1
|
Soltani A, Chugaeva UY, Ramadan MF, Saleh EAM, Al-Hasnawi SS, Romero-Parra RM, Alsaalamy A, Mustafa YF, Zamanian MY, Golmohammadi M. A narrative review of the effects of dexamethasone on traumatic brain injury in clinical and animal studies: focusing on inflammation. Inflammopharmacology 2023; 31:2955-2971. [PMID: 37843641 DOI: 10.1007/s10787-023-01361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Traumatic brain injury (TBI) is a type of brain injury resulting from a sudden physical force to the head. TBI can range from mild, such as a concussion, to severe, which might result in long-term complications or even death. The initial impact or primary injury to the brain is followed by neuroinflammation, excitotoxicity, and oxidative stress, which are the hallmarks of the secondary injury phase, that can further damage the brain tissue. Dexamethasone (DXM) has neuroprotective effects. It reduces neuroinflammation, a critical factor in secondary injury-associated neuronal damage. DXM can also suppress the microglia activation and infiltrated macrophages, which are responsible for producing pro-inflammatory cytokines that contribute to neuroinflammation. Considering the outcomes of this research, some of the effects of DXM on TBI include: (1) DXM-loaded hydrogels reduce apoptosis, neuroinflammation, and lesion volume and improves neuronal cell survival and motor performance, (2) DXM treatment elevates the levels of Ndufs2, Gria3, MAOB, and Ndufv2 in the hippocampus following TBI, (3) DXM decreases the quantity of circulating endothelial progenitor cells, (4) DXM reduces the expression of IL1, (5) DXM suppresses the infiltration of RhoA + cells into primary lesions of TBI and (6) DXM treatment led to an increase in fractional anisotropy values and a decrease in apparent diffusion coefficient values, indicating improved white matter integrity. According to the study, the findings show that DXM treatment has neuroprotective effects in TBI. This indicates that DXM is a promising therapeutic approach to treating TBI.
Collapse
Affiliation(s)
- Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, 11991, Wadi Al-Dawasir, Saudi Arabia
| | | | | | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ng SY, Lee AYW. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci 2019; 13:528. [PMID: 31827423 PMCID: PMC6890857 DOI: 10.3389/fncel.2019.00528] [Citation(s) in RCA: 449] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of morbidity and mortality amongst civilians and military personnel globally. Despite advances in our knowledge of the complex pathophysiology of TBI, the underlying mechanisms are yet to be fully elucidated. While initial brain insult involves acute and irreversible primary damage to the parenchyma, the ensuing secondary brain injuries often progress slowly over months to years, hence providing a window for therapeutic interventions. To date, hallmark events during delayed secondary CNS damage include Wallerian degeneration of axons, mitochondrial dysfunction, excitotoxicity, oxidative stress and apoptotic cell death of neurons and glia. Extensive research has been directed to the identification of druggable targets associated with these processes. Furthermore, tremendous effort has been put forth to improve the bioavailability of therapeutics to CNS by devising strategies for efficient, specific and controlled delivery of bioactive agents to cellular targets. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by an update on novel therapeutic targets and agents. Recent development of various approaches of drug delivery to the CNS is also discussed.
Collapse
Affiliation(s)
- Si Yun Ng
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Alan Yiu Wah Lee
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
3
|
Merkel SF, Andrews AM, Lutton EM, Razmpour R, Cannella LA, Ramirez SH. Dexamethasone Attenuates the Enhanced Rewarding Effects of Cocaine Following Experimental Traumatic Brain Injury. Cell Transplant 2018; 26:1178-1192. [PMID: 28933216 PMCID: PMC5447499 DOI: 10.1177/0963689717714341] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical studies have identified traumatic brain injury (TBI) as a risk factor for the development of cocaine dependence. This claim is supported by our recent preclinical studies showing enhancement of the rewarding effects of cocaine in mice sustaining moderate controlled cortical impact (CCI) injury during adolescence. Here we test the efficacy of dexamethasone, an anti-inflammatory corticosteroid, to attenuate augmentation of the behavioral response to cocaine observed in CCI-TBI animals using the conditioned place preference (CPP) assay. These studies were performed in order to determine whether proinflammatory activity in the nucleus accumbens (NAc), a key brain nucleus in the reward pathway, mediates enhanced cocaine-induced CPP in adolescent animals sustaining moderate CCI-TBI. Our data reveal robust glial activation in the NAc following CCI-TBI and a significant increase in the cocaine-induced CPP of untreated CCI-TBI mice. Furthermore, our results show that dexamethasone treatment following CCI-TBI can attenuate the cocaine place preference of injured animals without producing aversion in the CPP assay. Our studies also found that dexamethasone treatment significantly reduced the expression of select immune response genes including Monocyte chemoattractant protein-1 (MCP-1/CCL2) and intercellular adhesion molecule-1 ( ICAM-1), returning their expression to control levels, which prompted an investigation of peripheral blood monocytes in dexamethasone-treated animals. Experimental findings showed that no craniectomy/dexamethasone mice had a significant increase, while CCI-TBI/dexamethasone animals had a significant decrease in the percentage of circulating nonclassical patrolling monocytes. These results suggest that a portion of these monocytes may migrate to the brain in response to CCI-TBI, potentially sparing the development of chronic neuroinflammation in regions associated with the reward circuitry such as the NAc. Overall, our findings indicate that anti-inflammatory agents, such as dexamethasone, may be effective in normalizing the rewarding effects of cocaine following CCI-TBI.
Collapse
Affiliation(s)
- Steven F Merkel
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,2 Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Allison M Andrews
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,2 Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Evan M Lutton
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Roshanak Razmpour
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Lee Anne Cannella
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,2 Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Servio H Ramirez
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,2 Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,3 Shriners Hospitals Pediatric Research Center, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Ohgomori T, Yamasaki R, Kira JI, Jinno S. Upregulation of Vesicular Glutamate Transporter 2 and STAT3 Activation in the Spinal Cord of Mice Receiving 3,3'-Iminodipropionitrile. Neurotox Res 2017; 33:768-780. [PMID: 28965218 DOI: 10.1007/s12640-017-9822-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022]
Abstract
Chronic administration of 3,3'-iminodipropionitrile (IDPN) causes axonal impairment. Although controversy still remains, it has been suggested that IDPN intoxication mimics the axonopathy of amyotrophic lateral sclerosis (ALS). Interestingly, recent studies including our own showed that signal transducer and activator of transcription 3 (STAT3) in spinal α-motoneurons was activated in both IDPN-treated mice and SOD1 G93A mice, a genetic model of familial ALS. Because activation of STAT3 occurs in response to various stimuli, such as axonal injury, ischemia, and excessive glutamate, here we focused on a potential link between phosphorylated STAT3 (pSTAT3, an active form) and vesicular glutamate transporter 2 (VGluT2, a regulator of glutamate storage and release) in IDPN-treated mice and SOD1 G93A mice. Impairment of axonal transport was confirmed by western blot analysis: the expression levels of phosphorylated neurofilament H were elevated in both models. As shown in SOD1 G93A mice, the expression frequencies of VGluT2 in synaptophysin-positive (SYP)+ presynaptic terminals around spinal α-motoneurons were significantly higher in IDPN-treated mice than in vehicle controls. The coverages of spinal α-motoneurons by VGluT2+ presynaptic terminals were more elevated around pSTAT3+ cells than around pSTAT3- cells in IDPN-treated mice and SOD1 G93A mice. Considering that excessive glutamate is shown to be involved in axonal impairment and STAT3 activation, the present results suggest that IDPN-induced upregulation of VGluT2 may result in an increase in glutamate, which might cause axonopathy and induction of pSTAT3. The link between upregulation of VGluT2 and activation of STAT3 via glutamate may represent a common pathological feature of IDPN-treated mice and SOD1 G93A mice.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
5
|
Involvement of inhibition of RhoA/Rho kinase signaling in simvastatin-induced amelioration of neuropathic pain. Neuroscience 2016; 333:204-13. [PMID: 27457035 DOI: 10.1016/j.neuroscience.2016.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022]
Abstract
Small molecular G-protein plays a key role in several diseases. This study was designed to reveal the role of RhoA signaling in the pathophysiology of neuropathic pain in mice. Partial sciatic nerve injury caused thermal hyperalgesia, mechanical allodynia, and increased plasma membrane translocation of RhoA in the lumber spinal cord. GFAP-immunoreactivity (ir), Iba-1-ir, and Rho kinase 2 (ROCK2-ir) was also increased in the ipsilateral spinal dorsal horn of nerve-ligated mice. Moreover, partial nerve ligation increased the expression of phosphorylated myristoylated alanine-rich protein kinase C substrate (MARCKS)-ir in the ipsilateral spinal dorsal horn. Daily intrathecal administration of simvastatin, beginning 3days before nerve injury, completely blocked all these changes in nerve-ligated mice. Pharmacological inhibition of ROCK also attenuated the increased expression of GFAP-ir and phosphorylated MARCKS-ir. Together, it is suggested that astrogliosis initiated by the activation of RhoA/ROCK signaling results in MARCKS phosphorylation in nerve terminals, which leads to hyperalgesia in neuropathic pain. Furthermore, simvastatin exerts antihyperalgesic and antiallodynic effects through the inhibition of spinal RhoA activation.
Collapse
|
6
|
Labandeira-Garcia JL, Rodríguez-Perez AI, Villar-Cheda B, Borrajo A, Dominguez-Meijide A, Guerra MJ. Rho Kinase and Dopaminergic Degeneration. Neuroscientist 2014; 21:616-29. [DOI: 10.1177/1073858414554954] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small GTP-binding protein Rho plays an important role in several cellular functions. RhoA, which is a member of the Rho family, initiates cellular processes that act on its direct downstream effector Rho-associated kinase (ROCK). ROCK inhibition protects against dopaminergic cell death induced by dopaminergic neurotoxins. It has been suggested that ROCK inhibition activates neuroprotective survival cascades in dopaminergic neurons. Axon-stabilizing effects in damaged neurons may represent another mechanism of neuroprotection of dopaminergic neurons by ROCK inhibition. However, it has been shown that microglial cells play a crucial role in neuroprotection by ROCK inhibition and that activation of microglial ROCK mediates major components of the microglial inflammatory response. Additional mechanisms such as interaction with autophagy may also contribute to the neuroprotective effects of ROCK inhibition. Interestingly, ROCK interacts with several brain factors that play a major role in dopaminergic neuron vulnerability such as NADPH-oxidase, angiotensin, and estrogen. ROCK inhibition may provide a new neuroprotective strategy for Parkinson’s disease. This is of particular interest because ROCK inhibitors are currently used against vascular diseases in clinical practice. However, it is necessary to develop more potent and selective ROCK inhibitors to reduce side effects and enhance the efficacy.
Collapse
Affiliation(s)
- Jose L. Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana I. Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J. Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| |
Collapse
|
7
|
Park MS, Oh HA, Ko IG, Kim SE, Kim SH, Kim CJ, Kim HB, Kim H. Influence of mild traumatic brain injury during pediatric stage on short-term memory and hippocampal apoptosis in adult rats. J Exerc Rehabil 2014; 10:148-54. [PMID: 25061593 PMCID: PMC4106768 DOI: 10.12965/jer.140109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/19/2014] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of neurological deficit in the brain, which induces short- and long-term brain damage, cognitive impairment with/without structural alteration, motor deficits, emotional problems, and death both in children and adults. In the present study, we evaluated whether mild TBI in childhood causes persisting memory impairment until adulthood. Moreover, we investigated the influence of mild TBI on memory impairment in relation with hippocampal apoptosis. For this, step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and immunohistochemistry for caspase-3 were performed. Male Sprague-Dawley rats were used in the experiments. The animals were randomly divided into two groups: sham-operation group and TBI-induction group. The mild TBI model was created with an electromagnetic contusion device activated at a velocity of 3.0 m/sec. The results showed that mild TBI during the pediatric stage significantly decreased memory retention. The numbers of TUNEL-positive and caspase-3-positive cells were increased in the TBI-induction group compared to those in the sham-operation group. Defective memory retention and apoptosis sustained up to the adult stage. The present results shows that mild TBI induces long-lasting cognitive impairment from pediatric to adult stages in rats through the high level of apoptosis. The finding of this study suggests that children with mild TBI may need intensive treatments for the reduction of long-lasting cognitive impairment by secondary neuronal damage.
Collapse
Affiliation(s)
- Mi-Sook Park
- Department of Health and Welfare for the Elderly, Graduate School, Daegu Haany University, Gyeongsan, Korea
| | - Hyean-Ae Oh
- Department of Health and Welfare for the Elderly, Graduate School, Daegu Haany University, Gyeongsan, Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sung-Eun Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Hoon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun-Bae Kim
- Department of Taekwondo, College of Physical Education, Kyung Hee University, Suwon, Korea
| | - Hong Kim
- Department of Oriental Sports Medicine, College of Biomedical Science, Daegu Haany University, Gyeongsan, Korea
| |
Collapse
|
8
|
Borrajo A, Rodriguez-Perez AI, Villar-Cheda B, Guerra MJ, Labandeira-Garcia JL. Inhibition of the microglial response is essential for the neuroprotective effects of Rho-kinase inhibitors on MPTP-induced dopaminergic cell death. Neuropharmacology 2014; 85:1-8. [PMID: 24878243 DOI: 10.1016/j.neuropharm.2014.05.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/18/2014] [Accepted: 05/14/2014] [Indexed: 01/20/2023]
Abstract
Several recent studies have shown that activation of the RhoA/Rho-associated kinase (ROCK) pathway is involved in the MPTP-induced dopaminergic cell degeneration and possibly in Parkinson's disease. ROCK inhibitors have been suggested as candidate neuroprotective drugs for Parkinson's disease. However, the mechanism responsible for the increased survival of dopaminergic neurons after treatment with ROCK inhibitors is not clear. We exposed primary (neuron-glia) mesencephalic cultures, cultures of the MES 23.5 dopaminergic neuron cell line and primary mesencephalic cultures lacking microglial cells to the dopaminergic neurotoxin MPP+ and the ROCK inhibitor Y-27632 in order to study the effects of ROCK inhibition on dopaminergic cell loss and the length of neurites of surviving dopaminergic neurons. In primary (neuron-glia) cultures, simultaneous treatment with MPP+ and the ROCK inhibitor significantly reduced the loss of dopaminergic neurons. In the absence of microglia, treatment with the ROCK inhibitor did not induce a significant reduction in the dopaminergic cell loss. Treatment with the ROCK inhibitor induced a significant decrease in axonal retraction in primary cultures with and without microglia and in cultures of the MES 23.5 neuron cell line. In conclusion, inhibition of microglial ROCK is essential for the neuroprotective effects of ROCK inhibitors against cell death induced by the dopaminergic neurotoxin MPP+. In addition, ROCK inhibition induced a direct effect against axonal retraction in surviving neurons. However, the latter effect was not sufficient to cause a significant increase in the survival of dopaminergic neurons after treatment with MPP+.
Collapse
Affiliation(s)
- Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
9
|
Song Y, Chen X, Wang LY, Gao W, Zhu MJ. Rho kinase inhibitor fasudil protects against β-amyloid-induced hippocampal neurodegeneration in rats. CNS Neurosci Ther 2013; 19:603-10. [PMID: 23638992 DOI: 10.1111/cns.12116] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and Aβ-induced neuronal damage is the major pathology of AD. There is increasing evidence that neuroinflammation induced by Aβ is also involved in the pathogenesis of AD. Fasudil is a Rho kinase inhibitor and has been reported to have neuroprotective effects. In this study, the main purpose is to investigate whether fasudil has beneficial effects on cognitive impairment and neuronal toxicity induced by Aβ. METHODS AND RESULTS In the present study, intracerebroventricular injection of Aβ1-42 to rats resulted in marked cognitive impairment, severe neuronal damage, as well as increased IL-1β, tumor necrosis factor alpha (TNF-α) production, and NF-κB activation. Administration of fasudil significantly ameliorated the spatial learning and memory impairment, attenuated neuronal loss, and neuronal injury induced by Aβ1-42 . In addition, fasudil inhibited IL-1β and TNF-α production and NF-κB activation in the rat brain. CONCLUSIONS Fasudil can protect against Aβ-induced hippocampal neurodegeneration by suppressing inflammatory response, suggesting that fasudil might be a promising agent for the prevention and treatment of inflammation-related diseases, such as AD.
Collapse
Affiliation(s)
- Yun Song
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
10
|
Xavier AM, Serafim KGG, Higashi DT, Vanat N, Flaiban KKMDC, Siqueira CPCM, Venâncio EJ, Ramos SDP. Simvastatin improves morphological and functional recovery of sciatic nerve injury in Wistar rats. Injury 2012; 43:284-9. [PMID: 21684542 DOI: 10.1016/j.injury.2011.05.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 05/25/2011] [Indexed: 02/02/2023]
Abstract
AIM The purpose of this work is to investigate the effects of simvastatin on sciatic nerve regeneration in male Wistar Rats. MATERIALS AND METHODS Forty animals were allocated into four groups: (1) control (C); (2) control+simvastatin (CS); (3) lesioned animals+sterile PBS (LC) and (4) lesioned animals+simvastatin (LS). Lesioned animals were submitted to crushing lesion of right sciatic nerve. Simvastatin (20mg/kg/day, i.p.) was administered for five days. Footprints were obtained weekly for evaluation of functional locomotor recovery by means of the Sciatic Function Index (SFI). Blood samples were obtained weekly for quantifying circulating leukocytes. Animals were sacrificed after 21 days for histological analyses of sciatic nerve and spleen. RESULTS LS Animals presented increased SFI scores, decreased areas of oedema and mononuclear cell infiltration during Wallerian degeneration and nerve regeneration (7,14 and 21 days; P<0.05). Spleen weight and white pulp areas was increased in LC animals after 21 days. Increased numbers of circulating neutrophils were observed in simvastatin treated animals (CS e LS) at seven, 14 and 21 days, compared to non-treated groups (C and LC). CONCLUSION The study suggests that simvastatin accelerates the morphological and functional recovery process of the peripheral nervous system interfering with innate and acquired immunity.
Collapse
Affiliation(s)
- A M Xavier
- Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ding J, Li QY, Wang X, Sun CH, Lu CZ, Xiao BG. Fasudil protects hippocampal neurons against hypoxia-reoxygenation injury by suppressing microglial inflammatory responses in mice. J Neurochem 2010; 114:1619-29. [PMID: 20882700 DOI: 10.1111/j.1471-4159.2010.06876.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rho kinase (ROCK) may play an important role in regulating biological events of cells, including proliferation, differentiation and survival/death. Blockade of ROCK promotes axonal regeneration and neuron survival in vivo and in vitro, thereby exhibiting potential clinical applications in spinal cord damage and stroke. Our previous studies have demonstrated that Fasudil, a selective ROCK inhibitor, induced neuroprotection in vitro. Here we used an in vivo model of hypoxia/reoxygenation (H/R) injury to examine the neuroprotective effect of Fasudil, and explore its possible mechanism(s) in vivo. H/R resulted in the loss of hippocampal neurons, accompanied by increased apoptosis of neurons in hippocampus. The expression of ROCK II and activity of ROCK in the brain were increased after H/R, and located only in microglia, but not in astrocytes and neurons. The administration of Fasudil inhibited the activity of ROCK in brain tissue and cultured microglia, and protected hippocampal neurons against H/R injury. Further immunohistochemical analysis and cytokine determination revealed that Fasudil inhibited inducible nitric oxide synthase immunoreactivity in microglia and pro-inflammatory factors in brain tissue after H/R, which is consistent with the observation wherein Fasudil reduced the pro-inflammatory factors nitric oxide, IL-1β, IL-6 and TNF-, and increased anti-inflammatory factor IL-10 in cultured microglia under normoxic or hypoxic conditions. Our results indicate that inhibition of ROCK by Fasudil may represent a useful therapeutic perspective by inhibiting microglial inflammatory responses in the CNS.
Collapse
Affiliation(s)
- Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
12
|
Viscomi M, Oddi S, Latini L, Bisicchia E, Maccarrone M, Molinari M. The endocannabinoid system: A new entry in remote cell death mechanisms. Exp Neurol 2010; 224:56-65. [DOI: 10.1016/j.expneurol.2010.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
13
|
Chapter 18: Enhancement of nerve regeneration and recovery by immunosuppressive agents. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:347-62. [PMID: 19682647 DOI: 10.1016/s0074-7742(09)87018-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clinically, little can be done to induce restoration of good to excellent neurological function following nervous system trauma, and time is required before an effective technique is developed and applied clinically. However, there are novel techniques that have not been tested experimentally or clinically that may induce significantly faster, reliable, and extensive neurological recovery following nervous system trauma than is presently possible, even for techniques currently being tested on animal models. To repair peripheral nerves following trauma in which a length of the nerve pathway is destroyed, many clinicians consider autologous sensory nerve grafts to be the "gold standard" for inducing neurological recovery. However, this technique has severe limitations, such as being effective only across gaps less than 2 cm, for repairs performed less than 2 months posttrauma, and in young patients. As a consequence, many patients suffer permanent neurological deficits or recover only limited neurological function, and they frequently develop irreversible neuropathic pain. This review examines the clinical role that immunosuppressants might play, in the presence or absence of autologous, allografts, or xenografts, in increasing the rate, success, and extent of neurological recovery following nervous system trauma.
Collapse
|