1
|
Cristiani CM, Scaramuzzino L, Parrotta EI, Cuda G, Quattrone A, Quattrone A. Serum Tau Species in Progressive Supranuclear Palsy: A Pilot Study. Diagnostics (Basel) 2024; 14:2746. [PMID: 39682654 DOI: 10.3390/diagnostics14232746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Progressive Supranuclear Palsy (PSP) is a tauopathy showing a marked symptoms overlap with Parkinson's Disease (PD). PSP pathology suggests that tau protein might represent a valuable biomarker to distinguish between the two diseases. Here, we investigated the presence and diagnostic value of six different tau species (total tau, 4R-tau isoform, tau aggregates, p-tau202, p-tau231 and p-tau396) in serum from 13 PSP and 13 PD patients and 12 healthy controls (HCs). METHODS ELISA commercial kits were employed to assess all the tau species except for t-tau, which was assessed by a single molecule array (SIMOA)-based commercial kit. Possible correlations between tau species and biological and clinical features of our cohorts were also evaluated. RESULTS Among the six tau species tested, only p-tau396 was detectable in serum. Concentration of p-tau396 was significantly higher in both PSP and PD groups compared to HC, but PSP and PD patients showed largely overlapping values. Moreover, serum concentration of p-tau396 strongly correlated with disease severity in PSP and not in PD. CONCLUSIONS Overall, we identified serum p-tau396 as the most expressed phosphorylated tau species in serum and as a potential tool for assessing PSP clinical staging. Moreover, we demonstrated that other p-tau species may be present at too low concentrations in serum to be detected by ELISA, suggesting that future work should focus on other biological matrices.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Luana Scaramuzzino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Institute of Molecular Biology, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Clinical and Experimental Medicine, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Paterno G, Torrellas J, Bell BM, Gorion KMM, Quintin SS, Hery GP, Prokop S, Giasson BI. Novel Conformation-Dependent Tau Antibodies Are Modulated by Adjacent Phosphorylation Sites. Int J Mol Sci 2023; 24:13676. [PMID: 37761979 PMCID: PMC10530490 DOI: 10.3390/ijms241813676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Tau proteins within the adult central nervous system (CNS) are found to be abnormally aggregated into heterogeneous filaments in neurodegenerative diseases, termed tauopathies. These tau inclusions are pathological hallmarks of Alzheimer's disease (AD), Pick's disease (PiD), corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP). The neuropathological hallmarks of these diseases burden several cell types within the CNS, and have also been shown to be abundantly phosphorylated. The mechanism(s) by which tau aggregates in the CNS is not fully known, but it is hypothesized that hyperphosphorylated tau may precede and further promote filament formation, leading to the production of these pathological inclusions. In the studies herein, we generated and thoroughly characterized two novel conformation-dependent tau monoclonal antibodies that bind to residues Pro218-Glu222, but are sensitive to denaturing conditions and highly modulated by adjacent downstream phosphorylation sites. These epitopes are present in the neuropathological hallmarks of several tauopathies, including AD, PiD, CBD, and PSP. These novel antibodies will further enable investigation of tau-dependent pathological inclusion formation and enhance our understanding of the phosphorylation signatures within tauopathies with the possibility of new biomarker developments.
Collapse
Affiliation(s)
- Giavanna Paterno
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Jose Torrellas
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Brach M. Bell
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Kimberly-Marie M. Gorion
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Stephan S. Quintin
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Gabriela P. Hery
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I. Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Samimi N, Sharma G, Kimura T, Matsubara T, Huo A, Chiba K, Saito Y, Murayama S, Akatsu H, Hashizume Y, Hasegawa M, Farjam M, Shahpasand K, Ando K, Hisanaga SI. Distinct phosphorylation profiles of tau in brains of patients with different tauopathies. Neurobiol Aging 2021; 108:72-79. [PMID: 34536819 DOI: 10.1016/j.neurobiolaging.2021.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/31/2021] [Accepted: 08/15/2021] [Indexed: 01/15/2023]
Abstract
Tauopathies are neurodegenerative diseases that are characterized by pathological accumulation of tau protein. Tau is hyperphosphorylated in the brain of tauopathy patients, and this phosphorylation is proposed to play a role in disease development. However, it has been unclear whether phosphorylation is different among different tauopathies. Here, we investigated the phosphorylation states of tau in several tauopathies, including corticobasal degeneration, Pick's disease, progressive supranuclear palsy (PSP), argyrophilic grain dementia (AGD) and Alzheimer's disease (AD). Analysis of tau phosphorylation profiles using Phos-tag SDS-PAGE revealed distinct phosphorylation of tau in different tauopathies, whereas similar phosphorylation patterns were found within the same tauopathy. For PSP, we found 2 distinct phosphorylation patterns suggesting that PSP may consist of 2 different related diseases. Immunoblotting with anti-phospho-specific antibodies showed different site-specific phosphorylation in the temporal lobes of patients with different tauopathies. AD brains showed increased phosphorylation at Ser202, Thr231 and Ser235, Pick's disease brains showed increased phospho-Ser202, and AGD brains showed increased phospho-Ser396. The cis conformation of the peptide bond between phospho-Thr231 and Pro232 (cis ptau) was increased in AD and AGD. These results indicate that while tau is differently phosphorylated in tauopathies, a similar pathological mechanism may occur in AGD and AD patients. The present data provide useful information regarding tau pathology and diagnosis of tauopathies.
Collapse
Affiliation(s)
- Nastaran Samimi
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan; Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Govinda Sharma
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Taeko Kimura
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Tomoyasu Matsubara
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Anni Huo
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Kurumi Chiba
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Hiroyasu Akatsu
- Department of Community-based Medical Education, Nagoya City University Graduate School of Medicine, Mizuho, Nagoya, Aichi, Japan; Institute of Neuropathology, Fukushimura Hospital, Toyohashi, Aichi, Japan
| | - Yoshio Hashizume
- Institute of Neuropathology, Fukushimura Hospital, Toyohashi, Aichi, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Mojtaba Farjam
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan; Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan.
| |
Collapse
|
4
|
Martínez-Maldonado A, Ontiveros-Torres MÁ, Harrington CR, Montiel-Sosa JF, Prandiz RGT, Bocanegra-López P, Sorsby-Vargas AM, Bravo-Muñoz M, Florán-Garduño B, Villanueva-Fierro I, Perry G, Garcés-Ramírez L, de la Cruz F, Martínez-Robles S, Pacheco-Herrero M, Luna-Muñoz J. Molecular Processing of Tau Protein in Progressive Supranuclear Palsy: Neuronal and Glial Degeneration. J Alzheimers Dis 2021; 79:1517-1531. [PMID: 33459640 PMCID: PMC7990452 DOI: 10.3233/jad-201139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) are examples of neurodegenerative diseases, characterized by abnormal tau inclusions, that are called tauopathies. AD is characterized by highly insoluble paired helical filaments (PHFs) composed of tau with abnormal post-translational modifications. PSP is a neurodegenerative disease with pathological and clinical heterogeneity. There are six tau isoforms expressed in the adult human brain, with repeated microtubule-binding domains of three (3R) or four (4R) repeats. In AD, the 4R:3R ratio is 1:1. In PSP, the 4R isoform predominates. The lesions in PSP brains contain phosphorylated tau aggregates in both neurons and glial cells. OBJECTIVE Our objective was to evaluate and compare the processing of pathological tau in PSP and AD. METHODS Double and triple immunofluorescent labeling with antibodies to specific post-translational tau modifications (phosphorylation, truncation, and conformational changes) and thiazin red (TR) staining were carried out and analyzed by confocal microscopy. RESULTS Our results showed that PSP was characterized by phosphorylated tau in neurofibrillary tangles (NFTs) and glial cells. Tau truncated at either Glu391 or Asp421 was not observed. Extracellular NFTs (eNFTs) and glial cells in PSP exhibited a strong affinity for TR in the absence of intact or phosphorylated tau. CONCLUSION Phosphorylated tau was as abundant in PSP as in AD. The development of eNFTs from both glial cells and neuronal bodies suggests that truncated tau species, different from those observed in AD, could be present in PSP. Additional studies on truncated tau within PSP lesions could improve our understanding of the pathological processing of tau and help identify a discriminatory biomarker for AD and PSP.
Collapse
Affiliation(s)
- Alejandra Martínez-Maldonado
- Departamento de Fisiología Biofísica y Neurociencias, CINVESTAV, México City, México
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, México
| | | | - Charles R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - José Francisco Montiel-Sosa
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | | | | | | | - Marely Bravo-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | | | | | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Linda Garcés-Ramírez
- Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - Fidel de la Cruz
- Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - Sandra Martínez-Robles
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Catolica Madre y Maestra, Santiago de los Caballeros, República Dominicana
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, República Dominicana
| |
Collapse
|
5
|
Mitochondrial dysfunction in Parkinsonian mesenchymal stem cells impairs differentiation. Redox Biol 2017; 14:474-484. [PMID: 29096320 PMCID: PMC5680522 DOI: 10.1016/j.redox.2017.10.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 11/23/2022] Open
Abstract
Sporadic cases account for 90–95% of all patients with Parkinson's Disease (PD). Atypical Parkinsonism comprises approximately 20% of all patients with parkinsonism. Progressive Supranuclear Palsy (PSP) belongs to the atypical parkinsonian diseases and is histopathologically classified as a tauopathy. Here, we report that mesenchymal stem cells (MSCs) derived from the bone marrow of patients with PSP exhibit mitochondrial dysfunction in the form of decreased membrane potential and inhibited NADH-dependent respiration. Furthermore, mitochondrial dysfunction in PSP-MSCs led to a significant increase in mitochondrial ROS generation and oxidative stress, which resulted in decrease of major cellular antioxidant GSH. Additionally, higher basal rate of mitochondrial degradation and lower levels of biogenesis were found in PSP-MSCs, together leading to a reduction in mitochondrial mass. This phenotype was biologically relevant to MSC stemness properties, as it heavily impaired their differentiation into adipocytes, which mostly rely on mitochondrial metabolism for their bioenergetic demand. The defect in adipogenic differentiation was detected as a significant impairment of intracellular lipid droplet formation in PSP-MSCs. This result was corroborated at the transcriptional level by a significant reduction of PPARγ and FABP4 expression, two key genes involved in the adipogenic molecular network. Our findings in PSP-MSCs provide new insights into the etiology of ‘idiopathic’ parkinsonism, and confirm that mitochondrial dysfunction is important to the development of parkinsonism, independent of the type of the cell. PSP pathology leads to inhibition of mitochondrial respiration and decrease mitochondrial membrane potential. Mitochondrial dysfunction in PSP-MSCs induces ROS generation and oxidative stress. Higher rate of mitophagy reduces mitochondrial mass in PSP-MSCs. PSP impairs differentiation properties in MSCs.
Collapse
|
6
|
Gillio-Meina C, Zielke HR, Fraser DD. Translational Research in Pediatrics IV: Solid Tissue Collection and Processing. Pediatrics 2016; 137:peds.2015-0490. [PMID: 26659457 DOI: 10.1542/peds.2015-0490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 11/24/2022] Open
Abstract
Solid tissues are critical for child-health research. Specimens are commonly obtained at the time of biopsy/surgery or postmortem. Research tissues can also be obtained at the time of organ retrieval for donation or from tissue that would otherwise have been discarded. Navigating the ethics of solid tissue collection from children is challenging, and optimal handling practices are imperative to maximize tissue quality. Fresh biopsy/surgical specimens can be affected by a variety of factors, including age, gender, BMI, relative humidity, freeze/thaw steps, and tissue fixation solutions. Postmortem tissues are also vulnerable to agonal factors, body storage temperature, and postmortem intervals. Nonoptimal tissue handling practices result in nucleotide degradation, decreased protein stability, artificial posttranslational protein modifications, and altered lipid concentrations. Tissue pH and tryptophan levels are 2 methods to judge the quality of solid tissue collected for research purposes; however, the RNA integrity number, together with analyses of housekeeping genes, is the new standard. A comprehensive clinical data set accompanying all tissue samples is imperative. In this review, we examined: the ethical standards relating to solid tissue procurement from children; potential sources of solid tissues; optimal practices for solid tissue processing, handling, and storage; and reliable markers of solid tissue quality.
Collapse
Affiliation(s)
- Carolina Gillio-Meina
- Translational Research Centre, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | | | - Douglas D Fraser
- Translational Research Centre, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Centre for Critical Illness Research, Critical Care Medicine and Pediatrics, Clinical Neurologic Sciences, and Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Milenkovic I, Petrov T, Kovacs GG. Patterns of hippocampal tau pathology differentiate neurodegenerative dementias. Dement Geriatr Cogn Disord 2015; 38:375-88. [PMID: 25195847 DOI: 10.1159/000365548] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Deposits of phosphorylated tau protein and convergence of pathology in the hippocampus are the hallmarks of neurodegenerative tauopathies. Thus we aimed to evaluate whether regional and cellular vulnerability patterns in the hippocampus distinguish tauopathies or are influenced by their concomitant presence. METHODS We created a heat map of phospho-tau (AT8) immunoreactivity patterns in 24 hippocampal subregions/layers in individuals with Alzheimer's disease (AD)-related neurofibrillary degeneration (n = 40), Pick's disease (n = 8), progressive supranuclear palsy (n = 7), corticobasal degeneration (n = 6), argyrophilic grain disease (AGD, n = 18), globular glial tauopathy (n = 5), and tau-astrogliopathy of the elderly (n = 10). AT8 immunoreactivity patterns were compared by mathematical analysis. RESULTS Our study reveals disease-specific hot spots and regional selective vulnerability for these disorders. The pattern of hippocampal AD-related tau pathology is strongly influenced by concomitant AGD. Mathematical analysis reveals that hippocampal involvement in primary tauopathies is distinguishable from early-stage AD-related neurofibrillary degeneration. CONCLUSION Our data demonstrate disease-specific AT8 immunoreactivity patterns and hot spots in the hippocampus even in tauopathies, which primarily do not affect the hippocampus. These hot spots can be shifted to other regions by the co-occurrence of tauopathies like AGD. Our observations support the notion that globular glial tauopathies and tau-astrogliopathy of the elderly are distinct entities.
Collapse
Affiliation(s)
- Ivan Milenkovic
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
8
|
Kristen H, Santana S, Sastre I, Recuero M, Bullido MJ, Aldudo J. Herpes simplex virus type 2 infection induces AD-like neurodegeneration markers in human neuroblastoma cells. Neurobiol Aging 2015; 36:2737-47. [DOI: 10.1016/j.neurobiolaging.2015.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022]
|
9
|
Ling H, Ling H, de Silva R, Massey LA, Courtney R, Hondhamuni G, Bajaj N, Lowe J, Holton JL, Lees A, Revesz T. Characteristics of progressive supranuclear palsy presenting with corticobasal syndrome: a cortical variant. Neuropathol Appl Neurobiol 2014; 40:149-63. [PMID: 23432126 PMCID: PMC4260147 DOI: 10.1111/nan.12037] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/15/2013] [Indexed: 12/11/2022]
Abstract
Aims Since the first description of the classical presentation of progressive supranuclear palsy (PSP) in 1963, now known as Richardson's syndrome (PSP-RS), several distinct clinical syndromes have been associated with PSP-tau pathology. Like other neurodegenerative disorders, the severity and distribution of phosphorylated tau pathology are closely associated with the clinical heterogeneity of PSP variants. PSP with corticobasal syndrome presentation (PSP-CBS) was reported to have more tau load in the mid-frontal and inferior-parietal cortices than in PSP-RS. However, it is uncertain if differences exist in the distribution of tau pathology in other brain regions or if the overall tau load is increased in the brains of PSP-CBS. Methods We sought to compare the clinical and pathological features of PSP-CBS and PSP-RS including quantitative assessment of tau load in 15 cortical, basal ganglia and cerebellar regions. Results In addition to the similar age of onset and disease duration, we demonstrated that the overall severity of tau pathology was the same between PSP-CBS and PSP-RS. We identified that there was a shift of tau burden towards the cortical regions away from the basal ganglia; supporting the notion that PSP-CBS is a ‘cortical’ PSP variant. PSP-CBS also had less severe neuronal loss in the dorsolateral and ventrolateral subregions of the substantia nigra and more severe microglial response in the corticospinal tract than in PSP-RS; however, neuronal loss in subthalamic nucleus was equally severe in both groups. Conclusions A better understanding of the factors that influence the selective pathological vulnerability in different PSP variants will provide further insights into the neurodegenerative process underlying tauopathies.
Collapse
Affiliation(s)
| | - H Ling
- Reta Lila Weston Institute of Neurological Studies, Institute of Neurology, University College London, London, UK; Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College London, London, UK; Sara Koe PSP Research Centre, Institute of Neurology, University College London, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Deposition of highly phosphorylated tau in the brain is the most significant neuropathological and biochemical characteristic of the group of neurodegenerative disorders termed the tauopathies. The discovery of tau fragments in these diseases suggests that tau cleavage and tau phosphorylation, both of which induce conformational changes in tau, could each have roles in disease pathogenesis. The identities of the proteases responsible for degrading tau, resulting in the appearance of truncated tau species in physiological and pathological conditions, are not known. Several fragments of tau are reported to have pro-aggregation properties, but the lack of disease-relevant cell models of tau aggregation has hampered investigation of the effects of tau aggregation on normal cellular functioning. In the present paper, we describe our findings of N-terminally truncated tau in the brain in a subgroup of the tauopathies in which tau isoforms containing four microtubule-binding domains predominate. We also discuss the evidence for the involvement of proteases in the generation of tau pathology in neurodegenerative disease, since these enzymes warrant further investigation as potential therapeutic targets in the tauopathies.
Collapse
|
11
|
Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol 2010; 119:389-408. [PMID: 20198481 DOI: 10.1007/s00401-010-0658-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 12/11/2022]
Abstract
Neuropathological diagnosis of neurodegenerative dementias evolved by adapting the results of neuroanatomy, biochemistry, and cellular and molecular biology. Milestone findings of intra- and extracellular argyrophilic structures, visualizing protein deposition, initiated a protein-based classification. Widespread application of immunohistochemical and biochemical investigations revealed that (1) there are modifications of proteins intrinsic to disease (species that are phosphorylated, nitrated, oligomers, proteinase-resistant, with or without amyloid characteristics; cleavage products), (2) disease forms characterized by the accumulation of a single protein only are rather the exception than the rule, and (3) some modifications of proteins elude present neuropathological diagnostic procedures. In this review, we summarize how neuropathology, together with biochemistry, contributes to disease typing, by demonstrating a spectrum of disorders characterized by the deposition of various modifications of various proteins in various locations. Neuropathology may help to elucidate how brain pathologies alter the detectability of proteins in body fluids by upregulation of physiological forms or entrapment of different proteins. Modifications of at least the five most relevant proteins (amyloid-beta, prion protein, tau, alpha-synuclein, and TDP-43), aided by analysis of further "attracted" proteins, are pivotal to be evaluated simultaneously with different methods. This should complement the detection of biomarkers associated with pathogenetic processes, and also neuroimaging and genetic analysis, in order to obtain a highly personalized diagnostic profile. Defining clusters of patients based on the patterns of protein deposition and immunohistochemically or biochemically detectable modifications of proteins ("codes") may have higher prognostic predictive value, may be useful for monitoring therapy, and may open new avenues for research on pathogenesis.
Collapse
|
12
|
Santpere G, Ferrer I. Delineation of early changes in cases with progressive supranuclear palsy-like pathology. Astrocytes in striatum are primary targets of tau phosphorylation and GFAP oxidation. Brain Pathol 2009; 19:177-87. [PMID: 18462470 PMCID: PMC8094872 DOI: 10.1111/j.1750-3639.2008.00173.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 02/19/2008] [Indexed: 11/30/2022] Open
Abstract
Progressive supranuclear palsy (PSP) is a complex tauopathy usually confirmed at post-mortem in advanced stages of the disease. Early PSP-like changes that may outline the course of the disease are not known. Since PSP is not rarely associated with argyrophilic grain disease (AGD) of varible intensity, the present study was focused on AGD cases with associated PSP-like changes in an attempt to delineate early PSP-like pathology in this category of cases. Three were typical clinical and pathological PSP. Another case presented with cognitive impairment, abnormal behavior and two falls in the last three months. One case suffered from mild cognitive impairment, and two had no evidence of neurological abnormality. Neuropathological study revealed, in addition to AGD, increased intensity and extent of lesion in three groups of regions, striatum, pallidus/subthalamus and selected nuclei of the brain stem, correlating with neurological impairment. Biochemical studies disclosed oxidative damage in the striatum and amygdala. Together the present observations suggest (i) early PSP-like lesions in the striatum, followed by the globus pallidus/subthalamus and selected nuclei of the brain stem; (ii) early involvement of neurons and astrocytes, but late appearance of tufted astrocytes; and (iii) oxidative damage of glial acidic protein in the striatum.
Collapse
Affiliation(s)
- Gabriel Santpere
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, carrer Feixa Llarga s/n, Hospitalet de Llobregat, Spain.
| | | |
Collapse
|
13
|
Wray S, Saxton M, Anderton BH, Hanger DP. Direct analysis of tau from PSP brain identifies new phosphorylation sites and a major fragment of N-terminally cleaved tau containing four microtubule-binding repeats. J Neurochem 2008; 105:2343-52. [DOI: 10.1111/j.1471-4159.2008.05321.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Martínez A, Dalfó E, Muntané G, Ferrer I. Glycolitic enzymes are targets of oxidation in aged human frontal cortex and oxidative damage of these proteins is increased in progressive supranuclear palsy. J Neural Transm (Vienna) 2007; 115:59-66. [PMID: 17705040 DOI: 10.1007/s00702-007-0800-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 07/28/2007] [Indexed: 10/22/2022]
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder pathologically characterized by neuronal loss and gliosis mainly in specific subcortical nuclei, but also in the cerebral cortex. In addition to neuron loss, hyperphosphorylated tau deposition is found in neurons, astrocytes and coiled bodies. Limited studies have shown that certain oxidative products are increased in the PSP brain. The present study examines oxidative damage in the frontal cortex in 7 PSP compared with 8 age-matched controls. Western blotting of the frontal cortex showed increased 4-hydroxy-2-nonenal (HNE)-immunoreactive bands between 40 and 50 kDa in PSP cases. Bi-dimensional gel electrophoresis and Western blotting, together with mass spectometry, were used to identify HNE-modified proteins. Oxidized phosphoglycerate kinase 1 (PGK-1) and fructose bisphosphate aldolase A (aldolase A) were identified in all cases and 4 of 7 PSP cases, respectively. In contrast, PGK-1 and aldolase A were oxidized in 3 of 8 controls. Immunohistochemistry revealed the localization of aldolase A in neurons and astrocytes, and PGK-1 mainly in astrocytes. These findings show that PGK-1 and aldolase A are targets of oxidation in the frontal cortex in the aged human cerebral cortex and that oxidative damage of these proteins is markedly increased in the frontal cortex in PSP.
Collapse
Affiliation(s)
- A Martínez
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | |
Collapse
|
15
|
Ferrer I, Santpere G, Arzberger T, Bell J, Blanco R, Boluda S, Budka H, Carmona M, Giaccone G, Krebs B, Limido L, Parchi P, Puig B, Strammiello R, Ströbel T, Kretzschmar H. Brain Protein Preservation Largely Depends on the Postmortem Storage Temperature. J Neuropathol Exp Neurol 2007; 66:35-46. [PMID: 17204935 DOI: 10.1097/nen.0b013e31802c3e7d] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The present study was designed to reveal protein modifications in control cases related with postmortem delay and temperature of storage in 3 paradigms in which the same postmortem tissue sample (frontal cortex) was frozen a short time after death or stored at 1 degrees C, 4 degrees C, or room temperature and then frozen at -80 degrees C at different intervals. No evidence of protein degradation as revealed with monodimensional gel electrophoresis and Western blotting was observed in samples artificially stored at 1 degrees C and then frozen at different intervals up to 50 hours after death. However, the levels of several proteins were modified in samples stored at 4 degrees C and this effect was more marked in samples stored at room temperature. Two-dimensional gel electrophoresis and mass spectrometry further corroborated these observations and permitted the identification of other proteins vulnerable or resistant to postmortem delay. Finally, gel electrophoresis and Western blotting of sarkosyl-insoluble fractions in Alzheimer disease showed reduced intensity of phospho-tau-specific bands with postmortem delay with the effects being more dramatic when the brain samples were stored at room temperature for long periods. These results emphasize the necessity of reducing the body temperature after death to minimize protein degradation.
Collapse
Affiliation(s)
- Isidre Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona (IF), 08907 Hospitalet de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Santpere G, Puig B, Ferrer I. Low molecular weight species of tau in Alzheimer's disease are dependent on tau phosphorylation sites but not on delayed post-mortem delay in tissue processing. Neurosci Lett 2006; 399:106-10. [PMID: 16488541 DOI: 10.1016/j.neulet.2006.01.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2005] [Revised: 01/06/2006] [Accepted: 01/18/2006] [Indexed: 10/25/2022]
Abstract
Gel electrophoresis and Western blotting of sarkosyl-insoluble fractions enriched in hyper-phosphorylated tau in Alzheimer disease (AD) have been used to analyze the pattern of phospho-tau by using different antibodies directed to the amino-terminal, core and carboxyl terminus of tau, and by using samples with increased artificial post-mortem delay in order to gain understanding on the characteristics of the band pattern and its vulnerability to post-mortem degradation. In addition to the typical profile of three major bands of 68, 64 and 60 kDa, several bands of lower molecular weight have been distinguished in frontal cortex homogenates in four AD cases stage V of Braak and Braak in optimal samples with 2 h of post-mortem delay. Lower bands, ranging from 60 to 22 kDa, are best seen with antibodies directed to the core of tau protein and, particularly, to the carboxy-terminus, thus suggesting the presence of truncated or cleaved forms of tau containing the C-terminal region. This pattern is not the result of post-mortem degradation, as artificial post-mortem delay of the same sample does not reveal the appearance of new bands with time. On the contrary, tau degradation, manifested as a reduction in the number and intensity of the bands, may occur between 8 and 26 h post-mortem and is universal in samples with post-mortem delays of 50h.
Collapse
Affiliation(s)
- Gabriel Santpere
- Institut Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, 08907 Hospitalet de Llobregat, Spain
| | | | | |
Collapse
|