c* ≪ 1), spatially separated PEG-anthracene molecules were subject to forming intramolecular loops over intermolecular cross-links, thereby slowing the gelation process. Near the polymer overlap concentration (c/c* ∼ 1), rapid gelation was attributed to the ideal proximity of anthracene end groups from neighboring polymer molecules. Above the overlap concentration (c/c* > 1), increased solution viscosities hindered molecular diffusion, thereby reducing the frequency of dimerization reactions. Adding nanocapsules to PEG-anthracene solutions resulted in faster gelation than nanocapsule-free PEG-anthracene solutions with equivalent effective polymer concentrations. The final elastic modulus of nanocomposite hydrogels increased with nanocapsule volume fraction, signifying synergistic mechanical reinforcement by nanocapsules despite not being cross-linked into the polymer network. Overall, these findings quantify the impact of nanocapsule addition on the gelation kinetics and mechanical properties of polymer nanocomposite hydrogels, which are promising materials for applications in optoelectronics, biotechnology, and additive manufacturing.
Collapse
Affiliation(s)
- Michael C. Burroughs
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States
| | - Tracy H. Schloemer
- Department of Electrical Engineering, Stanford University, Stanford, California94305, United States
| | - Daniel N. Congreve
- Department of Electrical Engineering, Stanford University, Stanford, California94305, United States
| | - Danielle J. Mai
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
14
|
Ahmadi M, Nicolella P, Seiffert S. Network Percolation in Transient Polymer Networks with Temporal Hierarchy of Energy Dissipation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mostafa Ahmadi
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Paola Nicolella
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
15
|
Rose KA, Gogotsi N, Galarraga JH, Burdick JA, Murray CB, Lee D, Composto RJ. Shape Anisotropy Enhances Nanoparticle Dynamics in Nearly Homogeneous Hydrogels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katie A. Rose
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Natalie Gogotsi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Jonathan H. Galarraga
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado80309, United States
| | - Christopher B. Murray
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Russell J. Composto
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
16
|
Lou J, Mooney DJ. Chemical strategies to engineer hydrogels for cell culture. Nat Rev Chem 2022; 6:726-744. [PMID: 37117490 DOI: 10.1038/s41570-022-00420-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
Two-dimensional and three-dimensional cell culture systems are widely used for biological studies, and are the basis of the organoid, tissue engineering and organ-on-chip research fields in applications such as disease modelling and drug screening. The natural extracellular matrix of tissues, a complex scaffold with varying chemical and mechanical properties, has a critical role in regulating important cellular functions such as spreading, migration, proliferation and differentiation, as well as tissue morphogenesis. Hydrogels are biomaterials that are used in cell culture systems to imitate critical features of a natural extracellular matrix. Chemical strategies to synthesize and tailor the properties of these hydrogels in a controlled manner, and manipulate their biological functions in situ, have been developed. In this Review, we provide the rational design criteria for predictably engineering hydrogels to mimic the properties of the natural extracellular matrix. We highlight the advances in using biocompatible strategies to engineer hydrogels for cell culture along with recent developments to dynamically control the cellular environment by exploiting stimuli-responsive chemistries. Finally, future opportunities to engineer hydrogels are discussed, in which the development of novel chemical methods will probably have an important role.
Collapse
|
17
|
Masubuchi Y, Yamazaki R, Doi Y, Uneyama T, Sakumichi N, Sakai T. Brownian simulations for tetra-gel-type phantom networks composed of prepolymers with bidisperse arm length. SOFT MATTER 2022; 18:4715-4724. [PMID: 35703364 DOI: 10.1039/d2sm00488g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We studied the effect of arm length contrast of prepolymers on the mechanical properties of tetra-branched networks via Brownian dynamics simulations. We employed a bead-spring model without the excluded volume interactions, and we did not consider the solvent explicitly. Each examined 4-arm star branch prepolymer has uneven arm lengths to attain two-against-two (2a2) or one-against-three (1a3) configurations. The arm length contrast was varied from 38-2 to 20-20 for 2a2, and from 5-25 to 65-5 for 1a3, with the fixed total bead number of 81, including the single bead located at the branch point for prepolymers. We distributed 400 molecules in the simulation box with periodic boundary conditions, and the bead number density was fixed at 4. We created polymer networks by cross-end-coupling of equilibrated tetra-branched prepolymers. To mimic the experiments of tetra gels, we discriminated the molecules into two types and allowed the reaction only between different types of molecules at their end beads. The final conversion ratio was more than 99%, at which unreacted dangling ends are negligible. We found that the fraction of double linkage, in which two of the four arms connect a pair of branch points, increases from 3% to 15% by increasing the arm length contrast. We stretched the resultant tetra-type networks to obtain the ratio of mechanically effective strands. We found that the ratio is 96% for the monodisperse system, decreasing to 90% for high arm length contrast. We introduced bond scission according to the bond stretching to observe the network fracture under sufficiently slow elongation. The fracture behavior was not correlated with the fraction of double linkage because the scission occurs at single linkages.
Collapse
Affiliation(s)
- Yuichi Masubuchi
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan.
| | - Ryohei Yamazaki
- Department of Engineering Physics, Nagoya University, Nagoya 4648603, Japan
| | - Yuya Doi
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan.
| | - Takashi Uneyama
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan.
| | - Naoyuki Sakumichi
- Department of Bioengineering, The University of Tokyo, Tokyo 1138654, Japan
| | - Takamasa Sakai
- Department of Bioengineering, The University of Tokyo, Tokyo 1138654, Japan
| |
Collapse
|
18
|
Yokoi T, Kuzuya A, Nakajima T, Kurokawa T, Gong JP, Ohya Y. Synthesis of degradable double network gels using a hydrolysable cross-linker. Polym Chem 2022. [DOI: 10.1039/d2py00360k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double network (DN) gels have remarkably high mechanical strength and toughness and can be potentially applied in biomedical applications such as cartilage regeneration. However, most DN gels synthesised by usual...
Collapse
|
19
|
Lattuada E, Caprara D, Piazza R, Sciortino F. Spatially uniform dynamics in equilibrium colloidal gels. SCIENCE ADVANCES 2021; 7:eabk2360. [PMID: 34860553 PMCID: PMC8641940 DOI: 10.1126/sciadv.abk2360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Gels of DNA nanostars, besides providing a compatible scaffold for biomedical applications, are ideal model systems for testing the physics of equilibrium colloidal gels. Here, using dynamic light scattering and photon correlation imaging (a recent technique that, by blending light scattering and imaging, provides space-resolved quantification of the dynamics), we follow the process of gel formation over 10 orders of magnitude in time in a model system of tetravalent DNA nanostars in solution, a realization of limited-valence colloids. Such a system, depending on the nanostar concentration, can form either equilibrium or phase separation gels. In stark contrast to the heterogeneity of concentration and dynamics displayed by the phase separation gel, the equilibrium gel shows absence of aging and a remarkable spatially uniform dynamics.
Collapse
Affiliation(s)
- Enrico Lattuada
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Debora Caprara
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Francesco Sciortino
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
- Corresponding author.
| |
Collapse
|
20
|
Chremos A, Horkay F, Douglas JF. Structure and conformational properties of ideal nanogel particles in athermal solutions. J Chem Phys 2021; 155:134905. [PMID: 34624976 PMCID: PMC8637729 DOI: 10.1063/5.0064835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
We investigate the conformational properties of "ideal" nanogel particles having a lattice network topology by molecular dynamics simulations to quantify the influence of polymer topology on the solution properties of this type of branched molecular architecture. In particular, we calculate the mass scaling of the radius of gyration (Rg), the hydrodynamic radius, as well as the intrinsic viscosity with the variation of the degree of branching, the length of the chains between the branched points, and the average mesh size within these nanogel particles under good solvent conditions. We find competing trends between the molecular characteristics, where an increase in mesh size or degree of branching results in the emergence of particle-like characteristics, while an increase in the chain length enhances linear polymer-like characteristics. This crossover between these limiting behaviors is also apparent in our calculation of the form factor, P(q), for these structures. Specifically, a primary scattering peak emerges, characterizing the overall nanogel particle size. Moreover, a distinct power-law regime emerges in P(q) at length scales larger than the chain size but smaller than Rg of the nanogel particle, and the Rg mass scaling exponent progressively approaches zero as the mesh size increases, the same scaling as for an infinite network of Gaussian chains. The "fuzzy sphere" model does not capture this feature, and we propose an extension to this popular model. These structural features become more pronounced for values of molecular parameters that enhance the localization of the branching segments within the nanogel particle.
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
21
|
Horkay F, Chremos A, Douglas JF, Jones R, Lou J, Xia Y. Comparative experimental and computational study of synthetic and natural bottlebrush polyelectrolyte solutions. J Chem Phys 2021; 155:074901. [PMID: 34418934 PMCID: PMC8491617 DOI: 10.1063/5.0061649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 11/14/2022] Open
Abstract
We systematically investigate model synthetic and natural bottlebrush polyelectrolyte solutions through an array of experimental techniques (osmometry and neutron and dynamic light scattering) along with molecular dynamics simulations to characterize and contrast their structures over a wide range of spatial and time scales. In particular, we perform measurements on solutions of aggrecan and the synthetic bottlebrush polymer, poly(sodium acrylate), and simulations of solutions of highly coarse-grained charged bottlebrush molecules having different degrees of side-branch density and inclusion of an explicit solvent and ion hydration effects. While both systems exhibit a general tendency toward supramolecular organization in solution, bottlebrush poly(sodium acrylate) solutions exhibit a distinctive "polyelectrolyte peak" in their structure factor, but no such peak is observed in aggrecan solutions. This qualitative difference in scattering properties, and thus polyelectrolyte solution organization, is attributed to a concerted effect of the bottlebrush polymer topology and the solvation of the polymer backbone and counterions. The coupling of the polyelectrolyte topological structure with the counterion distribution about the charged polymer molecules along with direct polymer segmental hydration makes their solution organization and properties "tunable," a phenomenon that has significant ramifications for biological function and disease as well as for numerous materials applications.
Collapse
Affiliation(s)
- Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jack F. Douglas
- Material Measurement Laboratory, Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Ronald Jones
- Material Measurement Laboratory, Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Junzhe Lou
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
22
|
Ishikawa A, Ikeda N, Maeda S, Fujii K. Polymer network formation mechanism of multifunctional poly(ethylene glycol)s in ionic liquid electrolyte with a lithium salt. Phys Chem Chem Phys 2021; 23:16966-16972. [PMID: 34338253 DOI: 10.1039/d1cp02710g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We report a controlled polymer network gel electrolyte based on a multifunctional poly(ethylene glycol) (PEG) prepolymer (herein, tetrafunctional PEGs (tetra-PEGs) and bisfunctional linear PEGs (linear-PEGs)) and an ionic liquid (IL)-based electrolyte solution containing lithium bis(trifluoromethanesulfonyl)imide (LiTFSA) salt. The gel electrolyte was obtained via a gelation reaction, i.e., the Michael addition reaction between maleimide (MA)-terminated tetra-PEGs and thiol (SH)-terminated tetra- or linear-PEGs (termed tetra/tetra-PEG gel or tetra/linear-PEG gel systems), in a LiTFSA/IL solution under noncatalytic conditions at room temperature. For the tetra/linear-PEG system, the gelation reaction depended on the ratio of tetra-PEG-MA and linear-PEG-SH; an optimum terminal MA/SH ratio of 1 : 1 yielded a reaction efficiency (p) of ∼98% (an ideal polymer network structure). The tetra/tetra-PEG system with an MA/SH ratio of 1 : 1 also achieved a reaction efficiency of ∼98%. Time-resolved rheological measurements revealed that the network formation process can be categorized into three steps: (I) oligomer formation at an early stage of the reaction, (II) formation of a roughly linked polymer network with a large mesh size as the reaction proceeded, and (III) full network formation also at the local scale near the gelation completion time. The resulting tetra/linear-PEG ion gel with an optimum MA/SH ratio of 1 : 1 exhibited high stretchability, enduring approximately 10-fold elongation, and superior ion-conducting properties compared with the corresponding IL-based electrolyte solution.
Collapse
Affiliation(s)
- Asumi Ishikawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | | | | | | |
Collapse
|
23
|
Akintayo CO, Creusen G, Straub P, Walther A. Tunable and Large-Scale Model Network StarPEG-DNA Hydrogels. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cecilia Oluwadunsin Akintayo
- A3BMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
- DFG Cluster of Excellence @ FIT “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Koehler-Allee 105, 79110 Freiburg, Germany
| | - Guido Creusen
- A3BMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
| | - Paula Straub
- DFG Cluster of Excellence @ FIT “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Koehler-Allee 105, 79110 Freiburg, Germany
| | - Andreas Walther
- A3BMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
- DFG Cluster of Excellence @ FIT “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Koehler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
24
|
Nicolella P, Lauxen D, Ahmadi M, Seiffert S. Reversible Hydrogels with Switchable Diffusive Permeability. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paola Nicolella
- Department of Chemistry Johannes Gutenberg‐Universität Mainz Duesbergweg 10‐14 Mainz D‐ 55128 Germany
| | - Daniel Lauxen
- Department of Chemistry Johannes Gutenberg‐Universität Mainz Duesbergweg 10‐14 Mainz D‐ 55128 Germany
| | - Mostafa Ahmadi
- Department of Chemistry Johannes Gutenberg‐Universität Mainz Duesbergweg 10‐14 Mainz D‐ 55128 Germany
| | - Sebastian Seiffert
- Department of Chemistry Johannes Gutenberg‐Universität Mainz Duesbergweg 10‐14 Mainz D‐ 55128 Germany
| |
Collapse
|
25
|
A benchmark for gel structures: bond percolation enables the fabrication of extremely homogeneous gels. Polym J 2021. [DOI: 10.1038/s41428-021-00479-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 397] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Okumura S, Hapsianto BN, Lobato-Dauzier N, Ohno Y, Benner S, Torii Y, Tanabe Y, Takada K, Baccouche A, Shinohara M, Kim SH, Fujii T, Genot A. Morphological Manipulation of DNA Gel Microbeads with Biomolecular Stimuli. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:293. [PMID: 33499417 PMCID: PMC7912653 DOI: 10.3390/nano11020293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/20/2022]
Abstract
Hydrogels are essential in many fields ranging from tissue engineering and drug delivery to food sciences or cosmetics. Hydrogels that respond to specific biomolecular stimuli such as DNA, mRNA, miRNA and small molecules are highly desirable from the perspective of medical applications, however interfacing classical hydrogels with nucleic acids is still challenging. Here were demonstrate the generation of microbeads of DNA hydrogels with droplet microfluidic, and their morphological actuation with DNA strands. Using strand displacement and the specificity of DNA base pairing, we selectively dissolved gel beads, and reversibly changed their size on-the-fly with controlled swelling and shrinking. Lastly, we performed a complex computing primitive-A Winner-Takes-All competition between two populations of gel beads. Overall, these results show that strand responsive DNA gels have tantalizing potentials to enhance and expand traditional hydrogels, in particular for applications in sequencing and drug delivery.
Collapse
Affiliation(s)
- Shu Okumura
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, University of Tokyo, Tokyo 153-8505, Japan; (S.O.); (N.L.-D.); (A.B.); (S.H.K.); (T.F.)
- Department of Bioengineering, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan; (B.N.H.); (M.S.)
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Benediktus Nixon Hapsianto
- Department of Bioengineering, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan; (B.N.H.); (M.S.)
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Nicolas Lobato-Dauzier
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, University of Tokyo, Tokyo 153-8505, Japan; (S.O.); (N.L.-D.); (A.B.); (S.H.K.); (T.F.)
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Yuto Ohno
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan; (Y.O.); (S.B.); (Y.T.)
| | - Seiju Benner
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan; (Y.O.); (S.B.); (Y.T.)
| | - Yosuke Torii
- Faculty of Agriculture, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan;
| | - Yuuka Tanabe
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan; (Y.O.); (S.B.); (Y.T.)
| | - Kazuki Takada
- Faculty of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan;
| | - Alexandre Baccouche
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, University of Tokyo, Tokyo 153-8505, Japan; (S.O.); (N.L.-D.); (A.B.); (S.H.K.); (T.F.)
| | - Marie Shinohara
- Department of Bioengineering, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan; (B.N.H.); (M.S.)
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Soo Hyeon Kim
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, University of Tokyo, Tokyo 153-8505, Japan; (S.O.); (N.L.-D.); (A.B.); (S.H.K.); (T.F.)
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Teruo Fujii
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, University of Tokyo, Tokyo 153-8505, Japan; (S.O.); (N.L.-D.); (A.B.); (S.H.K.); (T.F.)
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Anthony Genot
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, University of Tokyo, Tokyo 153-8505, Japan; (S.O.); (N.L.-D.); (A.B.); (S.H.K.); (T.F.)
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| |
Collapse
|
28
|
Li J, Jia X, Yin L. Hydrogel: Diversity of Structures and Applications in Food Science. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1858313] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
29
|
Nishiguchi A, Taguchi T. Engineering an Injectable Tough Tissue Adhesive through Nanocellulose Reinforcement. ACS APPLIED BIO MATERIALS 2020; 3:9093-9100. [DOI: 10.1021/acsabm.0c01317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Akihiro Nishiguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
30
|
Pásztor S, Becsei B, Szarka G, Thomann Y, Thomann R, Mühlhaupt R, Iván B. The Scissors Effect in Action: The Fox-Flory Relationship between the Glass Transition Temperature of Crosslinked Poly(Methyl Methacrylate) and Mc in Nanophase Separated Poly(Methyl Methacrylate)- l-Polyisobutylene Conetworks. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4822. [PMID: 33126719 PMCID: PMC7663353 DOI: 10.3390/ma13214822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022]
Abstract
The glass transition temperature (Tg) is one of the most important properties of polymeric materials. In order to reveal whether the scissors effect, i.e., the Fox-Flory relationship between Tg and the average molecular weight between crosslinking points (Mc), reported only in one case for polymer conetworks so far, is more generally effective or valid only for a single case, a series of poly(methyl methacrylate)-l-polyisobutylene (PMMA-l-PIB) conetworks was prepared and investigated. Two Tgs were found for the conetworks by DSC. Fox-Flory type dependence between Tg and Mc of the PMMA component (Tg = Tg,∞ - K/Mc) was observed. The K constants for the PMMA homopolymer and for the PMMA in the conetworks were the same in the margin of error. AFM images indicated disordered bicontinuous, mutually nanoconfined morphology with average domain sizes of 5-20 nm, but the correlation between Tg and domain sizes was not found. These new results indicate that the macrocrosslinkers act like molecular scissors (scissors effect), and the Tg of PMMA depend exclusively on the Mc in the conetworks. Consequently, these findings mean that the scissors effect is presumably a general phenomenon in nanophase-separated polymer conetworks, and this finding could be utilized in designing, processing, and applications of these novel materials.
Collapse
Affiliation(s)
- Szabolcs Pásztor
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; (B.B.); (G.S.)
| | - Bálint Becsei
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; (B.B.); (G.S.)
| | - Györgyi Szarka
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; (B.B.); (G.S.)
| | - Yi Thomann
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany; (Y.T.); (R.T.); (R.M.)
| | - Ralf Thomann
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany; (Y.T.); (R.T.); (R.M.)
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
| | - Rolf Mühlhaupt
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany; (Y.T.); (R.T.); (R.M.)
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; (B.B.); (G.S.)
| |
Collapse
|
31
|
Stumphauser T, Kasza G, Domján A, Wacha A, Varga Z, Thomann Y, Thomann R, Pásztói B, Trötschler TM, Kerscher B, Mülhaupt R, Iván B. Nanoconfined Crosslinked Poly(ionic liquid)s with Unprecedented Selective Swelling Properties Obtained by Alkylation in Nanophase-Separated Poly(1-vinylimidazole)- l-poly(tetrahydrofuran) Conetworks. Polymers (Basel) 2020; 12:E2292. [PMID: 33036354 PMCID: PMC7599712 DOI: 10.3390/polym12102292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 01/13/2023] Open
Abstract
Despite the great interest in nanoconfined materials nowadays, nanocompartmentalized poly(ionic liquid)s (PILs) have been rarely investigated so far. Herein, we report on the successful alkylation of poly(1-vinylimidazole) with methyl iodide in bicontinuous nanophasic poly(1-vinylimidazole)-l-poly(tetrahydrofuran) (PVIm-l-PTHF) amphiphilic conetworks (APCNs) to obtain nanoconfined methylated PVImMe-l-PTHF poly(ionic liquid) conetworks (PIL-CNs). A high extent of alkylation (~95%) was achieved via a simple alkylation process with MeI at room temperature. This does not destroy the bicontinuous nanophasic morphology as proved by SAXS and AFM, and PIL-CNs with 15-20 nm d-spacing and poly(3-methyl-1-vinylimidazolium iodide) PIL nanophases with average domain sizes of 8.2-8.4 nm are formed. Unexpectedly, while the swelling capacity of the PIL-CN dramatically increases in aprotic polar solvents, such as DMF, NMP, and DMSO, reaching higher than 1000% superabsorbent swelling degrees, the equilibrium swelling degrees decrease in even highly polar protic (hydrophilic) solvents, like water and methanol. An unprecedented Gaussian-type relationship was found between the ratios of the swelling degrees versus the polarity index, indicating increased swelling for the nanoconfined PVImMe-l-PTHF PIL-CNs in solvents with a polarity index between ~6 and 9.5. In addition to the nanoconfined structural features, the unique selective superabsorbent swelling behavior of the PIL-CNs can also be utilized in various application fields.
Collapse
Affiliation(s)
- Tímea Stumphauser
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 2, H-1117 Budapest, Hungary
| | - György Kasza
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Attila Domján
- NMR Research Laboratory, Instrumentation Center, Research Centre for Natural Sciences, Magyar TudóSok Körútja 2, H-1117 Budapest, Hungary
| | - András Wacha
- Biological Nanochemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Yi Thomann
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Ralf Thomann
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Balázs Pásztói
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 2, H-1117 Budapest, Hungary
| | - Tobias M Trötschler
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Benjamin Kerscher
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Rolf Mülhaupt
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
32
|
Creusen G, Akintayo CO, Schumann K, Walther A. Scalable One-Pot-Liquid-Phase Oligonucleotide Synthesis for Model Network Hydrogels. J Am Chem Soc 2020; 142:16610-16621. [PMID: 32902960 PMCID: PMC7612451 DOI: 10.1021/jacs.0c05488] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Solid-phase oligonucleotide synthesis (SPOS) based on phosphoramidite chemistry is currently the most widespread technique for DNA and RNA synthesis but suffers from scalability limitations and high reagent consumption. Liquid-phase oligonucleotide synthesis (LPOS) uses soluble polymer supports and has the potential of being scalable. However, at present, LPOS requires 3 separate reaction steps and 4-5 precipitation steps per nucleotide addition. Moreover, long acid exposure times during the deprotection step degrade sequences with high A content (adenine) due to depurination and chain cleavage. In this work, we present the first one-pot liquid-phase DNA synthesis technique which allows the addition of one nucleotide in a one-pot reaction of sequential coupling, oxidation, and deprotection followed by a single precipitation step. Furthermore, we demonstrate how to suppress depurination during the addition of adenine nucleotides. We showcase the potential of this technique to prepare high-purity 4-arm PEG-T20 (T = thymine) and 4-arm PEG-A20 building blocks in multigram scale. Such complementary 4-arm PEG-DNA building blocks reversibly self-assemble into supramolecular model network hydrogels and facilitate the elucidation of bond lifetimes. These model network hydrogels exhibit new levels of mechanical properties (storage modulus, bond lifetimes) in DNA bonds at room temperature (melting at 44 °C) and thus open up pathways to next-generation DNA materials programmable through sequence recognition and available for macroscale applications.
Collapse
Affiliation(s)
- Guido Creusen
- ABMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler- Allee 105, 79110 Freiburg, Germany
| | - Cecilia Oluwadunsin Akintayo
- ABMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler- Allee 105, 79110 Freiburg, Germany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), 79110 Freiburg, Germany
| | - Katja Schumann
- ABMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
| | - Andreas Walther
- ABMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler- Allee 105, 79110 Freiburg, Germany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), 79110 Freiburg, Germany
| |
Collapse
|
33
|
Yamaguchi S, Takagi R, Hosogane T, Ohashi Y, Sakai Y, Sakakihara S, Iino R, Tabata KV, Noji H, Okamoto A. Single Cell Array Enclosed with a Photodegradable Hydrogel in Microwells for Image-Based Cell Classification and Selective Photorelease of Cells. ACS APPLIED BIO MATERIALS 2020; 3:5887-5895. [PMID: 35021817 DOI: 10.1021/acsabm.0c00583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Single cell arrays provide an accurate classification of analyte cells through an image-based analysis of cellular phenotypes. Light-guided cell retrieval from a single cell array is a promising approach for the rapid and simple sorting of difficult to distinguish cells. In this study, we developed a single cell array enclosed with a photodegradable hydrogel in microwells to enable both comprehensive image-based single cell analysis and light-guided cell retrieval. In this system, individual cells became trapped in the microwells together with the photodegradable hydrogel at a high cell density on a chip regardless of cell type, adhesiveness, and motility. Fluorescence-stained model cells and vaccinated dendritic cells were identified by microscopic imaging and then selectively released through the light-induced degradation of the cell-embedding hydrogels. The target cells were selectively retrieved with a purity of >95% from the cell mixture through rapid photorelease, and the retrieved cells were confirmed to grow normally. Our results provide proof-of-principle that the photoresponsive microwell array serves as a versatile tool for image-based cell sorting in cellular researches and the manufacturing processes of high-performance cells.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 351-0198, Japan
| | - Risa Takagi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsuyoshi Hosogane
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuki Ohashi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Yoko Sakai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shouichi Sakakihara
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Ryota Iino
- Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Kazuhito V Tabata
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akimitsu Okamoto
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.,Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
34
|
Ge P, Cai Q, Zhang H, Yao X, Zhu W. Full Poly(ethylene glycol) Hydrogels with High Ductility and Self-Recoverability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37549-37560. [PMID: 32702232 DOI: 10.1021/acsami.0c08716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Energy dissipation is a common mechanism to improve the ductility of polymeric hydrogels. However, for poly(ethylene glycol) (PEG) hydrogels, it is not easy to dissipate energy, as polymer chains are dispersed in water without strong interchain interactions or decent entanglement. The brittleness limits the real applications of PEG hydrogels, although they are promising candidates in biomedical fields, as PEG has been approved by the U.S. Food and Drug Administration. Herein, we chemically introduced a center for energy dissipation in the PEG hydrogel system. Amphiphilic segmented PEG derivatives were designed through the melt polycondensation of triethylene glycol (PEG150) and high molecular weight PEG in the presence of succinic acid and mercaptosuccinic acid as dicarboxylic acids. Full PEG hydrogels with elastic nanospheres as giant cross-linkers were facilely prepared by the self-assembly of esterified PEG150 segments and the oxidation of mercapto groups. The resultant full PEG hydrogels can dissipate energy by the deformation of elastic nanospheres with outstanding ductility and self-recoverability while maintaining the excellent biocompatibility owing to their full PEG components. This work provides an original strategy to fabricate full PEG hydrogels with high ductility and self-recoverability, potentially applicable in biomedical fields.
Collapse
Affiliation(s)
- Pengfei Ge
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiuquan Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongjie Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xuxia Yao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Hangzhou, 310027, China
| |
Collapse
|
35
|
Ikeda T. Preparation of (2 × 4)-type tetra-PEG ion gels through Cu-free azide–alkyne cycloaddition. Polym J 2020. [DOI: 10.1038/s41428-020-0363-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Huang X, Nakagawa S, Li X, Shibayama M, Yoshie N. A Simple and Versatile Method for the Construction of Nearly Ideal Polymer Networks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Huang
- Institute of Industrial ScienceThe University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Shintaro Nakagawa
- Institute of Industrial ScienceThe University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Xiang Li
- Institute for Solid State PhysicsThe University of Tokyo 5-1-5 Kashiwanoha Kashiwa-shi Chiba 277–8581 Japan
| | - Mitsuhiro Shibayama
- Institute for Solid State PhysicsThe University of Tokyo 5-1-5 Kashiwanoha Kashiwa-shi Chiba 277–8581 Japan
| | - Naoko Yoshie
- Institute of Industrial ScienceThe University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
37
|
Huang X, Nakagawa S, Li X, Shibayama M, Yoshie N. A Simple and Versatile Method for the Construction of Nearly Ideal Polymer Networks. Angew Chem Int Ed Engl 2020; 59:9646-9652. [DOI: 10.1002/anie.202001271] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/10/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Xin Huang
- Institute of Industrial ScienceThe University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Shintaro Nakagawa
- Institute of Industrial ScienceThe University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Xiang Li
- Institute for Solid State PhysicsThe University of Tokyo 5-1-5 Kashiwanoha Kashiwa-shi Chiba 277–8581 Japan
| | - Mitsuhiro Shibayama
- Institute for Solid State PhysicsThe University of Tokyo 5-1-5 Kashiwanoha Kashiwa-shi Chiba 277–8581 Japan
| | - Naoko Yoshie
- Institute of Industrial ScienceThe University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
38
|
Affiliation(s)
- Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Global Station for Soft Matter GI-CoRE, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
39
|
Creusen G, Roshanasan A, Garcia Lopez J, Peneva K, Walther A. Bottom-up design of model network elastomers and hydrogels from precise star polymers. Polym Chem 2019. [DOI: 10.1039/c9py00731h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Well-defined high-molecular weight star polymers based on low-Tg water-soluble polymers enable bottom-up design of model network elastomers and functional hydrogels.
Collapse
Affiliation(s)
- Guido Creusen
- A3BMS Lab – Active
- Adaptive and Autonomous Bioinspired Materials
- Institute for Macromolecular Chemistry
- University of Freiburg
- 79104 Freiburg
| | - Ardeshir Roshanasan
- A3BMS Lab – Active
- Adaptive and Autonomous Bioinspired Materials
- Institute for Macromolecular Chemistry
- University of Freiburg
- 79104 Freiburg
| | - Javier Garcia Lopez
- Institute of Organic Chemistry and Macromolecular Chemistry
- Jena Center of Soft Matter
- Friedrich Schiller University of Jena
- 07743 Jena
- Germany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry
- Jena Center of Soft Matter
- Friedrich Schiller University of Jena
- 07743 Jena
- Germany
| | - Andreas Walther
- A3BMS Lab – Active
- Adaptive and Autonomous Bioinspired Materials
- Institute for Macromolecular Chemistry
- University of Freiburg
- 79104 Freiburg
| |
Collapse
|