1
|
Wu Y, Peng Z, Wang H, Xiang W. Identifying the Hub Genes of Glioma Peritumoral Brain Edema Using Bioinformatical Methods. Brain Sci 2022; 12:brainsci12060805. [PMID: 35741689 PMCID: PMC9221376 DOI: 10.3390/brainsci12060805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Glioma peritumoral brain edema (GPTBE) is a frequent complication in patients with glioma. The severity of peritumoral edema endangers patients’ life and prognosis. However, there are still questions concerning the process of GPTBE formation and evolution. In this study, the patients were split into two groups based on edema scoring findings in the cancer imaging archive (TCIA) comprising 186 TCGA-LGG patients. Using mRNA sequencing data, differential gene (DEG) expression analysis was performed, comparing the two groups to find the key genes affecting GPTBE. A functional enrichment analysis of differentially expressed genes was performed. Then, a protein–protein interaction (PPI) network was established, and important genes were screened. Gene set variation analysis (GSVA) scores were calculated for major gene sets and comparatively correlated with immune cell infiltration. Overall survival (OS) was analyzed using the Kaplan–Meier curve. A total of 59 DEGs were found, with 10 of them appearing as important genes. DEGs were shown to be closely linked to inflammatory reactions. According to the network score, IL10 was in the middle of the network. The presence of the IL10 protein in glioma tissues was verified using the human protein atlas (HPA). Furthermore, the gene sets’ GSVA scores were favorably linked with immune infiltration, particularly, with macrophages. The high-edema group had higher GSVA scores than the low-edema group. Finally, Kaplan–Meier analysis revealed no differences in OS between the two groups, and eight genes were found to be related to prognosis, whereas two genes were not. GPTBE is linked to the expression of inflammatory genes.
Collapse
|
2
|
Zang L, Kondengaden SM, Che F, Wang L, Heng X. Potential Epigenetic-Based Therapeutic Targets for Glioma. Front Mol Neurosci 2018; 11:408. [PMID: 30498431 PMCID: PMC6249994 DOI: 10.3389/fnmol.2018.00408] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Glioma is characterized by a high recurrence rate, short survival times, high rates of mortality and treatment difficulties. Surgery, chemotherapy and radiation (RT) are the standard treatments, but outcomes rarely improve even after treatment. With the advancement of molecular pathology, recent studies have found that the development of glioma is closely related to various epigenetic phenomena, including DNA methylation, abnormal microRNA (miRNA), chromatin remodeling and histone modifications. Owing to the reversibility of epigenetic modifications, the proteins and genes that regulate these changes have become new targets in the treatment of glioma. In this review, we present a summary of the potential therapeutic targets of glioma and related effective treating drugs from the four aspects mentioned above. We further illustrate how epigenetic mechanisms dynamically regulate the pathogenesis and discuss the challenges of glioma treatment. Currently, among the epigenetic treatments, DNA methyltransferase (DNMT) inhibitors and histone deacetylase inhibitors (HDACIs) can be used for the treatment of tumors, either individually or in combination. In the treatment of glioma, only HDACIs remain a good option and they provide new directions for the treatment. Due to the complicated pathogenesis of glioma, epigenetic applications to glioma clinical treatment are still limited.
Collapse
Affiliation(s)
- Lanlan Zang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shukkoor Muhammed Kondengaden
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Fengyuan Che
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lijuan Wang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Xueyuan Heng
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| |
Collapse
|
3
|
FIRTINA S, HATIRNAZ NG Ö, ERBİLGİN Y, ÖZBEK U, SAYİTOĞLU M. Dysregulation of the DKK1 gene in pediatric B-cell acute lymphoblastic leukemia. Turk J Med Sci 2017; 47:357-363. [DOI: 10.3906/sag-1507-106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 03/16/2016] [Indexed: 11/03/2022] Open
|
4
|
Guo KT, Fu P, Juerchott K, Motaln H, Selbig J, Lah T, Tonn JC, Schichor C. The expression of Wnt-inhibitor DKK1 (Dickkopf 1) is determined by intercellular crosstalk and hypoxia in human malignant gliomas. J Cancer Res Clin Oncol 2014; 140:1261-70. [PMID: 24770633 DOI: 10.1007/s00432-014-1642-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/07/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Wnt signalling pathways regulate proliferation, motility and survival in a variety of human cell types. Dickkopf 1 (DKK1) gene codes for a secreted Wnt inhibitory factor. It functions as tumour suppressor gene in breast cancer and as a pro-apoptotic factor in glioma cells. In this study, we aimed to demonstrate whether the different expression of DKK1 in human glioma-derived cells is dependent on microenvironmental factors like hypoxia and regulated by the intercellular crosstalk with bone-marrow-derived mesenchymal stem cells (bmMSCs). METHODS Glioma cell line U87-MG, three cell lines from human glioblastoma grade IV (glioma-derived mesenchymal stem cells) and three bmMSCs were selected for the experiment. The expression of DKK1 in cell lines under normoxic/hypoxic environment or co-culture condition was measured using real-time PCR and enzyme-linked immunoadsorbent assay. The effect of DKK1 on cell migration and proliferation was evaluated by in vitro wound healing assays and sulphorhodamine assays, respectively. RESULTS Glioma-derived cells U87-MG displayed lower DKK1 expression compared with bmMSCs. Hypoxia led to an overexpression of DKK1 in bmMSCs and U87-MG when compared to normoxic environment, whereas co-culture of U87-MG with bmMSCs induced the expression of DKK1 in both cell lines. Exogenous recombinant DKK1 inhibited cell migration on all cell lines, but did not have a significant effect on cell proliferation of bmMSCs and glioma cell lines. CONCLUSION In this study, we showed for the first time that the expression of DKK1 was hypoxia dependent in human malignant glioma cell lines. The induction of DKK1 by intracellular crosstalk or hypoxia stimuli sheds light on the intense adaption of glial tumour cells to environmental alterations.
Collapse
Affiliation(s)
- Ke-Tai Guo
- Tumour-Biological Laboratory, Department of Neurosurgery, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
5
|
TP53 and p53 statuses and their clinical impact in diffuse low grade gliomas. J Neurooncol 2014; 118:131-9. [PMID: 24590827 DOI: 10.1007/s11060-014-1407-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
TP53 is a pivotal gene frequently mutated in diffuse gliomas and particularly in astrocytic tumors. The majority of studies dedicated to TP53 in gliomas were focused on mutational hotspots located in exons 5-8. Recent studies have suggested that TP53 is also mutated outside the classic mutational hotspots reported in gliomas. Therefore, we have sequenced all TP53 coding exons in a retrospective series of 61 low grade gliomas (LGG) using high throughput sequencing technology. In addition, TP53 mutational status was correlated with: (i) p53 expression, (ii) tumor type, (iii) chromosome arms 1p/19q status and (iv) clinical features of patients. The cohort included 32 oligodendrogliomas (O), 21 oligoastrocytomas (M) and 8 astrocytomas (A). TP53 mutation was detected in 52.4% (32/61) of tumors (34% of O, 71.4% of M and 75% of A). All mutations (38 mutations in 32 samples) were detected in exons 4, 5, 6, 7, 8 and 10. Missense and non-missense mutations, including seven novel mutations, were detected in 42.6 and 9.8% of tumors respectively. TP53 mutations were almost mutually exclusive with 1p/19q co-deletion and were associated with: (i) astrocytic phenotype, (ii) younger age, (iii) p53 expression. Using a threshold of 10% p53-positive tumor cells, p53 expression is an interesting surrogate marker for missense TP53 mutations (Se = 92%; Sp = 79.4%) but not for non-missense mutation (18.4% of mutations). TP53 and p53 statuses were not prognostic in LGG. In conclusion, we have identified novel TP53 mutations in LGG. TP53 mutations outside exons 4-8 are rare. Although it remains imperfect, p53 expression with a threshold of 10% is a good surrogate marker for missense TP53 mutations and appears helpful in the setting of LGG phenotype diagnosis.
Collapse
|
6
|
Foltz G, Yoon JG, Lee H, Ma L, Tian Q, Hood L, Madan A. Epigenetic regulation of wnt pathway antagonists in human glioblastoma multiforme. Genes Cancer 2011; 1:81-90. [PMID: 21779426 DOI: 10.1177/1947601909356103] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Epigenetic inactivation of tumor suppressor genes is common in human cancer. Using a large-scale whole-genome approach in an earlier study, the authors identified epigenetically silenced genes with potential tumor suppressor function in glioblastoma (GBM). Three genes identified in this analysis-DKK1, SFRP1, and WIF1-are potent inhibitors of the Wnt signal transduction pathway. Here, the authors confirm decreased expression of these genes in GBM tumor tissue samples relative to nontumor brain tissue samples using real-time PCR. They then show that expression of all 3 genes is restored in T98 GBM cells by treatment with the histone deacetylase inhibitor Trichostatin A (TSA), but only DKK1 expression is restored by treatment with the demethylating agent 5-azacytidine. Bisulfite sequencing did not reveal significant methylation in the promoter region of DKK1, whereas histone acetylation and chromatin accessibility increased significantly for all 3 genes after TSA treatment. Ectopic expression of DKK1 significantly reduces colony formation and increases chemotherapy-induced apoptosis in T98 cells. Ectopic expression of the canonical Wnt pathway inhibitors WIF1 and SFRP1 shows a relative lack of response. Chronic Wnt3a stimulation only partially reverses growth suppression after DKK1 reexpression, whereas a specific inhibitor of the JNK pathway significantly reverses the effect of DKK1 reexpression on colony formation and apoptosis in T98 cells. These results support a potential growth-suppressive function for epigenetically silenced DKK1 in GBM and suggest that DKK1 restoration could modulate Wnt signaling through both canonical and noncanonical pathways.
Collapse
Affiliation(s)
- Greg Foltz
- Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Zhou Y, Li W, Xu Q, Huang Y. Elevated expression of Dickkopf-1 increases the sensitivity of human glioma cell line SHG44 to BCNU. J Exp Clin Cancer Res 2010; 29:131. [PMID: 20920327 PMCID: PMC2958929 DOI: 10.1186/1756-9966-29-131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/04/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Studies have shown that Dickkopf-1 (DKK-1) is involved in tumorigenesis. Recently, we found that 9 out of 12 human glioma cell lines had high level of DKK-1 protein while the other 3 had very low or non-detectable level of DKK-1. The aim of this study is to further examine the function of DKK-1 in glioma cells. MATERIALS AND METHODS The glioma cell line SHG44 was obtained from a patient with grade II-III astrocytoma. SHG44 cells were transfected with a human DKK-1 gene. Transfection of the empty vector pcDNA3.1 was used as negative control. Sensitivity to BCNU was measured by Annexin-V staining. Expression of bax, bcl-2 and caspase-3 of three groups was determined by immunohistochemistry. RESULTS The tranfection was confirmed by PCR, RT-PCR and Western blot. More apoptotic cell death was observed in the DKK-1 transfected cells, comparing to the non-transfected cells, or cells with empty vector. The expression of bax and caspase-3 of the SHG44 -DDK-1 increased, whereas the expression of bcl-2 decreased CONCLUSION Our results indicated that DKK-1 has a pro-apoptotic function of in glioma.
Collapse
Affiliation(s)
- Youxin Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wenshuai Li
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qinian Xu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yulun Huang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
8
|
Götze S, Wolter M, Reifenberger G, Müller O, Sievers S. Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas. Int J Cancer 2010; 126:2584-93. [PMID: 19847810 DOI: 10.1002/ijc.24981] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aberrant activation of wingless (Wnt) signaling is involved in the pathogenesis of various cancers. Recent studies suggested a role of Wnt signaling in gliomas, the most common primary brain tumors. We investigated 70 gliomas of different malignancy grades for promoter hypermethylation in 8 genes encoding members of the secreted frizzled-related protein (SFRP1, SFRP2, SFRP4, SFRP5), dickkopf (DKK1, DKK3) and naked (NKD1, NKD2) families of Wnt pathway inhibitors. All tumors were additionally analyzed for mutations in exon 3 of the beta-catenin gene (CTNNB1). While none of the tumors carried CTNNB1 mutations, we found frequent promoter hypermethylation of Wnt pathway inhibitor genes, with at least one of these genes being hypermethylated in 6 of 16 diffuse astrocytomas (38%), 4 of 14 anaplastic astrocytomas (29%), 7 of 10 secondary glioblastomas (70%) and 23 of 30 primary glioblastomas (77%). Glioblastomas often demonstrated hypermethylation of 2 or more analyzed genes. Hypermethylation of SFRP1, SFRP2 and NKD2 each occurred in more than 40% of the primary glioblastomas, while DKK1 hypermethylation was found in 50% of secondary glioblastomas. Treatment of SFRP1-, SFRP5-, DKK1-, DKK3-, NKD1- and NKD2-hypermethylated U87-MG glioblastoma cells with 5-aza-2'-deoxycytidine and trichostatin A resulted in increased expression of each gene. Furthermore, SFRP1-hypermethylated gliomas showed significantly lower expression of the respective transcripts when compared with unmethylated tumors. Taken together, our results suggest an important role of epigenetic silencing of Wnt pathway inhibitor genes in astrocytic gliomas, in particular, in glioblastomas, with distinct patterns of hypermethylated genes distinguishing primary from secondary glioblastomas.
Collapse
Affiliation(s)
- Silke Götze
- Department of Structural Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| | | | | | | | | |
Collapse
|