1
|
Ozawa M, Saito R, Konno T, Kuroha Y, Ikeda T, Yokoseki A, Tani T, Sato T, Idezuka J, Koide R, Fujimoto S, Onodera O, Tada M, Kakita A. Late-onset multiple system atrophy: Neuropathological features associated with slow disease progression. Brain Pathol 2025:e70016. [PMID: 40389287 DOI: 10.1111/bpa.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/29/2025] [Indexed: 05/21/2025] Open
Abstract
Patients with late-onset (LO) multiple system atrophy (MSA), whose initial symptoms appear at age 75 years or older, are more common than previously assumed, but their clinicopathological characteristics remain unclear. We aimed to clarify the clinicopathological features of LO-MSA. Of 102 patients with autopsy-confirmed MSA, 5 were identified as having LO-MSA and 24 as having usual-age-onset MSA (UO-MSA) with a similar disease duration. On the basis of previous reports, we defined UO-MSA as the appearance of initial symptoms between the ages of 55 and 65 years. We compared the clinical pictures of the two groups and assessed their histopathological features using quantitative and semi-quantitative methods. The investigated features included the severity of degeneration in the striatonigral (StrN) and olivopontocerebellar (OPC) systems, the numbers of neurons in the brainstem autonomic and spinal intermediolateral nuclei, and the density of α-synuclein-immunopositive inclusions in the putamen, inferior olivary nucleus, and ventrolateral medulla (VLM). Most patients with both LO-MSA and UO-MSA exhibited the MSA-olivopontocerebellar atrophy (OPCA) subtype (3/5 and 18/24, respectively). The median disease duration for LO-MSA patients was 5.5 years, which was comparable to that for patients in our cohort who had developed symptoms below 75 years of age. Pathologically, degeneration of the StrN and OPC systems in LO-MSA was less severe than that observed in UO-MSA. Quantitative analysis revealed better preservation of neuron numbers in the brainstem autonomic nuclei in LO-MSA than in UO-MSA, with a significantly higher number of serotonergic neurons in the VLM (p = 0.013). The density of α-synuclein-positive inclusions in the putamen was significantly lower in LO-MSA than in UO-MSA (p < 0.001). Neuronal degeneration in LO-MSA may progress more slowly than in UO-MSA. Accordingly, the prognosis of LO-MSA may not necessarily be less favorable than that of MSA generally, especially with appropriate care.
Collapse
Affiliation(s)
- Misato Ozawa
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
- Division of Neurology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Rie Saito
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takuya Konno
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
- Horikawa Clinic of Internal Medicine and Neurology, Niigata, Japan
| | - Yasuko Kuroha
- Department of Neurology, NHO Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Tetsuhiko Ikeda
- Department of Neurology, NHO Niigata National Hospital, Kashiwazaki, Niigata, Japan
| | - Akio Yokoseki
- Department of Neurology, Brain Disease Center, Agano Hospital, Agano, Niigata, Japan
| | - Takashi Tani
- Department of Neurology, NHO Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Tomoe Sato
- Department of Neurology, Saiseikai Niigata Kenoh Kikan Hospital, Sanjo, Niigata, Japan
| | - Jiro Idezuka
- Department of Neurology, Ojiya Sakura Hospital, Ojiya, Niigata, Japan
| | - Reiji Koide
- Division of Neurology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shigeru Fujimoto
- Division of Neurology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mari Tada
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Wiseman JA, Turner CP, Faull RLM, Halliday GM, Dieriks BV. Refining α-synuclein seed amplification assays to distinguish Parkinson's disease from multiple system atrophy. Transl Neurodegener 2025; 14:7. [PMID: 39920796 PMCID: PMC11804046 DOI: 10.1186/s40035-025-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) and multiple system atrophy (MSA) are two distinct α-synucleinopathies traditionally differentiated through clinical symptoms. Early diagnosis of MSA is problematic, and seed amplification assays (SAAs), such as real-time quaking-induced conversion (RT-QuIC), offer the potential to distinguish these diseases through their underlying α-synuclein (α-Syn) pathology and proteoforms. Currently, SAAs provide a binary result, signifying either the presence or absence of α-Syn seeds. To enhance the diagnostic potential and biological relevance of these assays, there is a pressing need to incorporate quantification and stratification of α-Syn proteoform-specific aggregation kinetics into current SAA pipelines. METHODS Optimal RT-QuIC assay conditions for α-Syn seeds extracted from PD and MSA patient brains were determined, and assay kinetics were assessed for α-Syn seeds from different pathologically relevant brain regions (medulla, substantia nigra, hippocampus, middle temporal gyrus, and cerebellum). The conformational profiles of disease- and region-specific α-Syn proteoforms were determined by subjecting the amplified reaction products to concentration-dependent proteolytic digestion with proteinase K. RESULTS Using our protocol, PD and MSA could be accurately delineated using proteoform-specific aggregation kinetics, including α-Syn aggregation rate, maximum relative fluorescence, the gradient of amplification, and core protofilament size. MSA cases yielded significantly higher values than PD cases across all four kinetic parameters in brain tissues, with the MSA-cerebellar phenotype having higher maximum relative fluorescence than the MSA-Parkinsonian phenotype. Statistical significance was maintained when the data were analysed regionally and when all regions were grouped. CONCLUSIONS Our RT-QuIC protocol and analysis pipeline can distinguish between PD and MSA, and between MSA phenotypes. MSA α-Syn seeds induce faster propagation and exhibit higher aggregation kinetics than PD α-Syn, mirroring the biological differences observed in brain tissue. With further validation of these quantitative parameters, we propose that SAAs could advance from a yes/no diagnostic to a theranostic biomarker that could be utilised in developing therapeutics.
Collapse
Affiliation(s)
- James A Wiseman
- Department of Anatomy and Medical Imaging, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Clinton P Turner
- LabPlus, Department of Anatomical Pathology, Te Whatu Ora, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
| | - Glenda M Halliday
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
- Neuroscience Research Australia & Faculty of Medicine School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand.
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia.
| |
Collapse
|
3
|
Ndayisaba A, Halliday GM, Khurana V. Multiple System Atrophy: Pathology, Pathogenesis, and Path Forward. ANNUAL REVIEW OF PATHOLOGY 2025; 20:245-273. [PMID: 39405585 DOI: 10.1146/annurev-pathmechdis-051122-104528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disease characterized by autonomic failure and motor impairment. The hallmark pathologic finding in MSA is widespread oligodendroglial cytoplasmic inclusions rich in aggregated α-synuclein (αSyn). MSA is widely held to be an oligodendroglial synucleinopathy, and we outline lines of evidence to support this assertion, including the presence of early myelin loss. However, we also consider emerging data that support the possibility of neuronal or immune dysfunction as a primary driver of MSA. These hypotheses are placed in the context of a major recent discovery that αSyn is conformationally distinct in MSA versus other synucleinopathies such as Parkinson's disease. We outline emerging techniques in epidemiology, genetics, and molecular pathology that will shed more light on this mysterious disease. We anticipate a future in which cutting-edge developments in personalized disease modeling, including with pluripotent stem cells, bridge mechanistic developments at the bench and real benefits at the bedside.
Collapse
Affiliation(s)
- Alain Ndayisaba
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Movement Disorders, Ann Romney Center for Neurologic Diseases, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
| | - Glenda M Halliday
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Vikram Khurana
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Division of Movement Disorders, Ann Romney Center for Neurologic Diseases, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Kon T, Forrest SL, Lee S, Li J, Chasiotis H, Nassir N, Uddin MJ, Lang AE, Kovacs GG. SNCA and TPPP transcripts increase in oligodendroglial cytoplasmic inclusions in multiple system atrophy. Neurobiol Dis 2024; 198:106551. [PMID: 38839023 DOI: 10.1016/j.nbd.2024.106551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
Multiple system atrophy (MSA) is characterized by glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-syn) in oligodendrocytes. The origin of α-syn accumulation in GCIs is unclear, in particular whether abnormal α-syn aggregates result from the abnormal elevation of endogenous α-syn expression in MSA or ingested from the neuronal source. Tubulin polymerization promoting protein (TPPP) has been reported to play a crucial role in developing GCI pathology. Here, the total cell body, nucleus, and cytoplasmic area density of SNCA and TPPP transcripts in neurons and oligodendrocytes with and without various α-syn pathologies in the pontine base in autopsy cases of MSA (n = 4) and controls (n = 2) were evaluated using RNAscope with immunofluorescence. Single-nucleus RNA-sequencing data for TPPP was evaluated using control frontal cortex (n = 3). SNCA and TPPP transcripts were present in the nucleus and cytoplasm of oligodendrocytes in both controls and diseased, with higher area density in GCIs and glial nuclear inclusions in MSA. Area densities of SNCA and TPPP transcripts were lower in neurons showing cytoplasmic inclusions in MSA. Indeed, TPPP transcripts were unexpectedly found in neurons, while the anti-TPPP antibody failed to detect immunoreactivity. Single-nucleus RNA-sequencing revealed significant TPPP transcript expression predominantly in oligodendrocytes, but also in excitatory and inhibitory neurons. This study addressed the unclear origin of accumulated α-syn in GCIs, proposing that the elevation of SNCA transcripts may supply templates for misfolded α-syn. In addition, the parallel behavior of TPPP and SNCA transcripts in GCI development highlights their potential synergistic contribution to inclusion formation. In conclusion, this study advances our understanding of MSA pathogenesis, offers insights into the dynamics of SNCA and TPPP transcripts in inclusion formation, and proposes regulating their transcripts for future molecular therapy to MSA.
Collapse
Affiliation(s)
- Tomoya Kon
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.
| | - Helen Chasiotis
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.
| | - Nasna Nassir
- Centre for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Mohammed J Uddin
- Centre for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates; GenomeArc Inc, Toronto, ON, Canada.
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Edmund J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, Toronto, ON, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada.
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Edmund J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, Toronto, ON, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Wakabayashi K, Miki Y, Tanji K, Mori F. Neuropathology of Multiple System Atrophy, a Glioneuronal Degenerative Disease. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2-12. [PMID: 35474048 DOI: 10.1007/s12311-022-01407-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 12/16/2022]
Abstract
Multiple system atrophy (MSA) is a fatal disease characterized pathologically by the widespread occurrence of aggregated α-synuclein in the oligodendrocytes referred to as glial cytoplasmic inclusions (GCIs). α-Synuclein aggregates are also found in the oligodendroglial nuclei and neuronal cytoplasm and nuclei. It is uncertain whether the primary source of α-synuclein in GCIs is originated from neurons or oligodendrocytes. Accumulating evidence suggests that there are two degenerative processes in this disease. One possibility is that numerous GCIs are associated with the impairment of oligo-myelin-axon-neuron complex, and the other is that neuronal inclusion pathology is also a primary event from the early stage. Both oligodendrocytes and neurons may be primarily affected in MSA, and the damage of one cell type contributes to the degeneration of the other. Vesicle-mediated transport plays a key role in the nuclear translocation of α-synuclein as well as in the formation of glial and neuronal α-synuclein inclusions. Recent studies have shown that impairment of autophagy can occur along with or as a result of α-synuclein accumulation in the brain of MSA and Lewy body disease. Activated autophagy may be implicated in the therapeutic approach for α-synucleinopathies.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| | - Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| |
Collapse
|
6
|
Cheng A, Jia W, Finkelstein DI, Stefanova N, Wang H, Sasaki T, Kawahata I, Fukunaga K. Pharmacological inhibition of FABP7 by MF 6 counteracts cerebellum dysfunction in an experimental multiple system atrophy mouse model. Acta Pharmacol Sin 2024; 45:66-75. [PMID: 37605049 PMCID: PMC10770047 DOI: 10.1038/s41401-023-01138-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/09/2023] [Indexed: 08/23/2023]
Abstract
Multiple system atrophy (MSA) is a rare, fatal neurodegenerative disease characterized by the accumulation of misfolded α-synuclein (αSyn) in glial cells, leading to the formation of glial cytoplasmic inclusions (GCI). We previous found that glial fatty acid-binding protein 7 (FABP7) played a crucial role in alpha-synuclein (αSyn) aggregation and toxicity in oligodendrocytes, inhibition of FABP7 by a specific inhibitor MF 6 reduced αSyn aggregation and enhanced cell viability in cultured cell lines and mouse oligodendrocyte progenitor cells. In this study we investigated whether MF 6 ameliorated αSyn-associated pathological processes in PLP-hαSyn transgenic mice (PLP-αSyn mice), a wildly used MSA mouse model with overexpressing αSyn in oligodendroglia under the proteolipid protein (PLP) promoter. PLP-αSyn mice were orally administered MF6 (0.1, 1 mg ·kg-1 ·d-1) for 32 days starting from the age of 6 months. We showed that oral administration of MF 6 significantly improved motor function assessed in a pole test, and reduced αSyn aggregation levels in both cerebellum and basal ganglia of PLP-αSyn mice. Moreover, MF 6 administration decreased oxidative stress and inflammation levels, and improved myelin levels and Purkinje neuron morphology in the cerebellum. By using mouse brain tissue slices and αSyn aggregates-treated KG-1C cells, we demonstrated that MF 6 reduced αSyn propagation to Purkinje neurons and oligodendrocytes through regulating endocytosis. Overall, these results suggest that MF 6 improves cerebellar functions in MSA by inhibiting αSyn aggregation and propagation. We conclude that MF 6 is a promising compound that warrants further development for the treatment of MSA.
Collapse
Affiliation(s)
- An Cheng
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA.
| | - Wenbin Jia
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - David I Finkelstein
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Haoyang Wang
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
7
|
Fan CC, Han C, Wang XM, Chhetri JK, Mao W, Xu EH, Liu SY, Chan P. Data-Driven Subtypes of Multiple System Atrophy and Their Implications for Prognosis. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1211-1223. [PMID: 39031382 PMCID: PMC11380245 DOI: 10.3233/jpd-240040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/22/2024]
Abstract
Background While multiple system atrophy (MSA) presents with high heterogeneous motor and nonmotor symptoms, the associations between clinical phenotypes and prognosis are unclear. Objective We aimed to evaluate clinical phenotypes of MSA using data-driven approach and measure the impact of phenotypes on survival and bedbound status. Methods 193 MSA patients were recruited from Xuanwu Hospital Capital Medical University, whose history, motor and non-motor symptoms were examined using cluster analysis. Ninety-five participants were followed-up via telephone after a mean of 31.87 months. We employed Kaplan- Meier analysis to examine survival and performed Cox and logistic regression analyses to identify factors associated with survival and bedbound status. Results We identified four clinical profiles of MSA: cerebellar symptom-dominant, sleep and mood disorder-dominant, rigid akinetic-dominant, and malignant diffuse. The overall median survival was 7.75 years (95% CI 7.19-8.31). After adjusting for years from symptom onset to diagnosis, age and sex, patients in the malignant diffuse and rigid akinetic-dominant clusters had greater risk of death than sleep and mood disorder-dominant cluster. Furthermore, patients in the malignant diffuse and rigid akinetic-dominant clusters had higher risk of being bedbound than cerebellar symptom-dominant cluster. Conclusions The malignant diffuse and sleep and mood disorder-dominant were identified besides the two classical subtypes, parkinsonism, and cerebellar symptom-variant. Patients with rigid-akinetic motor profiles have a worse prognosis than cerebellar symptom-dominant profiles in general. Diffuse symptoms, especially postural instability, and cognitive alterations at diagnosis, indicate rapid functional loss and disease progression. The different profiles and prognoses might indicate varied underlying pathological mechanisms.
Collapse
Affiliation(s)
- Cheng-Cheng Fan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chao Han
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xue-Mei Wang
- Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | | | - Wei Mao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Er-He Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shu-Ying Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research (CIBR), Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
8
|
Sekiya H, Koga S, Murakami A, Kawazoe M, Kim M, Martin NB, Uitti RJ, Cheshire WP, Wszolek ZK, Dickson DW. Validation Study of the MDS Criteria for the Diagnosis of Multiple System Atrophy in the Mayo Clinic Brain Bank. Neurology 2023; 101:e2460-e2471. [PMID: 37816641 PMCID: PMC10791062 DOI: 10.1212/wnl.0000000000207905] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/15/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The second consensus criteria in 2008 have been used in diagnosing multiple system atrophy (MSA). The International Parkinson and Movement Disorder Society (MDS) proposed new diagnostic criteria for MSA in 2022. This study aimed to compare the diagnostic accuracy between these 2 criteria and validate the clinical utility of the newly proposed criteria for MSA. METHODS We conducted a retrospective autopsy cohort study of consecutive patients with a clinical or pathologic diagnosis of MSA from the Mayo Clinic brain bank between 1998 and 2021. We studied 352 patients (250 pathologically diagnosed MSA and 102 non-MSA); MDS criteria and the second consensus criteria were applied. The sensitivity, specificity, and area under the curve (AUC) of receiver operating characteristic curves were compared between these criteria. Comparison was conducted between clinical subtypes and among clinically challenging cases (those with different clinical diagnoses or those with suspected but undiagnosed MSA before death). We also used machine learning algorithm, eXtreme Gradient Boosting, to identify clinical features contributing diagnostic performance. RESULTS The sensitivity and specificity of clinically established and probable MSA by the MDS criteria were 16% and 99% and 64% and 74%, respectively. The sensitivity and specificity of probable MSA and possible MSA by the second consensus criteria were 72% and 52% and 93% and 21%, respectively. The AUC of MDS clinically probable MSA was the highest (0.69). The diagnostic performance did not differ between clinical subtypes. In clinically challenging cases, MDS clinically established MSA maintained high specificity and MDS clinically probable MSA demonstrated the highest AUC (0.62). MRI findings contributed to high specificity. In addition, combining core clinical features with 2 or more from any of the 13 supporting features and the absence of exclusion criteria also yielded high specificity. Among supporting features, rapid progression was most important for predicting MSA pathology. DISCUSSION The MDS criteria showed high specificity with clinically established MSA and moderate sensitivity and specificity with clinically probable MSA. The observation that high specificity could be achieved with clinical features alone suggests that MSA diagnosis with high specificity is possible even in areas where MRI is not readily available.
Collapse
Affiliation(s)
- Hiroaki Sekiya
- From the Department of Neuroscience (H.S., S.K., A.M., M. Kawazoe, N.B.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Division of Neurology (H.S.), Kobe University Graduate School of Medicine; Department of Neurology (A.M.), Kansai Medical University Hirakata, Japan; Departments of Artificial Intelligence and Informatics Research (M. Kim) and Neurology (R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Shunsuke Koga
- From the Department of Neuroscience (H.S., S.K., A.M., M. Kawazoe, N.B.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Division of Neurology (H.S.), Kobe University Graduate School of Medicine; Department of Neurology (A.M.), Kansai Medical University Hirakata, Japan; Departments of Artificial Intelligence and Informatics Research (M. Kim) and Neurology (R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Aya Murakami
- From the Department of Neuroscience (H.S., S.K., A.M., M. Kawazoe, N.B.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Division of Neurology (H.S.), Kobe University Graduate School of Medicine; Department of Neurology (A.M.), Kansai Medical University Hirakata, Japan; Departments of Artificial Intelligence and Informatics Research (M. Kim) and Neurology (R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Miki Kawazoe
- From the Department of Neuroscience (H.S., S.K., A.M., M. Kawazoe, N.B.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Division of Neurology (H.S.), Kobe University Graduate School of Medicine; Department of Neurology (A.M.), Kansai Medical University Hirakata, Japan; Departments of Artificial Intelligence and Informatics Research (M. Kim) and Neurology (R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Minji Kim
- From the Department of Neuroscience (H.S., S.K., A.M., M. Kawazoe, N.B.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Division of Neurology (H.S.), Kobe University Graduate School of Medicine; Department of Neurology (A.M.), Kansai Medical University Hirakata, Japan; Departments of Artificial Intelligence and Informatics Research (M. Kim) and Neurology (R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Nicholas B Martin
- From the Department of Neuroscience (H.S., S.K., A.M., M. Kawazoe, N.B.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Division of Neurology (H.S.), Kobe University Graduate School of Medicine; Department of Neurology (A.M.), Kansai Medical University Hirakata, Japan; Departments of Artificial Intelligence and Informatics Research (M. Kim) and Neurology (R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Ryan J Uitti
- From the Department of Neuroscience (H.S., S.K., A.M., M. Kawazoe, N.B.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Division of Neurology (H.S.), Kobe University Graduate School of Medicine; Department of Neurology (A.M.), Kansai Medical University Hirakata, Japan; Departments of Artificial Intelligence and Informatics Research (M. Kim) and Neurology (R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - William P Cheshire
- From the Department of Neuroscience (H.S., S.K., A.M., M. Kawazoe, N.B.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Division of Neurology (H.S.), Kobe University Graduate School of Medicine; Department of Neurology (A.M.), Kansai Medical University Hirakata, Japan; Departments of Artificial Intelligence and Informatics Research (M. Kim) and Neurology (R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Zbigniew K Wszolek
- From the Department of Neuroscience (H.S., S.K., A.M., M. Kawazoe, N.B.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Division of Neurology (H.S.), Kobe University Graduate School of Medicine; Department of Neurology (A.M.), Kansai Medical University Hirakata, Japan; Departments of Artificial Intelligence and Informatics Research (M. Kim) and Neurology (R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Dennis W Dickson
- From the Department of Neuroscience (H.S., S.K., A.M., M. Kawazoe, N.B.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Division of Neurology (H.S.), Kobe University Graduate School of Medicine; Department of Neurology (A.M.), Kansai Medical University Hirakata, Japan; Departments of Artificial Intelligence and Informatics Research (M. Kim) and Neurology (R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| |
Collapse
|
9
|
Park DG, Kim JY, Kim MS, Kim MH, An YS, Chang J, Yoon JH. Neurofilament light chain and cardiac MIBG uptake as predictors for phenoconversion in isolated REM sleep behavior disorder. J Neurol 2023; 270:4393-4402. [PMID: 37233802 DOI: 10.1007/s00415-023-11785-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Isolated rapid-eye-movement (REM) sleep behavior disorder (iRBD) is considered as a prodromal stage of either multiple system atrophy (MSA) or Lewy body disease (LBD; Parkinson's disease and dementia with Lewy bodies). However, current knowledge is limited in predicting and differentiating the type of future phenoconversion in iRBD patients. We investigated the role of plasma neurofilament light chain (NfL) and cardiac metaiodobenzylguanidine (MIBG) uptake as predictors for phenoconversion. METHODS Forty patients with iRBD were enrolled between April 2018 and October 2019 and prospectively followed every 3 months to determine phenoconversion to either MSA or LBD. Plasma NfL levels were measured at enrollment. Cardiac MIBG uptake and striatal dopamine transporter uptake were assessed at baseline. RESULTS Patients were followed for a median of 2.92 years. Four patients converted to MSA and 7 to LBD. Plasma NfL level at baseline was significantly higher in future MSA-converters (median 23.2 pg/mL) when compared with the rest of the samples (median 14.1 pg/mL, p = 0.003). NfL level above 21.3 pg/mL predicted phenoconversion to MSA with the sensitivity of 100% and specificity of 94.3%. Baseline MIBG heart-to-mediastinum ratio of LBD-converters (median 1.10) was significantly lower when compared with the rest (median 2.00, p < 0.001). Heart-to-mediastinum ratio below 1.545 predicted phenoconversion to LBD with the sensitivity of 100% and specificity of 92.9%. CONCLUSIONS Plasma NfL and cardiac MIBG uptake may be useful biomarkers in predicting phenoconversion of iRBD. Elevated plasma NfL levels may suggest imminent phenoconversion to MSA, whereas low cardiac MIBG uptake suggests phenoconversion to LBD.
Collapse
Affiliation(s)
- Don Gueu Park
- Department of Neurology, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Ju Yeong Kim
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon-Si, Republic of Korea
| | - Min Seung Kim
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - Mi Hee Kim
- Department of Neurology, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Young-Sil An
- Department of Nuclear Medicine, Ajou University School of Medicine, Suwon-Si, Republic of Korea
| | - Jaerak Chang
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon-Si, Republic of Korea.
- Department of Brain Science, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea.
| | - Jung Han Yoon
- Department of Neurology, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea.
| |
Collapse
|
10
|
Stefanova N, Wenning GK. Multiple system atrophy: at the crossroads of cellular, molecular and genetic mechanisms. Nat Rev Neurosci 2023; 24:334-346. [PMID: 37085728 DOI: 10.1038/s41583-023-00697-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/23/2023]
Abstract
Multiple system atrophy (MSA) is a rare oligodendroglial α-synucleinopathy characterized by neurodegeneration in striatonigral and olivopontocerebellar regions and autonomic brain centres. It causes complex cumulative motor and non-motor disability with fast progression and effective therapy is currently lacking. The difficulties in the diagnosis and treatment of MSA are largely related to the incomplete understanding of the pathogenesis of the disease. The MSA pathogenic landscape is complex, and converging findings from genetic and neuropathological studies as well as studies in experimental models of MSA have indicated the involvement of genetic and epigenetic changes; α-synuclein misfolding, aggregation and spreading; and α-synuclein strain specificity. These studies also indicate the involvement of myelin and iron dyshomeostasis, neuroinflammation, mitochondrial dysfunction and other cell-specific aspects that are relevant to the fast progression of MSA. In this Review, we discuss these findings and emphasize the implications of the complexity of the multifactorial pathogenic cascade for future translational research and its impact on biomarker discovery and treatment target definitions.
Collapse
Affiliation(s)
- Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disorder with unclear etiology, currently difficult and delayed diagnosis, and rapid progression, leading to disability and lethality within 6 to 9 years after symptom onset. The neuropathology of MSA classifies the disease in the group of a-synucleinopathies together with Parkinson's disease and other Lewy body disorders, but features specific oligodendroglial inclusions, which are pathognomonic for MSA. MSA has no efficient therapy to date. Development of experimental models is crucial to elucidate the disease mechanisms in progression and to provide a tool for preclinical screening of putative therapies for MSA. In vitro and in vivo models, based on selective neurotoxicity, a-synuclein oligodendroglial overexpression, and strain-specific propagation of a-synuclein fibrils, have been developed, reflecting various facets of MSA pathology. Over the years, the continuous exchange from bench to bedside and backward has been crucial for the advancing of MSA modelling, elucidating MSA pathogenic pathways, and understanding the existing translational gap to successful clinical trials in MSA. The review discusses specifically advantages and limitations of the PLP-a-syn mouse model of MSA, which recapitulates motor and non-motor features of the human disease with underlying striatonigral degeneration, degeneration of autonomic centers, and sensitized olivopontocerebellar system, strikingly mirroring human MSA pathology.
Collapse
Affiliation(s)
- Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
12
|
Reddy K, Dieriks BV. Multiple system atrophy: α-Synuclein strains at the neuron-oligodendrocyte crossroad. Mol Neurodegener 2022; 17:77. [DOI: 10.1186/s13024-022-00579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/31/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractThe aberrant accumulation of α-Synuclein within oligodendrocytes is an enigmatic, pathological feature specific to Multiple system atrophy (MSA). Since the characterization of the disease in 1969, decades of research have focused on unravelling the pathogenic processes that lead to the formation of oligodendroglial cytoplasmic inclusions. The discovery of aggregated α-Synuclein (α-Syn) being the primary constituent of glial cytoplasmic inclusions has spurred several lines of research investigating the relationship between the pathogenic accumulation of the protein and oligodendrocytes. Recent developments have identified the ability of α-Syn to form conformationally distinct “strains” with varying behavioral characteristics and toxicities. Such “strains” are potentially disease-specific, providing insight into the enigmatic nature of MSA. This review discusses the evidence for MSA-specific α-Syn strains, highlighting the current methods for detecting and characterizing MSA patient-derived α-Syn. Given the differing behaviors of α-Syn strains, we explore the seeding and spreading capabilities of MSA-specific strains, postulating their influence on the aggressive nature of the disease. These ideas culminate into one key question: What causes MSA–specific strain formation? To answer this, we discuss the interplay between oligodendrocytes, neurons and α-Syn, exploring the ability of each cell type to contribute to the aggregate formation while postulating the effect of additional variables such as protein interactions, host characteristics and environmental factors. Thus, we propose the idea that MSA strain formation results from the intricate interrelation between neurons and oligodendrocytes, with deficits in each cell type required to initiate α-Syn aggregation and MSA pathogenesis.
Graphical Abstract
Collapse
|
13
|
Sekiya H, Koga S, Otsuka Y, Chihara N, Ueda T, Sekiguchi K, Yoneda Y, Kageyama Y, Matsumoto R, Dickson DW. Clinical and pathological characteristics of later onset multiple system atrophy. J Neurol 2022; 269:4310-4321. [PMID: 35305144 PMCID: PMC10315173 DOI: 10.1007/s00415-022-11067-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In the current consensus criteria, onset after age 75 is considered as non-supporting for diagnosis of multiples system atrophy (MSA); however, some MSA patients present after age 75. Clinical and pathological characteristics of such later onset MSA (LO-MSA) compared to usual onset MSA (UO-MSA) remain poorly understood. METHODS The clinical cohort included patients from Kobe University Hospital and Amagasaki General Medical Center Hospital, while the autopsy cohort was from the brain bank at Mayo Clinic Florida. We identified 83 patients in the clinical cohort and 193 patients in the autopsy cohort. We divided MSA into two groups according to age at onset: UO-MSA (≤ 75) and LO-MSA (> 75). We compared clinical features and outcomes between the two groups in the clinical cohort and compared the findings to the autopsy cohort. RESULTS LO-MSA accounted for 8% in the clinical cohort and 5% in the autopsy cohort. The median time from onset to death or to life-saving tracheostomy was significantly shorter in LO-MSA than in UO-MSA in both cohorts (4.8 vs 7.9 years in the clinical cohort and 3.9 vs 7.5 years in the autopsy cohort; P = 0.043 and P < 0.0001, respectively). The median time from diagnosis to death was less than 3 years in LO-MSA in the clinical cohort. CONCLUSIONS Some MSA patients have late age of onset and short survival, limiting time for clinical decision making. MSA should be considered in the differential diagnosis of elderly patients with autonomic symptoms and extrapyramidal and/or cerebellar syndromes.
Collapse
Affiliation(s)
- Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Yoshihisa Otsuka
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center Hospital, Amagasaki, Hyogo, Japan
| | - Norio Chihara
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takehiro Ueda
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kenji Sekiguchi
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yukihiro Yoneda
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center Hospital, Amagasaki, Hyogo, Japan
| | - Yasufumi Kageyama
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center Hospital, Amagasaki, Hyogo, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| |
Collapse
|
14
|
Jellinger KA. Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 2022; 10:599. [PMID: 35327402 PMCID: PMC8945102 DOI: 10.3390/biomedicines10030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal, rapidly progressing neurodegenerative disease of uncertain etiology, clinically characterized by various combinations of Levodopa unresponsive parkinsonism, cerebellar, autonomic and motor dysfunctions. The morphological hallmark of this α-synucleinopathy is the deposition of aberrant α-synuclein in both glia, mainly oligodendroglia (glial cytoplasmic inclusions /GCIs/) and neurons, associated with glioneuronal degeneration of the striatonigral, olivopontocerebellar and many other neuronal systems. Typical phenotypes are MSA with predominant parkinsonism (MSA-P) and a cerebellar variant (MSA-C) with olivocerebellar atrophy. However, MSA can present with a wider range of clinical and pathological features than previously thought. In addition to rare combined or "mixed" MSA, there is a broad spectrum of atypical MSA variants, such as those with a different age at onset and disease duration, "minimal change" or prodromal forms, MSA variants with Lewy body disease or severe hippocampal pathology, rare forms with an unusual tau pathology or spinal myoclonus, an increasing number of MSA cases with cognitive impairment/dementia, rare familial forms, and questionable conjugal MSA. These variants that do not fit into the current classification of MSA are a major challenge for the diagnosis of this unique proteinopathy. Although the clinical diagnostic accuracy and differential diagnosis of MSA have improved by using combined biomarkers, its distinction from clinically similar extrapyramidal disorders with other pathologies and etiologies may be difficult. These aspects should be taken into consideration when revising the current diagnostic criteria. This appears important given that disease-modifying treatment strategies for this hitherto incurable disorder are under investigation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
15
|
Yang HJ, Kim HJ, Jung YJ, Yoo D, Choi JH, Im JH, Jeon B. Data-driven subtype classification of patients with early-stage multiple system atrophy. Parkinsonism Relat Disord 2022; 95:92-97. [DOI: 10.1016/j.parkreldis.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 01/18/2023]
|
16
|
Marmion DJ, Peelaerts W, Kordower JH. A historical review of multiple system atrophy with a critical appraisal of cellular and animal models. J Neural Transm (Vienna) 2021; 128:1507-1527. [PMID: 34613484 PMCID: PMC8528759 DOI: 10.1007/s00702-021-02419-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by striatonigral degeneration (SND), olivopontocerebellar atrophy (OPCA), and dysautonomia with cerebellar ataxia or parkinsonian motor features. Isolated autonomic dysfunction with predominant genitourinary dysfunction and orthostatic hypotension and REM sleep behavior disorder are common characteristics of a prodromal phase, which may occur years prior to motor-symptom onset. MSA is a unique synucleinopathy, in which alpha-synuclein (aSyn) accumulates and forms insoluble inclusions in the cytoplasm of oligodendrocytes, termed glial cytoplasmic inclusions (GCIs). The origin of, and precise mechanism by which aSyn accumulates in MSA are unknown, and, therefore, disease-modifying therapies to halt or slow the progression of MSA are currently unavailable. For these reasons, much focus in the field is concerned with deciphering the complex neuropathological mechanisms by which MSA begins and progresses through the course of the disease. This review focuses on the history, etiopathogenesis, neuropathology, as well as cell and animal models of MSA.
Collapse
Affiliation(s)
- David J Marmion
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Wouter Peelaerts
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
17
|
Campese N, Fanciulli A, Stefanova N, Haybaeck J, Kiechl S, Wenning GK. Neuropathology of multiple system atrophy: Kurt Jellinger`s legacy. J Neural Transm (Vienna) 2021; 128:1481-1494. [PMID: 34319460 PMCID: PMC8528766 DOI: 10.1007/s00702-021-02383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023]
Abstract
Multiple System Atrophy (MSA) is a rare, fatal neurodegenerative disorder. Its etiology and exact pathogenesis still remain poorly understood and currently no disease-modifying therapy is available to halt or slow down this detrimental neurodegenerative process. Hallmarks of the disease are α-synuclein rich glial cytoplasmic inclusions (GCIs). Neuropathologically, various degrees of striatonigral degeneration (SND) and olivopontocerebellar atrophy (OPCA) can be observed. Since the original descriptions of this multifaceted disorder, several steps forward have been made to clarify its neuropathological hallmarks and key pathophysiological mechanisms. The Austrian neuropathologist Kurt Jellinger substantially contributed to the understanding of the underlying neuropathology of this disease, to its standardized assessment and to a broad systematical clinic-pathological correlation. On the occasion of his 90th birthday, we reviewed the current state of the art in the field of MSA neuropathology, highlighting Prof. Jellinger’s substantial contribution.
Collapse
Affiliation(s)
- Nicole Campese
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy.,Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alessandra Fanciulli
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstrasse 44, 6020, Innsbruck, Austria.,Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
18
|
Mori F, Miki Y, Tanji K, Kon T, Tomiyama M, Kakita A, Wakabayashi K. Role of VAPB and vesicular profiles in α-synuclein aggregates in multiple system atrophy. Brain Pathol 2021; 31:e13001. [PMID: 34196429 PMCID: PMC8549028 DOI: 10.1111/bpa.13001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/21/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
The pathological hallmark of multiple system atrophy (MSA) is fibrillary aggregates of α‐synuclein (α‐Syn) in the cytoplasm and nucleus of both oligodendrocytes and neurons. In neurons, α‐Syn localizes to the cytosolic and membrane compartments, including the synaptic vesicles, mitochondria, and endoplasmic reticulum (ER). α‐Syn binds to vesicle‐associated membrane protein‐binding protein B (VAPB) in the ER membrane. Overexpression of wild‐type and familial Parkinson's disease mutant α‐Syn perturbs the association between the ER and mitochondria, leading to ER stress and ultimately neurodegeneration. We examined brains from MSA patients (n = 7) and control subjects (n = 5) using immunohistochemistry and immunoelectron microscopy with antibodies against VAPB and phosphorylated α‐Syn. In controls, the cytoplasm of neurons and glial cells was positive for VAPB, whereas in MSA lesions VAPB immunoreactivity was decreased. The proportion of VAPB‐negative neurons in the pontine nucleus was significantly higher in MSA (13.6%) than in controls (0.6%). The incidence of cytoplasmic inclusions in VAPB‐negative neurons was significantly higher (42.2%) than that in VAPB‐positive neurons (3.6%); 67.2% of inclusion‐bearing oligodendrocytes and 51.1% of inclusion‐containing neurons were negative for VAPB. Immunoelectron microscopy revealed that α‐Syn and VAPB were localized to granulofilamentous structures in the cytoplasm of oligodendrocytes and neurons. Many vesicular structures labeled with anti‐α‐Syn were also observed within the granulofilamentous structures in the cytoplasm and nucleus of both oligodendrocytes and neurons. These findings suggest that, in MSA, reduction of VAPB is involved in the disease process and that vesicular structures are associated with inclusion formation.
Collapse
Affiliation(s)
- Fumiaki Mori
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuo Miki
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoya Kon
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
19
|
The Value of Sacral Reflex and Sympathetic Skin Reflex in the Diagnosis of Multiple System Atrophy P-Type. PARKINSON'S DISEASE 2021; 2021:6646259. [PMID: 33552462 PMCID: PMC7843193 DOI: 10.1155/2021/6646259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/23/2022]
Abstract
Objectives To observe the characteristics of sacral reflex and sympathetic skin reflex in patients with Parkinson's disease (PD) and multiple system atrophy P-type (MSA-P) and to analyze their value as a differential diagnostic method. Methods The data of 30 healthy people, 58 PD patients, and 52 MSA-P patients from the First Affiliated Hospital of Wenzhou Medical University were collected. Electrophysiological bulbocavernosus reflex (BCR) and sympathetic skin response (SSR) were evaluated using the Keypoint EMG/EP system. The latency period, amplitude, and extraction rate of BCR and SSR were compared between the control, PD, and MSA-P groups. Results The incidence of the related autonomic damage in the PD group was lower than that of the MSA-P group. For BCR, the latency period was shorter and the amplitude and elicitation rates were lower in the PD group than in the MSA-P group. For SSR, the latency period was longer in the MSA-P and PD groups than in the control group, but the difference was not statistically significant. Conclusion SSR cannot be used to assess autonomic nerve function. PD patients can have clinical symptoms similar to those of MSA-P patients, but the incidence is lower. Both MSA-P and PD patients have a damage to the BCR arc, but the MSA-P patients have a more severe damage.
Collapse
|
20
|
Chelban V, Catereniuc D, Aftene D, Gasnas A, Vichayanrat E, Iodice V, Groppa S, Houlden H. An update on MSA: premotor and non-motor features open a window of opportunities for early diagnosis and intervention. J Neurol 2020; 267:2754-2770. [PMID: 32436100 PMCID: PMC7419367 DOI: 10.1007/s00415-020-09881-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/27/2023]
Abstract
In this review, we describe the wide clinical spectrum of features that can be seen in multiple system atrophy (MSA) with a focus on the premotor phase and the non-motor symptoms providing an up-to-date overview of the current understanding in this fast-growing field. First, we highlight the non-motor features at disease onset when MSA can be indistinguishable from pure autonomic failure or other chronic neurodegenerative conditions. We describe the progression of clinical features to aid the diagnosis of MSA early in the disease course. We go on to describe the levels of diagnostic certainty and we discuss MSA subtypes that do not fit into the current diagnostic criteria, highlighting the complexity of the disease as well as the need for revised diagnostic tools. Second, we describe the pathology, clinical description, and investigations of cardiovascular autonomic failure, urogenital and sexual dysfunction, orthostatic hypotension, and respiratory and REM-sleep behavior disorders, which may precede the motor presentation by months or years. Their presence at presentation, even in the absence of ataxia and parkinsonism, should be regarded as highly suggestive of the premotor phase of MSA. Finally, we discuss how the recognition of the broader spectrum of clinical features of MSA and especially the non-motor features at disease onset represent a window of opportunity for disease-modifying interventions.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova.
| | - Daniela Catereniuc
- Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
- Department of Neurology, Epileptology and Internal Diseases, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
- Department of Neurology nr. 2, Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
| | - Daniela Aftene
- Department of Neurology, Epileptology and Internal Diseases, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
- Department of Neurology nr. 2, Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
| | - Alexandru Gasnas
- Department of Neurology, Epileptology and Internal Diseases, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
- Department of Neurology nr. 2, Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
- Cerebrovascular Diseases and Epilepsy Laboratory, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
| | - Ekawat Vichayanrat
- Autonomic Unit, National Hospital for Neurology and Neurosurgery, UCL NHS Trust, London, WC1N 3BG, UK
| | - Valeria Iodice
- Autonomic Unit, National Hospital for Neurology and Neurosurgery, UCL NHS Trust, London, WC1N 3BG, UK
| | - Stanislav Groppa
- Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
- Department of Neurology, Epileptology and Internal Diseases, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
- Department of Neurology nr. 2, Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
| | - Henry Houlden
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
21
|
Terao Y, Tokushige SI, Inomata-Terada S, Fukuda H, Yugeta A, Ugawa Y. Differentiating early Parkinson's disease and multiple system atrophy with parkinsonism by saccade velocity profiles. Clin Neurophysiol 2019; 130:2203-2215. [DOI: 10.1016/j.clinph.2019.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/26/2019] [Accepted: 09/10/2019] [Indexed: 01/24/2023]
|
22
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
23
|
"Minimal change" multiple system atrophy with limbic-predominant α-synuclein pathology. Acta Neuropathol 2019; 137:167-169. [PMID: 30128820 DOI: 10.1007/s00401-018-1901-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
|
24
|
Koga S, Dickson DW. Recent advances in neuropathology, biomarkers and therapeutic approach of multiple system atrophy. J Neurol Neurosurg Psychiatry 2018; 89:175-184. [PMID: 28860330 DOI: 10.1136/jnnp-2017-315813] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/07/2017] [Accepted: 08/16/2017] [Indexed: 01/20/2023]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterised by a variable combination of autonomic failure, levodopa-unresponsive parkinsonism, cerebellar ataxia and pyramidal symptoms. The pathological hallmark is the oligodendrocytic glial cytoplasmic inclusion (GCI) consisting of α-synuclein; therefore, MSA is included in the category of α-synucleinopathies. MSA has been divided into two clinicopathological subtypes: MSA with predominant parkinsonism and MSA with predominant cerebellar ataxia, which generally correlate with striatonigral degeneration and olivopontocerebellar atrophy, respectively. It is increasingly recognised, however, that clinical and pathological features of MSA are broader than previously considered.In this review, we aim to describe recent advances in neuropathology of MSA from a review of the literature and from information derived from review of nearly 200 definite MSA cases in the Mayo Clinic Brain Bank. In light of these new neuropathological findings, GCIs and neuronal cytoplasmic inclusions play an important role in clinicopathological correlates of MSA. We also focus on clinical diagnostic accuracy and differential diagnosis of MSA as well as candidate biomarkers. We also review some controversial topics in MSA. Cognitive impairment, which has been a non-supporting feature of MSA, is considered from both clinical and pathological perspectives. The cellular origin of α-synuclein in GCI and a 'prion hypothesis' are discussed. Finally, completed and ongoing clinical trials targeting disease modification, including immunotherapy, are summarised.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
25
|
McKay JH, Cheshire WP. First symptoms in multiple system atrophy. Clin Auton Res 2018; 28:215-221. [PMID: 29313153 PMCID: PMC5859695 DOI: 10.1007/s10286-017-0500-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/29/2017] [Indexed: 01/01/2023]
Abstract
Purpose The initial symptoms of multiple system atrophy (MSA) and, in particular, early autonomic symptoms, have received less attention than motor symptoms. Whereas pathognomonic motor signs are essential to diagnostic specificity, early symptoms important to recognition of a neurodegenerative disorder may be less apparent or diagnostically ambiguous. This observational study sought to identify the very earliest symptoms in the natural history of MSA. Methods Detailed clinical histories focusing on early symptoms were obtained from 30 subjects recently diagnosed with MSA. Historical data were correlated with neurological examinations and laboratory autonomic testing. Results Subjects’ mean age was 63.9 years. Ten were classified as having MSA-P and 20 MSA-C. The evaluations occurred 2.9 ± 0.4 months after diagnosis. The first symptom of MSA was autonomic in 22 (73%) and motor in 3 (10%) subjects (p < 0.0001). The most frequent first symptom was erectile failure, which occurred in all men beginning 4.2 ± 2.6 years prior to diagnosis. After erectile failure, postural lightheadness or fatigue following exercise, urinary urgency or hesitancy, and violent dream enactment behavior consistent with REM behavioral sleep disorder were the most frequent initial symptoms. Neither the order of symptom progression, which was highly variable, nor autonomic severity scores differentiated between MSA-P and MSA-C. Conclusions The first symptoms of MSA are frequently autonomic and may predate recognition of motor manifestations. Orthostatic hypotension and, in men, erectile failure are among the first symptoms that, when evaluated in the context of associated clinical findings, may facilitate accurate and earlier diagnosis.
Collapse
Affiliation(s)
- Jake H McKay
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA
| | - William P Cheshire
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA.
| |
Collapse
|
26
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|
27
|
Cai ZY, Niu XT, Pan J, Ni PQ, Wang X, Shao B. The value of the bulbocavernosus reflex and pudendal nerve somatosensory evoked potentials in distinguishing between multiple system atrophy and Parkinson's disease at an early stage. Acta Neurol Scand 2017; 136:195-203. [PMID: 27861715 DOI: 10.1111/ane.12710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 01/04/2023]
Abstract
OBJECTIVES This study was designed to investigate the clinical value of the bulbocavernosus reflex (BCR) and pudendal nerve somatosensory evoked potentials (PSEPs) in the differential diagnosis between multiple system atrophy (MSA) and Parkinson's disease (PD) in early stage. MATERIALS AND METHODS A total of 31 patients with MSA, 45 patients with PD, and 60 healthy participants were included in this study. A Keypoint EMG/EP system was used for BCR and PSEP measurements. Electrophysiological parameters were collected for statistical analysis. RESULTS The BCR elicitation rates were significantly lower in the patients with MSA than in the patients with PD (P<.05). Prolonged BCR latencies were found in the MSA group compared to the PD and control groups (P<.05). Bulbocavernosus reflex latencies were significantly prolonged in patients with MSA compared with PD patients showing early urogenital symptoms (P<.05). There was no significant difference in PSEP P41 latencies among the three groups (P=.434 in males, P=.948 in females). Both BCR and PSEP amplitudes were significantly lower in the MSA/PD group than in the control group (P<.001). CONCLUSIONS Pudendal nerve damage is more severe in MSA than in PD. Prolonged BCR latency may be valuable for distinguishing between MSA and PD in the early stages. BCR and PSEP testing may also contribute to localized and qualitative diagnosis of the distribution of neurodegenerative pathologies in these two disorders.
Collapse
Affiliation(s)
- Z.-Y. Cai
- Department of Neurology; First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - X.-T. Niu
- Department of Neurology; First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - J. Pan
- Department of Neurology; First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - P.-Q. Ni
- Department of Neurology; First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - X. Wang
- Department of Neurology; First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - B. Shao
- Department of Neurology; First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| |
Collapse
|
28
|
Yang W, Yu S. Synucleinopathies: common features and hippocampal manifestations. Cell Mol Life Sci 2017; 74:1485-1501. [PMID: 27826641 PMCID: PMC11107502 DOI: 10.1007/s00018-016-2411-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA) are three major synucleinopathies characterized by α-synuclein-containing inclusions in the brains of patients. Because the cell types and brain structures that are affected vary markedly between the disorders, the patients have different clinical manifestations in addition to some overlapping symptoms, which are the basis for differential diagnosis. Cognitive impairment and depression associated with hippocampal dysfunction are frequently observed in these disorders. While various α-synuclein-containing inclusions are found in the hippocampal formation, increasing evidence supports that small α-synuclein aggregates or oligomers may be the real culprit, causing deficits in neurotransmission and neurogenesis in the hippocampus and related brain regions, which constitute the major mechanism for the hippocampal dysfunctions and associated neuropsychiatric manifestations in synucleinopathies.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.
- Beijing Key Laboratory for Parkinson's Disease, Beijing, China.
| |
Collapse
|
29
|
Current status of the development of PET radiotracers for imaging alpha synuclein aggregates in Lewy bodies and Lewy neurites. Clin Transl Imaging 2016. [DOI: 10.1007/s40336-016-0217-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Distinguishing spinocerebellar ataxia with pure cerebellar manifestation from multiple system atrophy (MSA-C) through saccade profiles. Clin Neurophysiol 2016; 128:31-43. [PMID: 27866117 DOI: 10.1016/j.clinph.2016.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/30/2016] [Accepted: 10/15/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Patients with spinocerebellar ataxia with pure cerebellar presentation (SCD) and multiple system atrophy (MSA-C) show similar symptoms at early stages, although cerebellofugal pathology predominates in SCD, and cerebellopetal pathology in MSA-C. We studied whether saccade velocity profiles, which reflect the accelerating and braking functions of the cerebellum, can differentiate these two disorders. METHODS We recorded visually guided (VGS) and memory guided saccades (MGS) in 29 MSA-C patients, 12 SCD patients, and 92 age-matched normal subjects, and compared their amplitude, peak velocity and duration (accelerating and decelerating phases). RESULTS Hypometria predominated in VGS and MGS of MSA-C, whereas hypometria was less marked in SCD, with hypermetria frequently noted in MGS. Peak velocity was reduced, and deteriorated with advancing disease both in SCD and MSA-C groups at smaller target eccentricities. The deceleration phase was prolonged in SCD compared to MSA-C and normal groups at larger target eccentricities, which deteriorated with advancing disease. CONCLUSION Saccades in MSA-C were characterized by a more prominent acceleration deficit and those in SCD by a more prominent braking defect, possibly caused by the cerebellopetal and cerebellofugal pathologies, respectively. SIGNIFICANCE Saccade profiles provide important information regarding the accelerating and braking signals of the cerebellum in spinocerebellar ataxia.
Collapse
|
31
|
Jellinger KA, Wenning GK. Multiple system atrophy: pathogenic mechanisms and biomarkers. J Neural Transm (Vienna) 2016; 123:555-72. [PMID: 27098666 DOI: 10.1007/s00702-016-1545-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
Abstract
Multiple system atrophy (MSA) is a unique proteinopathy that differs from other α-synucleinopathies since the pathological process resulting from accumulation of aberrant α-synuclein (αSyn) involves the oligodendroglia rather than neurons, although both pathologies affect multiple parts of the brain, spinal cord, autonomic and peripheral nervous system. Both the etiology and pathogenesis of MSA are unknown, although animal models have provided insight into the basic molecular changes of this disorder. Accumulation of aberrant αSyn in oligodendroglial cells and preceded by relocation of p25α protein from myelin to oligodendroglia results in the formation of insoluble glial cytoplasmic inclusions that cause cell dysfunction and demise. These changes are associated with proteasomal, mitochondrial and lipid transport dysfunction, oxidative stress, reduced trophic transport, neuroinflammation and other noxious factors. Their complex interaction induces dysfunction of the oligodendroglial-myelin-axon-neuron complex, resulting in the system-specific pattern of neurodegeneration characterizing MSA as a synucleinopathy with oligodendroglio-neuronopathy. Propagation of modified toxic αSyn species from neurons to oligodendroglia by "prion-like" transfer and its spreading associated with neuronal pathways result in a multi-system involvement. No reliable biomarkers are currently available for the clinical diagnosis and prognosis of MSA. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable diagnostic biomarkers and to deliver targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| | - Gregor K Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Nakamura K, Mori F, Kon T, Tanji K, Miki Y, Tomiyama M, Kurotaki H, Toyoshima Y, Kakita A, Takahashi H, Yamada M, Wakabayashi K. Accumulation of phosphorylated α-synuclein in subpial and periventricular astrocytes in multiple system atrophy of long duration. Neuropathology 2015; 36:157-67. [PMID: 26331967 DOI: 10.1111/neup.12243] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 12/17/2022]
Abstract
The histological hallmark of multiple system atrophy (MSA) is accumulation of phosphorylated α-synuclein in oligodendrocytes. However, it is uncertain whether phosphorylated α-synuclein accumulates in astrocytes of MSA patients. We immunohistochemically examined the frontal and temporal lobes, basal ganglia, cerebellum, brainstem and spinal cord of patients with MSA (n = 15) and Lewy body disease (n = 20), and also in control subjects (n = 20). Accumulation of abnormally phosphorylated and aggregated α-synuclein was found in subpial and periventricular astrocytes in six of the 15 patients with MSA (40%). The structures were confined to the subpial surface of the ventro-lateral part of the spinal cord and brainstem, as well as the subependymal region of the lateral ventricles. They were not visualized by Gallyas-Braak staining, and were immunonegative for ubiquitin and p62. Immunoelectron microscopy revealed that the phosphorylated α-synuclein-immunoreactive structures in astrocytes were non-fibrillar and associated with granular and vesicular structures. The extent of phosphorylated α-synuclein-immunoreactive astrocytes was correlated with disease duration. No such structures were found in Lewy body disease or controls. Accumulation of phosphorylated α-synuclein can occur in subpial and periventricular astrocytes in patients with MSA, especially in those with a long disease duration.
Collapse
Affiliation(s)
- Keiko Nakamura
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki.,Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki
| | | | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki
| | - Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki
| | | | | | | | - Akiyoshi Kakita
- Pathological Neuroscience, Brain Research Institute, University of Niigata, Niigata, Japan
| | | | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki
| |
Collapse
|
33
|
Nakamura K, Mori F, Kon T, Tanji K, Miki Y, Tomiyama M, Kurotaki H, Toyoshima Y, Kakita A, Takahashi H, Yamada M, Wakabayashi K. Filamentous aggregations of phosphorylated α-synuclein in Schwann cells (Schwann cell cytoplasmic inclusions) in multiple system atrophy. Acta Neuropathol Commun 2015; 3:29. [PMID: 25990096 PMCID: PMC4438578 DOI: 10.1186/s40478-015-0208-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/30/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The histological hallmark of multiple system atrophy (MSA) is the presence of filamentous aggregations of phosphorylated α-synuclein in oligodendrocytes, referred to as glial cytoplasmic inclusions (GCIs). Although GCIs can occur widely in the central nervous system, accumulation of phosphorylated α-synuclein in Schwann cells has not been reported in MSA. We immunohistochemically examined the cranial and spinal nerves, peripheral ganglia and visceral autonomic nervous system of patients with MSA (n = 14) and control subjects (n = 20). RESULTS In MSA, accumulation of phosphorylated α-synuclein was found in the cytoplasm of Schwann cells. These Schwann cell cytoplasmic inclusions (SCCIs) were also immunopositive for ubiquitin and p62. SCCIs were found in 12 of 14 patients with MSA (85.7 %). They were most frequent in the anterior nerve of the sacral cord and, to a lesser extent, in the cranial nerves (oculomotor, glossopharyngeal-vagus and hypoglossal nerves), and spinal and sympathetic ganglia. SCCIs were rarely found in the visceral organs. Immunoelectron microscopy demonstrated that the SCCIs consisted of abnormal filaments, 15-20 nm in diameter. No such inclusions were found in controls. CONCLUSION The present findings indicate that Schwann cells are also involved in the disease process of MSA.
Collapse
|
34
|
McCann H, McGeachie AB, Silberstein P, Lewis SJG, Halliday GM. Restricted disease propagation in multiple system atrophy with prolonged survival. Neuropathol Appl Neurobiol 2015; 41:681-5. [PMID: 25388985 DOI: 10.1111/nan.12195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/17/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Heather McCann
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Andrew B McGeachie
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Silberstein
- Neurology, Royal North Shore and North Shore Private Hospitals, Sydney, New South Wales, Australia
| | - Simon J G Lewis
- Brain & Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Ling H, Asi YT, Petrovic IN, Ahmed Z, Prashanth LK, Hazrati LN, Nishizawa M, Ozawa T, Lang A, Lees AJ, Revesz T, Holton JL. Minimal change multiple system atrophy: an aggressive variant? Mov Disord 2015; 30:960-7. [PMID: 25854893 DOI: 10.1002/mds.26220] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 02/22/2015] [Accepted: 03/02/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Glial cytoplasmic inclusions containing α-synuclein are the pathological hallmark of multiple system atrophy (MSA). Minimal change (MC-MSA) is an unusual MSA subtype with neuronal loss largely restricted to the substantia nigra and locus coeruleus. METHODS Immunohistochemistry on selected brain regions and semiquantitative assessment were performed on six MC-MSA and eight MSA control cases. RESULTS More neuronal cytoplasmic inclusions were seen in the caudate and substantia nigra in MC-MSA than in MSA controls (P = 0.002), without any statistical difference in glial cytoplasmic inclusion load in any region. Severe glial cytoplasmic inclusion load was found in the ventrolateral medulla (P = 1.0) and nucleus raphe obscurus (P = 0.4) in both groups. When compared with MSA controls, the three MC-MSA cases who had died of sudden unexpected death had an earlier age of onset (mean: 38 vs. 57.6 y, P = 0.02), a numerically shorter disease duration (mean: 5.3 vs. 8 y, P = 0.2) and a more rapid clinical progression with most of the clinical milestones reached within 3 y of presentation, suggesting an aggressive variant of MSA. Another three MC-MSA cases, who had died of unrelated concurrent diseases, had an age of onset (mean: 57.7 y) and temporal course similar to controls, had less severe neuronal loss and gliosis in the medial and dorsolateral substantia nigra subregions (P < 0.05) than in MSA controls, and could be considered as a unique group with interrupted pathological progression. Significant respiratory dysfunction and early orthostatic hypotension were observed in all MC-MSA cases. CONCLUSIONS Our findings could suggest that α-synuclein-associated oligodendroglial pathology may lead to neuronal dysfunction sufficient to cause clinical symptoms before overt neuronal loss in MSA. © 2015 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Helen Ling
- Queen Square Brain Bank, Department of Molecular Neuroscience, UCL Institute of Neurology, UK.,Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - Yasmine T Asi
- Queen Square Brain Bank, Department of Molecular Neuroscience, UCL Institute of Neurology, UK
| | - Igor N Petrovic
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK.,Institute of Neurology, School of Medicine, Belgrade, Serbia
| | - Zeshan Ahmed
- Queen Square Brain Bank, Department of Molecular Neuroscience, UCL Institute of Neurology, UK
| | - L K Prashanth
- University of Toronto, Toronto, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Canada
| | - Lili-Naz Hazrati
- University of Toronto, Toronto, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Canada
| | | | | | - Anthony Lang
- University of Toronto, Toronto, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Canada
| | - Andrew J Lees
- Queen Square Brain Bank, Department of Molecular Neuroscience, UCL Institute of Neurology, UK.,Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - Tamas Revesz
- Queen Square Brain Bank, Department of Molecular Neuroscience, UCL Institute of Neurology, UK
| | - Janice L Holton
- Queen Square Brain Bank, Department of Molecular Neuroscience, UCL Institute of Neurology, UK
| |
Collapse
|
36
|
Diagnosis and differential diagnosis of MSA: boundary issues. J Neurol 2015; 262:1801-13. [PMID: 25663409 DOI: 10.1007/s00415-015-7654-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 12/30/2022]
Abstract
Because the progression of multiple system atrophy (MSA) is usually rapid and there still is no effective cause-related therapy, early and accurate diagnosis is important for the proper management of patients as well as the development of neuroprotective agents. However, despite the progression in the field of MSA research in the past few years, the diagnosis of MSA in clinical practice still relies largely on clinical features and there are limitations in terms of sensitivity and specificity, especially in the early course of the disease. Furthermore, recent pathological, clinical, and neuroimaging studies have shown that (1) MSA can present with a wider range of clinical and pathological features than previously thought, including features considered atypical for MSA; thus, MSA can be misdiagnosed as other diseases, and conversely, disorders with other etiologies and pathologies can be clinically misdiagnosed as MSA; and (2) several investigations may help to improve the diagnosis of MSA in clinical practice. These aspects should be taken into consideration when revising the current diagnostic criteria. This is especially true given that disease-modifying treatments for MSA are under investigation.
Collapse
|
37
|
|
38
|
Jellinger KA. Neuropathology of multiple system atrophy: New thoughts about pathogenesis. Mov Disord 2014; 29:1720-41. [DOI: 10.1002/mds.26052] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/29/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022] Open
|
39
|
Miki Y, Mori F, Tanji K, Kurotaki H, Kakita A, Takahashi H, Wakabayashi K. An autopsy case of incipient Pick's disease: immunohistochemical profile of early-stage Pick body formation. Neuropathology 2014; 34:386-91. [PMID: 24444359 DOI: 10.1111/neup.12104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/26/2013] [Indexed: 12/22/2022]
Abstract
There is little immunohistochemical information about the early stage of Pick body formation, due to the extremely limited opportunities of studying Pick's disease at the incipient or subclinical stage. We report a 62-year-old man without any clinical manifestations of Pick's disease, who died of B-cell lymphoma of the brainstem. Post mortem examination revealed many Pick bodies without obvious neuronal loss mainly in the left frontal and temporal lobes. Three brains of patients with typical Pick's disease (disease duration: 7, 11 and 16 years) were also examined. Pick bodies were immunopositive for phosphorylated tau and 3-repeat tau, and less consistently for p62 in both incipient and typical cases. In the incipient case, borderline positivity for ubiquitin was evident in only a few Pick bodies, whereas in the typical cases many Pick bodies showed obvious positivity for ubiquitin. These findings suggest that Pick bodies are rarely ubiquitinated in the early stage of Pick body formation.
Collapse
Affiliation(s)
- Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Kon T, Mori F, Tanji K, Miki Y, Wakabayashi K. An autopsy case of preclinical multiple system atrophy (MSA-C). Neuropathology 2013; 33:667-72. [PMID: 23581648 DOI: 10.1111/neup.12037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/14/2013] [Indexed: 11/26/2022]
Abstract
Multiple system atrophy (MSA) is divided into two clinical subtypes: MSA with predominant parkinsonian features (MSA-P) and MSA with predominant cerebellar dysfunction (MSA-C). We report a 71-year-old Japanese man without clinical signs of MSA, in whom post mortem examination revealed only slight gliosis in the pontine base and widespread occurrence of glial cytoplasmic inclusions in the central nervous system, with the greatest abundance in the pontine base and cerebellar white matter. Neuronal cytoplasmic inclusions (NCIs) and neuronal nuclear inclusions (NNIs) were almost restricted to the pontine and inferior olivary nuclei. It was noteworthy that most NCIs were located in the perinuclear area, and the majority of NNIs were observed adjacent to the inner surface of the nuclear membrane. To our knowledge, only four autopsy cases of preclinical MSA have been reported previously, in which neuronal loss was almost entirely restricted to the substantia nigra and/or putamen. Therefore, the present autopsy case of preclinical MSA-C is considered to be the first of its kind to have been reported. The histopathological features observed in preclinical MSA may represent the early pattern of MSA pathology.
Collapse
Affiliation(s)
- Tomoya Kon
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan; Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan
| | | | | | | | | |
Collapse
|
41
|
Bagchi DP, Yu L, Perlmutter JS, Xu J, Mach RH, Tu Z, Kotzbauer PT. Binding of the radioligand SIL23 to α-synuclein fibrils in Parkinson disease brain tissue establishes feasibility and screening approaches for developing a Parkinson disease imaging agent. PLoS One 2013; 8:e55031. [PMID: 23405108 PMCID: PMC3566091 DOI: 10.1371/journal.pone.0055031] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022] Open
Abstract
Accumulation of α-synuclein (α-syn) fibrils in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson disease (PD). Ligands that bind α-syn fibrils could be utilized as imaging agents to improve the diagnosis of PD and to monitor disease progression. However, ligands for α-syn fibrils in PD brain tissue have not been previously identified and the feasibility of quantifying α-syn fibrils in brain tissue is unknown. We report the identification of the (125)I-labeled α-syn radioligand SIL23. [(125)I]SIL23 binds α-syn fibrils in postmortem brain tissue from PD patients as well as an α-syn transgenic mouse model for PD. The density of SIL23 binding sites correlates with the level of fibrillar α-syn in PD brain tissue, and [(125)I]SIL23 binding site densities in brain tissue are sufficiently high to enable in vivo imaging with high affinity ligands. These results identify a SIL23 binding site on α-syn fibrils that is a feasible target for development of an α-syn imaging agent. The affinity of SIL23 for α-syn and its selectivity for α-syn versus Aβ and tau fibrils is not optimal for imaging fibrillar α-syn in vivo, but we show that SIL23 competitive binding assays can be used to screen additional ligands for suitable affinity and selectivity, which will accelerate the development of an α-syn imaging agent for PD.
Collapse
Affiliation(s)
- Devika P. Bagchi
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lihai Yu
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joel S. Perlmutter
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Program in Occupational Therapy, and Washington University School of Medicine, St. Louis, Missouri, United States of America
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jinbin Xu
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert H. Mach
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhude Tu
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul T. Kotzbauer
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
42
|
Lu CF, Soong BW, Wu HM, Teng S, Wang PS, Wu YT. Disrupted cerebellar connectivity reduces whole-brain network efficiency in multiple system atrophy. Mov Disord 2013; 28:362-9. [PMID: 23325625 DOI: 10.1002/mds.25314] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/05/2012] [Accepted: 11/09/2012] [Indexed: 11/11/2022] Open
Abstract
Multiple system atrophy of the cerebellar type is a sporadic neurodegenerative disorder of the central nervous system. We hypothesized that the white matter degeneration of the cerebellum and pons in this disease may cause a breakdown of cerebellar structural networks and further reduce the network efficiency of cerebellar-connected cerebral regions. Diffusion tensor tractography was used to construct the structural networks of 19 cerebellar-type multiple system atrophy patients, who were compared with 19 age- and sex-matched controls. Graph theory was used to assess the small-world properties and topological organization of structure networks in both the control and patient groups. Our results showed that the cerebellar-type multiple system atrophy patients exhibited altered small-world architecture with significantly increased characteristic shortest path lengths and decreased clustering coefficients. We also found that white matter degeneration in the cerebellum was characterized by reductions in network strength (number and integrity of fiber connections) of the cerebellar regions, which further induced extensively decreased network efficiency for numerous cerebral regions. Finally, we found that the reductions in nodal efficiency of the cerebellar lobules and bilateral sensorimotor, prefrontal, and basal ganglia regions negatively correlated with the severity of ataxia for the cerebellar-type multiple system atrophy patients. This study demonstrates for the first time that the brains of cerebellar-type multiple system atrophy patients exhibit disrupted topological organization of white matter structural networks. Thus, this study provides structural evidence of the relationship between abnormalities of white matter integrity and network efficiency that occurs in cerebellar-type multiple system atrophy.
Collapse
Affiliation(s)
- Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
43
|
Ahmed Z, Asi YT, Sailer A, Lees AJ, Houlden H, Revesz T, Holton JL. The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol Appl Neurobiol 2012; 38:4-24. [PMID: 22074330 DOI: 10.1111/j.1365-2990.2011.01234.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiple system atrophy (MSA) is an unrelenting, sporadic, adult-onset, neurodegenerative disease of unknown aetiology. Its clinically progressive course is characterized by a variable combination of parkinsonism, cerebellar ataxia and/or autonomic dysfunction. Neuropathological examination often reveals gross abnormalities of the striatonigral and/or olivopontocerebellar systems, which upon microscopic examination are associated with severe neuronal loss, gliosis, myelin pallor and axonal degeneration. MSA is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies, due to the presence of abnormal α-synuclein positive cytoplasmic inclusions in oligodendrocytes, termed glial cytoplasmic inclusions. These are the hallmark neuropathological lesion of MSA and are thought to play a central role in the pathogenesis of the disease. In this review, neuropathological features of MSA are described in detail, along with recent advances in the pathophysiology and genetics of the disease. Our current knowledge of the expression and accumulation of α-synuclein, and efforts to model the disease in vitro and in vivo, are emphasized in this paper and have helped formulate a working hypothesis for the pathogenesis of MSA.
Collapse
Affiliation(s)
- Z Ahmed
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Jecmenica-Lukic M, Poewe W, Tolosa E, Wenning GK. Premotor signs and symptoms of multiple system atrophy. Lancet Neurol 2012; 11:361-8. [PMID: 22441197 DOI: 10.1016/s1474-4422(12)70022-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Diagnostic criteria for multiple system atrophy are focused on motor manifestations of the disease, in particular ataxia and parkinsonism, but these criteria often cannot detect the early stages. Non-motor symptoms and signs of multiple system atrophy often precede the onset of classic motor manifestations, and this prodromal phase is estimated to last from several months to years. Autonomic failure, sleep problems, and respiratory disturbances are well known symptoms of established multiple system atrophy and, when presenting early and preceding ataxia or parkinsonism, should be regarded as evidence of premotor multiple system atrophy. An early and accurate diagnosis is becoming increasingly important as new neuroprotective agents are developed.
Collapse
|
45
|
Isozaki E, Tobisawa S, Naito R, Mizutani T, Matsubara S. [Eye movement disturbance in multiple system atrophy: chronological study of 50 patients]. Rinsho Shinkeigaku 2012; 52:218-226. [PMID: 22531653 DOI: 10.5692/clinicalneurol.52.218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To clarify the features of the eye movement disturbance in the patients with multiple system atrophy (MSA), we retrospectively examined chronological changes of 9 oculomotor parameters as described below in 50 MSA patients including 12 autopsied cases. Patients with MSA were consisted of 35 patients with cerebellar ataxia-preceding type and 15 patients with parkinsonism-preceding type. Nine parameters include saccade test, eye tracking test, positioning/positional/gaze/caloric nystagmus tests, and visual suppression test. Each parameter was evaluated by three categories; normal and the two abnormal findings according to their characteristic features. In all of the 9 parameters, no significant differences were found between the cerebellar ataxia- and the parkinsonism-preceding types of MSA both in the early (disease duration less than 3 years) and in the advanced stages (duration between 8 to 11 years). From the chronological analysis, 9 oculomotor parameters could be divided into three groups: the first group with the higher frequency of the abnormality from the early stage, the second with gradual increase of the frequency, and the third with less increased frequency even in the advanced stage. We here focused on the three representatives corresponding with the above-described each group; positioning nystagmus test mainly showing downbeat nystagmus as a first group, visual suppression test showing a qualitative change from depressed into increased response as the second, and the caloric nystagmus test showing decreased response as the third. Based on these chronological changes of the oculomotor parameters, we supposed that in MSA the dorsal vermis is involved at first, followed by the flocculus in the cerebellum, and then the degenerative lesions might expand to the vestibular nucleus, and the cerebral cortex including the vestibular cortex.
Collapse
Affiliation(s)
- Eiji Isozaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital
| | | | | | | | | |
Collapse
|
46
|
Vivacqua G, Casini A, Vaccaro R, Salvi EP, Pasquali L, Fornai F, Yu S, D’Este L. Spinal cord and parkinsonism: Neuromorphological evidences in humans and experimental studies. J Chem Neuroanat 2011; 42:327-40. [DOI: 10.1016/j.jchemneu.2011.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/20/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
|
47
|
Halliday GM, Holton JL, Revesz T, Dickson DW. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol 2011; 122:187-204. [PMID: 21720849 DOI: 10.1007/s00401-011-0852-9] [Citation(s) in RCA: 315] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/18/2011] [Accepted: 06/20/2011] [Indexed: 01/31/2023]
Abstract
Abnormal aggregates of the synaptic protein, α-synuclein, are the dominant pathology in syndromes known as the synucleinopathies. The cellular aggregation of the protein occurs in three distinct types of inclusions in three main clinical syndromes. α-Synuclein deposits in neuronal Lewy bodies and Lewy neurites in idiopathic Parkinson's disease (PD) and dementia with Lewy bodies (DLB), as well as incidentally in a number of other conditions. In contrast, α-synuclein deposits largely in oligodendroglial cytoplasmic inclusions in multiple system atrophy (MSA). Lastly, α-synuclein also deposits in large axonal spheroids in a number of rarer neuroaxonal dystrophies. Disorders are usually defined by their most dominant pathology, but for the synucleinopathies, clinical heterogeneity within the main syndromes is well documented. MSA was originally viewed as three different clinical phenotypes due to different anatomical localization of the lesions. In PD, recent meta-analyses have identified four main clinical phenotypes, and clinicopathological correlations suggest that more severe and more rapid progression of pathology with chronological age, as well as the involvement of additional neuropathologies, differentiates these phenotypes. In DLB, recent large studies show that clinical diagnosis is too insensitive to identify the syndrome itself, although clinicopathological studies suggest variable clinical features occur in the different pathological forms of this syndrome (pure DLB, DLB with Alzheimer's disease (AD), and AD with amygdala predominant Lewy pathology). The recognition of considerable heterogeneity within the synucleinopathy syndromes is important for the identification of factors involved in changing their pathological phenotype.
Collapse
Affiliation(s)
- Glenda M Halliday
- Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, Australia.
| | | | | | | |
Collapse
|
48
|
Makino T, Ito S, Kuwabara S. Involvement of pontine transverse and longitudinal fibers in multiple system atrophy: a tractography-based study. J Neurol Sci 2011; 303:61-6. [PMID: 21310434 DOI: 10.1016/j.jns.2011.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/28/2010] [Accepted: 01/13/2011] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Pathological studies showed both pontine transverse (cortico-ponto-cerebellar) and longitudinal (corticospinal) fibers degenerate in MSA. The objective was to investigate the association between the development of cross sign, degenerations of pontine fibers, and the frequency of pyramidal signs in MSA. METHODS Patients with MSA (n=26) and healthy subjects (n=27) were enrolled in this study. Whole pontine transverse and longitudinal fibers were individually traced by diffusion tensor tractography. FA was calculated along each entire tractography. Cross sign was graded as: 0, no cross sign; 1, anterior-posterior line only; and 2, complete cross sign. T2-hyperintense MCPs was graded as: 0, no change; 1, slight signal change; and 2, severe signal change. FA of pontine fibers in MSA patients and that in healthy subjects was statistically evaluated by ANOVA with an overall statistical significance level of 0.05. The frequency of pyramidal signs in MSA was compared between each cross and MCP grade. RESULTS FA of pontine transverse fibers in MSA patients decreased with the development of cross sign. FA of Cross 2 was significantly lower than that of healthy subjects (p=0.003). As regards pontine longitudinal fibers, FA decreased when cross sign was completed. The frequency of pyramidal signs in MCP 2 and 1 was higher than that in MCP 0. CONCLUSION Pontine transverse fibers degenerate as cross sign develop, and degenerations of pontine longitudinal fibers begin, or even accelerate when cross sign becomes apparent. Pyramidal signs are frequently present when T2-hyperintense MCPs are clearly observed.
Collapse
Affiliation(s)
- Takahiro Makino
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | | | | |
Collapse
|
49
|
Rodriguez-Diehl R, Rey MJ, Gironell A, Martinez-Saez E, Ferrer I, Sánchez-Valle R, Jagüe J, Nos C, Gelpi E. "Preclinical" MSA in definite Creutzfeldt-Jakob disease. Neuropathology 2011; 32:158-63. [PMID: 21692862 DOI: 10.1111/j.1440-1789.2011.01232.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Multiple system atrophy (MSA) is a sporadic alpha-synucleinopathy clinically characterized by variable degrees of parkinsonism, cerebellar ataxia and autonomic dysfunction. The histopathological hallmark of MSA is glial cytoplasmic inclusion (GCI). It is considered to represent the earliest stage of the degenerative process in MSA and to precede neuronal degeneration. Sporadic Creutzfeldt-Jakob disease (sCJD) is a fatal, rapidly progressive dementia generally associated with ataxia, pyramidal and extrapyramidal symptoms and myoclonus. Definite diagnosis needs neuropathological demonstration of variable degrees of spongiform degeneration of neuropil, neuronal loss, astro- and microgliosis, and the presence of abnormal deposits of the misfolded prion protein PrP(res) . Both diseases, CJD and MSA are infrequent among neurodegenerative diseases. In the present report we describe clinical and neuropathological findings of a previously healthy 64-year-old woman who developed symptoms of classical CJD. At post mortem examination, the brain showed in addition to classical methionine/methionine PrP(res) type 1 (MM1) sCJD changes and moderate Alzheimer-type pathology, features of "preclinical" MSA with minimal histopathological changes. These were characterized by discrete amounts of alpha-synuclein immunoreacive glial cytoplasmic inclusions in the striato-nigral system, isolated intraneuronal inclusions in pigmented neurons of the substantia nigra, as well as some vermiform intranuclear inclusions. To our knowledge, this is the first report on the coexistence of definite sCJD and "minimal changes" MSA in the same patient.
Collapse
|
50
|
Masui K, Nakata Y, Fujii N, Iwaki T. Extensive distribution of glial cytoplasmic inclusions in an autopsied case of multiple system atrophy with a prolonged 18-year clinical course. Neuropathology 2011; 32:69-76. [PMID: 21615514 DOI: 10.1111/j.1440-1789.2011.01222.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe herein an autopsied case of multiple system atrophy (MSA) with prolonged clinical course of 18 years, and evaluate the extent of neurodegeneration and glial cytoplasmic inclusions (GCIs) in the entire brain of this rare case. A 64-year-old woman presented with typical neurological symptoms and imaging features of MSA. Thereafter, she became bedridden, and breathing was assisted through a tracheostomy for 12 years. She died at the age of 82 after 18 years from the initial symptom. Post mortem examination revealed severe neurodegeneration in the inferior olive, pontine nuclei, substantia nigra, locus ceruleus, putamen and cerebellum. Notably, phosphorylated α-synuclein (p-α-syn)-positive GCIs were found in these areas, but their number was very low. In contrast, the density of GCIs was much higher in such regions as the tectum/tegmentum of the brainstem, pyramidal tracts, neocortices and limbic system, which usually contain a small number of GCIs. Another constituent of GCIs, ubiquitin (Ub) and Ub-associated autophagy substrate p62, were also positive in some GCIs, and distribution of Ub/p62 immunoreactivity was proportionate to that of p-α-syn+ GCIs despite the very long duration of the disease. Furthermore, this case had complicated hypoxic encephalopathy, but p-α-syn+ GCIs were also found in the damaged white matter, indicating the contribution of α-syncleinopathy as well as hypoxic effect to the secondary myelin and axonal loss in the white matter. Together, this rare case suggests the contribution of the disease duration to the prevalence of GCIs, and the possible involvement of the limbic system in extensive-stage disease.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Japan
| | | | | | | |
Collapse
|