1
|
Jiang LL, Zhang XL, Hu HY. Co-Aggregation of TDP-43 with Other Pathogenic Proteins and Their Co-Pathologies in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:12380. [PMID: 39596445 PMCID: PMC11594478 DOI: 10.3390/ijms252212380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Pathological aggregation of a specific protein into insoluble aggregates is a common hallmark of various neurodegenerative diseases (NDDs). In the earlier literature, each NDD is characterized by the aggregation of one or two pathogenic proteins, which can serve as disease-specific biomarkers. The aggregation of these specific proteins is thought to be a major cause of or deleterious result in most NDDs. However, accumulating evidence shows that a pathogenic protein can interact and co-aggregate with other pathogenic proteins in different NDDs, thereby contributing to disease onset and progression synergistically. During the past years, more than one type of NDD has been found to co-exist in some individuals, which may increase the complexity and pathogenicity of these diseases. This article reviews and discusses the biochemical characteristics and molecular mechanisms underlying the co-aggregation and co-pathologies associated with TDP-43 pathology. The TDP-43 aggregates, as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), can often be detected in other NDDs, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2). In many cases, TDP-43 is shown to interact and co-aggregate with multiple pathogenic proteins in vitro and in vivo. Furthermore, the co-occurrence and co-aggregation of TDP-43 with other pathogenic proteins have important consequences that may aggravate the diseases. Thus, the current viewpoint that the co-aggregation of TDP-43 with other pathogenic proteins in NDDs and their relevance to disease progression may gain insights into the patho-mechanisms and therapeutic potential of various NDDs.
Collapse
Affiliation(s)
- Lei-Lei Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| | - Xiang-Le Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| |
Collapse
|
2
|
Thal DR, Gawor K, Moonen S. Regulated cell death and its role in Alzheimer's disease and amyotrophic lateral sclerosis. Acta Neuropathol 2024; 147:69. [PMID: 38583129 DOI: 10.1007/s00401-024-02722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Despite considerable research efforts, it is still not clear which mechanisms underlie neuronal cell death in neurodegenerative diseases. During the last 20 years, multiple pathways have been identified that can execute regulated cell death (RCD). Among these RCD pathways, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-related cell death, and lysosome-dependent cell death have been intensively investigated. Although RCD consists of numerous individual pathways, multiple common proteins have been identified that allow shifting from one cell death pathway to another. Another layer of complexity is added by mechanisms such as the endosomal machinery, able to regulate the activation of some RCD pathways, preventing cell death. In addition, restricted axonal degeneration and synaptic pruning can occur as a result of RCD activation without loss of the cell body. RCD plays a complex role in neurodegenerative processes, varying across different disorders. It has been shown that RCD is differentially involved in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), among the most common neurodegenerative diseases. In AD, neuronal loss is associated with the activation of not only necroptosis, but also pyroptosis. In ALS, on the other hand, motor neuron death is not linked to canonical necroptosis, whereas pyroptosis pathway activation is seen in white matter microglia. Despite these differences in the activation of RCD pathways in AD and ALS, the accumulation of protein aggregates immunoreactive for p62/SQSTM1 (sequestosome 1) is a common event in both diseases and many other neurodegenerative disorders. In this review, we describe the major RCD pathways with clear activation in AD and ALS, the main interactions between these pathways, as well as their differential and similar involvement in these disorders. Finally, we will discuss targeting RCD as an innovative therapeutic concept for neurodegenerative diseases, such as AD and ALS. Considering that the execution of RCD or "cellular suicide" represents the final stage in neurodegeneration, it seems crucial to prevent neuronal death in patients by targeting RCD. This would offer valuable time to address upstream events in the pathological cascade by keeping the neurons alive.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sebastiaan Moonen
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
- Center for Brain & Disease Research, VIB, Leuven, Belgium
| |
Collapse
|
3
|
Bolborea M, Vercruysse P, Daria T, Reiners JC, Alami NO, Guillot SJ, Dieterlé S, Sinniger J, Scekic-Zahirovic J, Londo A, Arcay H, Goy MA, de Tapia CN, Thal DR, Shibuya K, Otani R, Arai K, Kuwabara S, Ludolph AC, Roselli F, Yilmazer-Hanke D, Dupuis L. Loss of hypothalamic MCH decreases food intake in amyotrophic lateral sclerosis. Acta Neuropathol 2023; 145:773-791. [PMID: 37058170 PMCID: PMC10175407 DOI: 10.1007/s00401-023-02569-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is associated with impaired energy metabolism, including weight loss and decreased appetite which are negatively correlated with survival. Neural mechanisms underlying metabolic impairment in ALS remain unknown. ALS patients and presymptomatic gene carriers have early hypothalamic atrophy. The lateral hypothalamic area (LHA) controls metabolic homeostasis through the secretion of neuropeptides such as orexin/hypocretin and melanin-concentrating hormone (MCH). Here, we show loss of MCH-positive neurons in three mouse models of ALS based on SOD1 or FUS mutations. Supplementation with MCH (1.2 µg/d) through continuous intracerebroventricular delivery led to weight gain in male mutant Sod1G86R mice. MCH supplementation increased food intake, rescued expression of the key appetite-related neuropeptide AgRP (agouti-related protein) and modified respiratory exchange ratio, suggesting increased carbohydrate usage during the inactive phase. Importantly, we document pTDP-43 pathology and neurodegeneration in the LHA of sporadic ALS patients. Neuronal cell loss was associated with pTDP-43-positive inclusions and signs of neurodegeneration in MCH-positive neurons. These results suggest that hypothalamic MCH is lost in ALS and contributes to the metabolic changes, including weight loss and decreased appetite.
Collapse
Affiliation(s)
- Matei Bolborea
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France.
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Pauline Vercruysse
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Tselmen Daria
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany
| | - Johanna C Reiners
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany
- Institute for Neurobiochemistry, Ulm University, Ulm, Germany
| | - Najwa Ouali Alami
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany
| | - Simon J Guillot
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Stéphane Dieterlé
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Jérôme Sinniger
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Jelena Scekic-Zahirovic
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Laboratory for Neuropathology, Institute for Pathology, Ulm University, Ulm, Germany
| | - Amela Londo
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Laboratory for Neuropathology, Institute for Pathology, Ulm University, Ulm, Germany
| | - Hippolyte Arcay
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Marc-Antoine Goy
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Claudia Nelson de Tapia
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Dietmar R Thal
- Laboratory for Neuropathology, Institute for Pathology, Ulm University, Ulm, Germany
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU louvain, Belgium
- Department of Pathology, UZ Leuven, Japan
| | - Kazumoto Shibuya
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Ryo Otani
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Kimihito Arai
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Albert C Ludolph
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany.
| | - Luc Dupuis
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France.
| |
Collapse
|
4
|
Association of blood lipids with onset and prognosis of amyotrophic lateral sclerosis: results from the ALS Swabia registry. J Neurol 2023; 270:3082-3090. [PMID: 36853389 DOI: 10.1007/s00415-023-11630-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND To date, the role of blood lipid levels and their association with the onset and prognosis of ALS is controversial. We explored these associations in a large, population-based case-control study. METHODS Between October 2010 and June 2014, 336 ALS patients (mean age 65.7 ± 10.7; 57.7% male) and 487 sex- and age-matched controls from the same geographic region were recruited within the ALS registry in Southwest Germany. Triglycerides and cholesterol (high-density lipoprotein (HDL), low-density lipoprotein (LDL), total) were measured. The ALS cohort was followed up for vital status. Conditional logistic regression models were applied to calculate odds ratio (OR) for risk of ALS associated with serum lipid concentrations. In ALS patients only, survival models were used to appraise the prognostic value. RESULTS High concentration of total cholesterol (OR 1.60, 95% confidence interval (CI) 1.03-2.49, top vs. bottom quartile), but not HDL, LDL, LDL-HDL ratio, or triglycerides, was positively associated with the risk of ALS. During the median follow-up time of 88.9 months, 291 deaths occurred among 336 ALS patients. In the adjusted survival analysis, higher HDL (HR 1.72, 95% CI 1.19-2.50) and LDL cholesterol levels (HR 1.58, 95% CI 1.11-2.26) were associated with higher mortality in ALS patients. In contrast, higher triglyceride levels were associated with lower mortality (HR 0.68, 95% CI 0.48-0.96). CONCLUSION The results highlight the importance to distinguish cholesterol from triglycerides when considering the prognostic role of lipid metabolism in ALS. It further strengthens the rationale for a triglyceride-rich diet, while the negative impact of cholesterol must be further explored.
Collapse
|
5
|
Factors predicting disease progression in C9ORF72 ALS patients. J Neurol 2023; 270:877-890. [PMID: 36280624 DOI: 10.1007/s00415-022-11426-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To unveil clinical features, comorbidities, disease progression and prognostic factors in a population-based cohort of ALS patients carrying C9ORF72 expansion (C9 + ALS). METHODS This is a retrospective observational study on ALS patients residing in Emilia Romagna and Piedmont-Valle D'Aosta regions whose data are available through population based registers. We analysed patients who underwent genetic testing, focusing on C9 + ALS subgroup. RESULTS Among 2204 genotyped patients of the two registers, 150 were C9 + ALS. In comparison with patients without mutation, a higher proportion of family history (12.85 vs 68%, p < 0.001) and frontotemporal dementia (3.93% vs 10.67%, p < 0.001) was detected in C9 + ALS. C9 + ALS presented a faster disease progression as measured by monthly decline in ALS Functional Rating Scale-Revised (1.86 ± 3.30 vs 1.45 ± 2.35, p < 0.01) and in forced vital capacity (5.90 ± 5.24 vs 2.97 ± 3.47, p < 0.01), a shorter diagnostic delay (8.93 ± 6.74 vs 12.68 ± 12.86 months, p < 0.01) and earlier onset (58.91 ± 9.02 vs 65.04 ± 11.55 years, p < 0.01). Consistently, they reached death or tracheostomy earlier than other patients (31 vs 37 months, HR = 1.52, 95% C.I. 1.27-1.82, p < 0.001). With respect to other genotyped patients, C9 + ALS patients did not present a significantly higher prevalence of concomitant diseases. Independent prognostic factors of survival of C9 + ALS included sex, age, progression rate, presence of frontotemporal dementia and thyroid disorders, with the latter being associated with prolonged ALS survival (43 vs 29 months, HR = 0.42, 95% C.I. 0.24-0.74, p = 0.003). CONCLUSION Even in the context of a more aggressive disease, C9 + ALS had a longer survival in presence of thyroid disorders. This finding may suggest protective pathogenic pathways in C9 + ALS to be explored, looking for therapeutic strategies to slow disease course.
Collapse
|
6
|
Pan S, Liu X, Liu T, Zhao Z, Dai Y, Wang YY, Jia P, Liu F. Causal Inference of Genetic Variants and Genes in Amyotrophic Lateral Sclerosis. Front Genet 2022; 13:917142. [PMID: 35812739 PMCID: PMC9257137 DOI: 10.3389/fgene.2022.917142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal progressive multisystem disorder with limited therapeutic options. Although genome-wide association studies (GWASs) have revealed multiple ALS susceptibility loci, the exact identities of causal variants, genes, cell types, tissues, and their functional roles in the development of ALS remain largely unknown. Here, we reported a comprehensive post-GWAS analysis of the recent large ALS GWAS (n = 80,610), including functional mapping and annotation (FUMA), transcriptome-wide association study (TWAS), colocalization (COLOC), and summary data-based Mendelian randomization analyses (SMR) in extensive multi-omics datasets. Gene property analysis highlighted inhibitory neuron 6, oligodendrocytes, and GABAergic neurons (Gad1/Gad2) as functional cell types of ALS and confirmed cerebellum and cerebellar hemisphere as functional tissues of ALS. Functional annotation detected the presence of multiple deleterious variants at three loci (9p21.2, 12q13.3, and 12q14.2) and highlighted a list of SNPs that are potentially functional. TWAS, COLOC, and SMR identified 43 genes at 24 loci, including 23 novel genes and 10 novel loci, showing significant evidence of causality. Integrating multiple lines of evidence, we further proposed that rs2453555 at 9p21.2 and rs229243 at 14q12 functionally contribute to the development of ALS by regulating the expression of C9orf72 in pituitary and SCFD1 in skeletal muscle, respectively. Together, these results advance our understanding of the biological etiology of ALS, feed into new therapies, and provide a guide for subsequent functional experiments.
Collapse
Affiliation(s)
- Siyu Pan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxuan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Tianzi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yin-Ying Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- *Correspondence: Fan Liu, ; Peilin Jia,
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Fan Liu, ; Peilin Jia,
| |
Collapse
|
7
|
Masrori P, Beckers J, Gossye H, Van Damme P. The role of inflammation in neurodegeneration: novel insights into the role of the immune system in C9orf72 HRE-mediated ALS/FTD. Mol Neurodegener 2022; 17:22. [PMID: 35303907 PMCID: PMC8932121 DOI: 10.1186/s13024-022-00525-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is an important hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). An inflammatory reaction to neuronal injury is deemed vital for neuronal health and homeostasis. However, a continued activation of the inflammatory response can be detrimental to remaining neurons and aggravate the disease process. Apart from a disease modifying role, some evidence suggests that neuroinflammation may also contribute to the upstream cause of the disease. In this review, we will first focus on the role of neuroinflammation in the pathogenesis of chromosome 9 open reading frame 72 gene (C9orf72) hexanucleotide repeat expansions (HRE)-mediated ALS/FTD (C9-ALS/FTD). Additionally, we will discuss evidence from ex vivo and in vivo studies and finally, we briefly summarize the trials and progress of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Pegah Masrori
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium.,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.,Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium
| | - Helena Gossye
- Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium.,VIB Center for Molecular Neurology, Neurodegenerative Brain Diseases, University of Antwerp, 2000, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, 2000, Antwerp, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium. .,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium. .,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Gabery S, Ahmed RM, Caga J, Kiernan MC, Halliday GM, Petersén Å. Loss of the metabolism and sleep regulating neuronal populations expressing orexin and oxytocin in the hypothalamus in amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 2021; 47:979-989. [PMID: 33755993 DOI: 10.1111/nan.12709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
AIMS To determine the underlying cellular changes and clinical correlates associated with pathology of the hypothalamus in amyotrophic lateral sclerosis (ALS), as hypothalamic atrophy occurs in the preclinical phase of the disease. METHODS The hypothalamus was pathologically examined in nine patients with amyotrophic lateral sclerosis in comparison to eight healthy control subjects. The severity of regional atrophy (paraventricular nucleus: PVN, fornix and total hypothalamus) and peptidergic neuronal loss (oxytocin, vasopressin, cocaine- and amphetamine-regulating transcript: CART, and orexin) was correlated with changes in eating behaviour, sleep function, cognition, behaviour and disease progression. RESULTS Tar DNA-binding protein 43 (TDP-43) inclusions were present in the hypothalamus of all patients with amyotrophic lateral sclerosis. When compared to controls, there was atrophy of the hypothalamus (average 21% atrophy, p = 0.004), PVN (average 30% atrophy p = 0.014) and a loss of paraventricular oxytocin-producing neurons (average 49% loss p = 0.02) and lateral hypothalamic orexin-producing neurons (average 37% loss, significance p = 0.02). Factor analysis identified strong relationships between abnormal eating behaviour, hypothalamic atrophy and loss of orexin-producing neurons. With increasing disease progression, abnormal sleep behaviour and cognition associated with atrophy of the fornix. CONCLUSIONS Substantial loss of hypothalamic oxytocin-producing neurons occurs in ALS, with regional atrophy and the loss of orexin neurons relating to abnormal eating behaviour in ALS. Oxytocin- and orexin neurons display TDP43 inclusions. Our study points to significant pathology in the hypothalamus that may play a key role in metabolic and pathogenic changes in ALS.
Collapse
Affiliation(s)
- Sanaz Gabery
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Brain & Mind Centre and Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jashelle Caga
- Brain & Mind Centre and Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Brain & Mind Centre and Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain & Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Mentis AFA, Bougea AM, Chrousos GP. Amyotrophic lateral sclerosis (ALS) and the endocrine system: Are there any further ties to be explored? AGING BRAIN 2021; 1:100024. [PMID: 36911507 PMCID: PMC9997134 DOI: 10.1016/j.nbas.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) belongs to the family of neurodegenerative disorders and is classified as fronto-temporal dementia (FTD), progressive muscular atrophy, primary lateral sclerosis, and pseudobulbar palsy. Even though endocrine dysfunction independently impacts the ALS-related survival rate, the complex connection between ALS and the endocrine system has not been studied in depth. Here we review earlier and recent findings on how ALS interacts with hormones a) of the hypothalamus and pituitary gland, b) the thyroid gland, c) the pancreas, d) the adipose tissue, e) the parathyroid glands, f) the bones, g) the adrenal glands, and h) the gonads (ovaries and testes). Of note, endocrine issues should always be explored in patients with ALS, especially those with low skeletal muscle and bone mass, vitamin D deficiency, and decreased insulin sensitivity (diabetes mellitus). Because ALS is a progressively deteriorating disease, addressing any potential endocrine co-morbidities in patients with this malady is quite important for decreasing the overall ALS-associated disease burden. Importantly, as this burden is estimated to increase globally in the decades to follow, in part because of an increasingly aging population, it is high time for future multi-center, multi-ethnic studies to assess the link between ALS and the endocrine system in significantly larger patient populations. Last, the psychosocial stress experienced by patients with ALS and its psycho-neuro-endocrinological sequelae, including hypothalamic-pituitaryadrenal dysregulation, should become an area of intensive study in the future.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Anastasia M Bougea
- Memory & Movement Disorders Clinic, 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|