1
|
Anderson EN, Drukewitz S, Kour S, Chimata AV, Rajan DS, Schönnagel S, Stals KL, Donnelly D, O’Sullivan S, Mantovani JF, Tan TY, Stark Z, Zacher P, Chatron N, Monin P, Drunat S, Vial Y, Latypova X, Levy J, Verloes A, Carter JN, Bonner DE, Shankar SP, Bernstein JA, Cohen JS, Comi A, Carere DA, Dyer LM, Mullegama SV, Sanchez-Lara PA, Grand K, Kim HG, Ben-Mahmoud A, Gospe SM, Belles RS, Bellus G, Lichtenbelt KD, Oegema R, Rauch A, Ivanovski I, Mau-Them FT, Garde A, Rabin R, Pappas J, Bley AE, Bredow J, Wagner T, Decker E, Bergmann C, Domenach L, Margot H, Undiagnosed Diseases Network, Lemke JR, Jamra RA, Hentschel J, Mefford H, Singh A, Pandey UB, Platzer K. De novo variants in KDM2A cause a syndromic neurodevelopmental disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.31.25324695. [PMID: 40236430 PMCID: PMC11998838 DOI: 10.1101/2025.03.31.25324695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Germline variants that disrupt components of the epigenetic machinery cause syndromic neurodevelopmental disorders. Using exome and genome sequencing, we identified de novo variants in KDM2A, a lysine demethylase crucial for embryonic development, in 18 individuals with developmental delays and/or intellectual disabilities. The severity ranged from learning disabilities to severe intellectual disability. Other core symptoms included feeding difficulties, growth issues such as intrauterine growth restriction, short stature and microcephaly as well as recurrent facial features like epicanthic folds, upslanted palpebral fissures, thin lips, and low-set ears. Expression of human disease-causing KDM2A variants in a Drosophila melanogaster model led to neural degeneration, motor defects, and reduced lifespan. Interestingly, pathogenic variants in KDM2A affected physiological attributes including subcellular distribution, expression and stability in human cells. Genetic epistasis experiments indicated that KDM2A variants likely exert their effects through a potential gain-of-function mechanism, as eliminating endogenous KDM2A in Drosophila did not produce noticeable neurodevelopmental phenotypes. Data from Enzymatic-Methylation sequencing supports the suggested gene-disease association by showing an aberrant methylome profiles in affected individuals' peripheral blood. Combining our genetic, phenotypic and functional findings, we establish de novo variants in KDM2A as causative for a syndromic neurodevelopmental disorder.
Collapse
Affiliation(s)
- Eric N. Anderson
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Stephan Drukewitz
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Sukhleen Kour
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | | | - Deepa S. Rajan
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Senta Schönnagel
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Karen L. Stals
- Royal Devon & Exeter NHS Foundation Trust, Exeter Genomics Laboratory, Exeter EX2 5DW, UK
| | - Deirdre Donnelly
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust/City Hospital, Belfast, Northern Ireland BT9 7AB, UK
| | - Siobhan O’Sullivan
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust/City Hospital, Belfast, Northern Ireland BT9 7AB, UK
| | - John F. Mantovani
- Division of Child Neurology, Washington University School of Medicine, Mercy Kids Center for Neurodevelopment & Autism, St. Louis, MO 63110, USA
| | - Tiong Y. Tan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Pia Zacher
- Epilepsy Center Kleinwachau, 01454 Radeberg, Germany
| | - Nicolas Chatron
- Department of Medical Genetics, University Hospital of Lyon, 69007 Lyon, France
| | - Pauline Monin
- Department of Medical Genetics, University Hospital of Lyon, 69007 Lyon, France
| | - Severine Drunat
- Department of Genetics, APHP-Robert DEBRE University Hospital, Sorbonne Paris-Cité University, and INSERM UMR 1141, Paris, France
| | - Yoann Vial
- Department of Genetics, APHP-Robert DEBRE University Hospital, Sorbonne Paris-Cité University, and INSERM UMR 1141, Paris, France
| | - Xenia Latypova
- Department of Genetics, APHP-Robert DEBRE University Hospital, Sorbonne Paris-Cité University, and INSERM UMR 1141, Paris, France
| | - Jonathan Levy
- Department of Genetics, APHP-Robert DEBRE University Hospital, Sorbonne Paris-Cité University, and INSERM UMR 1141, Paris, France
| | - Alain Verloes
- Department of Genetics, APHP-Robert DEBRE University Hospital, Sorbonne Paris-Cité University, and INSERM UMR 1141, Paris, France
| | - Jennefer N. Carter
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA 94305. USA
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Devon E. Bonner
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA 94305. USA
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Suma P. Shankar
- Departments of Pediatrics & Ophthalmology, Genomic Medicine, University of California Davis Health, Sacramento, CA 95817
| | - Jonathan A. Bernstein
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA 94305. USA
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Julie S. Cohen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Anne Comi
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | | | | | | | | | - Katheryn Grand
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Afif Ben-Mahmoud
- Neurological Disorder Research Center, Qatar Biomedical Research Institute, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Sidney M. Gospe
- Departments of Neurology and Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | - Gary Bellus
- Geisinger Health System, Danville, PA 17821, USA
| | - Klaske D. Lichtenbelt
- Department of Genetics, Utrecht University Medical Center, 3584 EA Utrecht, the Netherlands
| | - Renske Oegema
- Department of Genetics, Utrecht University Medical Center, 3584 EA Utrecht, the Netherlands
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Zurich, Switzerland
| | - Ivan Ivanovski
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Zurich, Switzerland
| | - Frederic Tran Mau-Them
- Laboratoire de Génomique médicale – Centre NEOMICS, CHU Dijon Bourgogne, F-21000, Dijon, France
- INSERM – Université de Bourgogne - UMR1231 GAD, F-21000, Dijon, France
| | - Aurore Garde
- Laboratoire de Génomique médicale – Centre NEOMICS, CHU Dijon Bourgogne, F-21000, Dijon, France
| | - Rachel Rabin
- Clinical Genetic Services, Department of Pediatrics, NYU School of Medicine, New York, NY 10016, USA
| | - John Pappas
- Clinical Genetic Services, Department of Pediatrics, NYU School of Medicine, New York, NY 10016, USA
| | - Annette E. Bley
- Leukodystrophy Clinic, University Children’s Hospital, University Medical Center, 20246 Hamburg, Germany
| | - Janna Bredow
- Leukodystrophy Clinic, University Children’s Hospital, University Medical Center, 20246 Hamburg, Germany
| | - Timo Wagner
- Medizinische Genetik Mainz, Limbach Genetics GmbH, Mainz, Germany
| | - Eva Decker
- Medizinische Genetik Mainz, Limbach Genetics GmbH, Mainz, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics GmbH, Mainz, Germany
| | - Louis Domenach
- Department of Medical Genetics, MRGM INSERM U1211, Bordeaux University Hospital, University of Bordeaux, Bordeaux, France
| | - Henri Margot
- Department of Medical Genetics, MRGM INSERM U1211, Bordeaux University Hospital, University of Bordeaux, Bordeaux, France
| | | | - Johannes R. Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Heather Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- These authors jointly supervised this work
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
- These authors jointly supervised this work
| |
Collapse
|
2
|
Zeballos L, García-Peral C, Ledesma MM, Auzmendi J, Lazarowski A, López DE. Changes in the Proteomic Profile After Audiogenic Kindling in the Inferior Colliculus of the GASH/Sal Model of Epilepsy. Int J Mol Sci 2025; 26:2331. [PMID: 40076950 PMCID: PMC11900993 DOI: 10.3390/ijms26052331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Epilepsy is a multifaceted neurological disorder characterized by recurrent seizures and associated with molecular and immune alterations in key brain regions. The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca), a genetic model for audiogenic epilepsy, provides a powerful tool to study seizure mechanisms and resistance in predisposed individuals. This study investigates the proteomic and immune responses triggered by audiogenic kindling in the inferior colliculus, comparing non-responder animals exhibiting reduced seizure severity following repeated stimulation versus GASH/Sal naïve hamsters. To assess auditory pathway functionality, Auditory Brainstem Responses (ABRs) were recorded, revealing reduced neuronal activity in the auditory nerve of non-responders, while central auditory processing remained unaffected. Cytokine profiling demonstrated increased levels of proinflammatory markers, including IL-1 alpha (Interleukin-1 alpha), IL-10 (Interleukin-10), and TGF-beta (Transforming Growth Factor beta), alongside decreased IGF-1 (Insulin-like Growth Factor 1) levels, highlighting systemic inflammation and its interplay with neuroprotection. Building on these findings, a proteomic analysis identified 159 differentially expressed proteins (DEPs). Additionally, bioinformatic approaches, including Gene Set Enrichment Analysis (GSEA) and Weighted Gene Co-expression Network Analysis (WGCNA), revealed disrupted pathways related to metabolic and inflammatory epileptic processes and a module potentially linked to a rise in the threshold of seizures, respectively. Differentially expressed genes, identified through bioinformatic and statistical analyses, were validated by RT-qPCR. This confirmed the upregulation of six genes (Gpc1-Glypican-1; Sdc3-Syndecan-3; Vgf-Nerve Growth Factor Inducible; Cpne5-Copine 5; Agap2-Arf-GAP with GTPase domain, ANK repeat, and PH domain-containing protein 2; and Dpp8-Dipeptidyl Peptidase 8) and the downregulation of two (Ralb-RAS-like proto-oncogene B-and S100b-S100 calcium-binding protein B), aligning with reduced seizure severity. This study may uncover key proteomic and immune mechanisms underlying seizure susceptibility, providing possible novel therapeutic targets for refractory epilepsy.
Collapse
Affiliation(s)
- Laura Zeballos
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.Z.); (C.G.-P.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Carlos García-Peral
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.Z.); (C.G.-P.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Martín M. Ledesma
- Unidad de Conocimiento Traslacional, Hospital de Alta Complejidad del Bicentenario Esteban Echeverría, Monte Grande B1842, Argentina;
- Hospital de Alta Complejidad en Red El Cruce Dr. N. C. Kirchner SAMIC, Florencio Varela B1888, Argentina
| | - Jerónimo Auzmendi
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1417, Argentina; (J.A.); (A.L.)
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz M2290, Argentina
| | - Alberto Lazarowski
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1417, Argentina; (J.A.); (A.L.)
| | - Dolores E. López
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.Z.); (C.G.-P.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Pan H, He M, Luo X, Hu J, Mao X, Cheng Y, Liu Z. Mild neurodevelopmental disorder due to reduced SHMT2 enzymatic activity caused by novel compound heterozygous variants: expanding the phenotypic spectrum. Neurogenetics 2024; 26:7. [PMID: 39589606 DOI: 10.1007/s10048-024-00784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Biallelic variants in SHMT2 cause neurodevelopmental disorders with cardiomyopathy, spasticity, and brain abnormalities (NEDCASB; OMIM: 619121). This recently described metabolic disorder are characterized by severe intellectual disability, microcephaly, spastic paraplegia, peripheral neuropathy, corpus callosum dysgenesis, facial and limb deformities, and progressive hypertrophic cardiomyopathy. Herein we describe the clinical characteristics of a 13 years old patient with novel compound heterozygous SHMT2 missense variants (c.1274G>A: p.R425Q and c.1042C>T: p.R348W), presenting with mild intellectual disability, corpus callosum dysgenesis, and speech delay. Different from previous cases, our patient represents the mildest phenotype reported to date, and expand the phenotypic spectrum of disease associated with SHMT2 variants.
Collapse
Affiliation(s)
- Hu Pan
- Key Laboratory for Birth Defects Research and Prevention of the National Health Commission, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, PR China
| | - Mei He
- Key Laboratory for Birth Defects Research and Prevention of the National Health Commission, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, PR China
| | - Xuan Luo
- Key Laboratory for Birth Defects Research and Prevention of the National Health Commission, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, PR China
| | - Juanli Hu
- Key Laboratory for Birth Defects Research and Prevention of the National Health Commission, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, PR China
| | - Xiao Mao
- Key Laboratory for Birth Defects Research and Prevention of the National Health Commission, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, PR China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| | - Zhen Liu
- Key Laboratory for Birth Defects Research and Prevention of the National Health Commission, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, PR China.
| |
Collapse
|
4
|
Samarakoon V, Owuocha LF, Hammond J, Mitchum MG, Beamer LJ. Key structural role of a conserved cis-proline revealed by the P285S variant of soybean serine hydroxymethyltransferase 8. Biochem J 2024; 481:1557-1568. [PMID: 39373197 DOI: 10.1042/bcj20240338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/08/2024]
Abstract
The enzyme serine hydroxymethyltransferase (SHMT) plays a key role in folate metabolism and is conserved in all kingdoms of life. SHMT is a pyridoxal 5'-phosphate (PLP) - dependent enzyme that catalyzes the conversion of L-serine and (6S)-tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. Crystal structures of multiple members of the SHMT family have shown that the enzyme has a single conserved cis proline, which is located near the active site. Here, we have characterized a Pro to Ser amino acid variant (P285S) that affects this conserved cis proline in soybean SHMT8. P285S was identified as one of a set of mutations that affect the resistance of soybean to the agricultural pathogen soybean cyst nematode. We find that replacement of Pro285 by serine eliminates PLP-mediated catalytic activity of SHMT8, reduces folate binding, decreases enzyme stability, and affects the dimer-tetramer ratio of the enzyme in solution. Crystal structures at 1.9-2.2 Å resolution reveal a local reordering of the polypeptide chain that extends an α-helix and shifts a turn region into the active site. This results in a dramatically perturbed PLP-binding pose, where the ring of the cofactor is flipped by ∼180° with concomitant loss of conserved enzyme-PLP interactions. A nearby region of the polypeptide becomes disordered, evidenced by missing electron density for ∼10 residues. These structural perturbations are consistent with the loss of enzyme activity and folate binding and underscore the important role of the Pro285 cis-peptide in SHMT structure and function.
Collapse
Affiliation(s)
- Vindya Samarakoon
- Department of Chemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Luckio F Owuocha
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Jamie Hammond
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA 30602, U.S.A
| | - Lesa J Beamer
- Department of Chemistry, University of Missouri, Columbia, MO 65211, U.S.A
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
5
|
Zhou Y, Kang L, Xu R, Zhao D, Wang J, Wu J, Lin H, Ding Z, Zou Y. Mitochondrial outer membrane protein Samm50 protects against hypoxia-induced cardiac injury by interacting with Shmt2. Cell Signal 2024; 120:111219. [PMID: 38723737 DOI: 10.1016/j.cellsig.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Cardiac remodeling is a critical process following myocardial infarction (MI), potentially leading to heart failure if untreated. The significance of mitochondrial homeostasis in MI remains insufficiently understood. Samm50 is an essential component of mitochondria. Our study aimed to investigate its role in hypoxia-induced cardiac injury and the underlying mechanisms. First, we observed that Samm50 was dynamically downregulated in mice with MI compared to the control mice. In vitro, Samm50 was also downregulated in oxygen-glucose-deprived neonatal rat cardiomyocytes and fibroblasts. Overexpression and knockdown of Samm50 mitigated and exacerbated cardiac apoptosis and fibrosis, while also improving and worsening mitochondrial homeostasis, respectively. Protein interactions with Samm50 during the protective process were identified via immune-coprecipitation/mass spectroscopy. Mechanistically, serine hydroxymethyltransferase 2 (Shmt2) interacted with Samm50, acting as a crucial element in the protective process by hindering the transfer of Bax from the cytoplasm to the mitochondria and subsequent activation of caspase-3. Inhibition of Shmt2 diminished the protective effect of Samm50 overexpression against cardiac injury. Finally, Samm50 overexpression in vivo mitigated cardiac remodeling and enhanced cardiac function in both acute and chronic MI. In conclusion, Samm50 overexpression mitigated hypoxia-induced cardiac remodeling by inhibiting apoptosis and fibrosis, with Shmt2 acting as a key regulator in this protective process. The Samm50/Shmt2 axis represents a newly discovered mitochondria-related pathway for mitigating hypoxia-induced cardiac injury.
Collapse
Affiliation(s)
- Yufei Zhou
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ran Xu
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Di Zhao
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jienan Wang
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaying Wu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hong Lin
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Martelli F, Lin J, Mele S, Imlach W, Kanca O, Barlow CK, Paril J, Schittenhelm RB, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Identifying potential dietary treatments for inherited metabolic disorders using Drosophila nutrigenomics. Cell Rep 2024; 43:113861. [PMID: 38416643 PMCID: PMC11037929 DOI: 10.1016/j.celrep.2024.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/09/2023] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
Inherited metabolic disorders are a group of genetic conditions that can cause severe neurological impairment and child mortality. Uniquely, these disorders respond to dietary treatment; however, this option remains largely unexplored because of low disorder prevalence and the lack of a suitable paradigm for testing diets. Here, we screened 35 Drosophila amino acid disorder models for disease-diet interactions and found 26 with diet-altered development and/or survival. Using a targeted multi-nutrient array, we examine the interaction in a model of isolated sulfite oxidase deficiency, an infant-lethal disorder. We show that dietary cysteine depletion normalizes their metabolic profile and rescues development, neurophysiology, behavior, and lifelong fly survival, thus providing a basis for further study into the pathogenic mechanisms involved in this disorder. Our work highlights the diet-sensitive nature of metabolic disorders and establishes Drosophila as a valuable tool for nutrigenomic studies for informing potential dietary therapies.
Collapse
Affiliation(s)
- Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Sarah Mele
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Wendy Imlach
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics and Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Christopher K Barlow
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Jefferson Paril
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics and Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
7
|
Bi X, Wang L, Li H, Ma Y, Guo R, Yue J, Kong L, Gong X, Jiao F, Chinn E, Hu J. MiR-383-5p inhibits the proliferation and migration of lung adenocarcinoma cells by targeting SHMT2. J Cancer 2024; 15:2746-2758. [PMID: 38577602 PMCID: PMC10988301 DOI: 10.7150/jca.89733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/18/2024] [Indexed: 04/06/2024] Open
Abstract
Purpose: To explore the effects of miR-383-5p and serine hydroxymethyltransferase 2 (SHMT2) on the proliferation and migration of lung adenocarcinoma cells. Methods: SHMT2 expression in lung adenocarcinoma and normal tissues was investigated using The Cancer Genome Atlas database. Immunohistochemical analysis was performed to confirm SHMT2 expression in lung adenocarcinoma and adjacent normal lung tissues. Bioinformatics analysis and luciferase reporter assays were used to analyze the relationship between miR-383-5p and SHMT2 expression. The protein expression levels of SHMT2, vimentin, N-cadherin, E-cadherin, Bcl-2, and cyclinD1 were analyzed using western blotting. The reverse transcription-quantitative polymerase chain reaction was used to detect SHMT2 knockdown efficiency, miR-383-5p overexpression, and inhibition efficiency. The proliferative ability of cells was detected using the Cell Counting Kit-8 assay. The Transwell assay was used to detect the migration ability of cells. Results: SHMT2 expression was significantly increased in patients with lung adenocarcinoma compared to that in control patients; the higher the SHMT2 expression the worse the outcomes were in patients with lung adenocarcinoma. SHMT2 knockdown inhibited the proliferation, migration, and epithelial-mesenchymal transition of lung adenocarcinoma A549 and H1299 cells. MiR-383-5p directly targeted and downregulated SHMT2 in A549 and H1299 cells. The effects of miRNA-383-5p on the proliferation and migration of these cells differed from those of SHMT2. Exogenous overexpression of SHMT2 reversed the miR-383-5p-induced proliferation and migration inhibition in A549 and H1299 cells. Conclusion: MiR-383-5p inhibits the proliferation and migration of lung adenocarcinoma cells by targeting and downregulating SHMT2.
Collapse
Affiliation(s)
- Xianxia Bi
- Peninsula Cancer Research Center of Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Luwei Wang
- Peninsula Cancer Research Center of Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Hua Li
- Yantai Environmental Sanitation Management Center, YanTai, Shandong 264000, P.R. China
| | - Ying Ma
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Ruoyu Guo
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Jicheng Yue
- Peninsula Cancer Research Center of Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Lijun Kong
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Xiangqian Gong
- Department of Gastrointestinal Surgery, Yuhuangding Hospital, YanTai, Shandong 265499, P.R. China
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Eugene Chinn
- Peninsula Cancer Research Center of Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| |
Collapse
|
8
|
Song L, Pan Q, Zhou G, Liu S, Zhu B, Lin P, Hu X, Zha J, Long Y, Luo B, Chen J, Tang Y, Tang J, Xiang X, Xie X, Deng X, Chen G. SHMT2 Mediates Small-Molecule-Induced Alleviation of Alzheimer Pathology Via the 5'UTR-dependent ADAM10 Translation Initiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305260. [PMID: 38183387 PMCID: PMC10953581 DOI: 10.1002/advs.202305260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/27/2023] [Indexed: 01/08/2024]
Abstract
It is long been suggested that one-carbon metabolism (OCM) is associated with Alzheimer's disease (AD), whereas the potential mechanisms remain poorly understood. Taking advantage of chemical biology, that mitochondrial serine hydroxymethyltransferase (SHMT2) directly regulated the translation of ADAM metallopeptidase domain 10 (ADAM10), a therapeutic target for AD is reported. That the small-molecule kenpaullone (KEN) promoted ADAM10 translation via the 5' untranslated region (5'UTR) and improved cognitive functions in APP/PS1 mice is found. SHMT2, which is identified as a target gene of KEN and the 5'UTR-interacting RNA binding protein (RBP), mediated KEN-induced ADAM10 translation in vitro and in vivo. SHMT2 controls AD signaling pathways through binding to a large number of RNAs and enhances the 5'UTR activity of ADAM10 by direct interaction with GAGGG motif, whereas this motif affected ribosomal scanning of eukaryotic initiation factor 2 (eIF2) in the 5'UTR. Together, KEN exhibits therapeutic potential for AD by linking OCM with RNA processing, in which the metabolic enzyme SHMT2 "moonlighted" as RBP by binding to GAGGG motif and promoting the 5'UTR-dependent ADAM10 translation initiation.
Collapse
Affiliation(s)
- Li Song
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Qiu‐Ling Pan
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Gui‐Feng Zhou
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Sheng‐Wei Liu
- Department of PharmacyYongchuan Hospital of Chongqing Medical UniversityChongqing402160China
| | - Bing‐Lin Zhu
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Pei‐Jia Lin
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Tong Hu
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Health ManagementDaping HospitalArmy Medical universityChongqing400042China
| | - Jing‐Si Zha
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Internal MedicineThe Southwest University HospitalChongqing400715China
| | - Yan Long
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Geriatric MedicineDaping HospitalArmy Medical universityChongqing400042China
| | - Biao Luo
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Jian Chen
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ying Tang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyWest China HospitalSichuan UniversityChengdu610041China
| | - Jing Tang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Jiao Xiang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Nuclear MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Xiao‐Yong Xie
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Juan Deng
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Guo‐Jun Chen
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
9
|
Kooshavar D, Amor DJ, Boggs K, Baker N, Barnett C, de Silva MG, Edwards S, Fahey MC, Marum JE, Snell P, Bozaoglu K, Pope K, Mohammad SS, Riney K, Sachdev R, Scheffer IE, Schenscher S, Silberstein J, Smith N, Tom M, Ware TL, Lockhart PJ, Leventer RJ. Diagnostic utility of exome sequencing followed by research reanalysis in human brain malformations. Brain Commun 2024; 6:fcae056. [PMID: 38444904 PMCID: PMC10914449 DOI: 10.1093/braincomms/fcae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
This study aimed to determine the diagnostic yield of singleton exome sequencing and subsequent research-based trio exome analysis in children with a spectrum of brain malformations seen commonly in clinical practice. We recruited children ≤ 18 years old with a brain malformation diagnosed by magnetic resonance imaging and consistent with an established list of known genetic causes. Patients were ascertained nationally from eight tertiary paediatric centres as part of the Australian Genomics Brain Malformation Flagship. Chromosome microarray was required for all children, and those with pathogenic copy number changes were excluded. Cytomegalovirus polymerase chain reaction on neonatal blood spots was performed on all children with polymicrogyria with positive patients excluded. Singleton exome sequencing was performed through a diagnostic laboratory and analysed using a clinical exome sequencing pipeline. Undiagnosed patients were followed up in a research setting, including reanalysis of the singleton exome data and subsequent trio exome sequencing. A total of 102 children were recruited. Ten malformation subtypes were identified with the commonest being polymicrogyria (36%), pontocerebellar hypoplasia (14%), periventricular nodular heterotopia (11%), tubulinopathy (10%), lissencephaly (10%) and cortical dysplasia (9%). The overall diagnostic yield for the clinical singleton exome sequencing was 36%, which increased to 43% after research follow-up. The main source of increased diagnostic yield was the reanalysis of the singleton exome data to include newly discovered gene-disease associations. One additional diagnosis was made by trio exome sequencing. The highest phenotype-based diagnostic yields were for cobblestone malformation, tubulinopathy and lissencephaly and the lowest for cortical dysplasia and polymicrogyria. Pathogenic variants were identified in 32 genes, with variants in 6/32 genes occurring in more than one patient. The most frequent genetic diagnosis was pathogenic variants in TUBA1A. This study shows that over 40% of patients with common brain malformations have a genetic aetiology identified by exome sequencing. Periodic reanalysis of exome data to include newly identified genes was of greater value in increasing diagnostic yield than the expansion to trio exome. This study highlights the genetic and phenotypic heterogeneity of brain malformations, the importance of a multidisciplinary approach to diagnosis and the large number of patients that remain without a genetic diagnosis despite clinical exome sequencing and research reanalysis.
Collapse
Affiliation(s)
- Daniz Kooshavar
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - David J Amor
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kirsten Boggs
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
- Department of Clinical Genetics, The Children’s Hospital Westmead, Westmead, NSW 2145, Australia
- Australian Genomics, Parkville, VIC 3052, Australia
| | - Naomi Baker
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Christopher Barnett
- SA Clinical Genetics Service, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Michelle G de Silva
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Australian Genomics, Parkville, VIC 3052, Australia
| | - Samantha Edwards
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Clayton, VIC 3168, Australia
| | | | - Penny Snell
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Kiymet Bozaoglu
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kate Pope
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Shekeeb S Mohammad
- Department of Neurology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Kate Riney
- Neurosciences Unit, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD 4072, Australia
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Ingrid E Scheffer
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health and Florey Institute, Heidelberg, VIC 3084, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Sarah Schenscher
- Paediatric and Reproductive Genetics Unit, Women’s and Children’s Hospital, Adelaide, SA 5006Australia
| | - John Silberstein
- Department of Neurology, Princess Margaret Hospital, Nedlands, WA 6009, Australia
| | - Nicholas Smith
- Department of Neurology and Clinical Neurophysiology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Melanie Tom
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Herston, QLD 4029Australia
| | - Tyson L Ware
- Department of Paediatrics, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - Paul J Lockhart
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Richard J Leventer
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| |
Collapse
|
10
|
Carvalho RA. The glycolytic pathway to heart failure. GLYCOLYSIS 2024:235-266. [DOI: 10.1016/b978-0-323-91704-9.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Schlüter A, Vélez-Santamaría V, Verdura E, Rodríguez-Palmero A, Ruiz M, Fourcade S, Planas-Serra L, Launay N, Guilera C, Martínez JJ, Homedes-Pedret C, Albertí-Aguiló MA, Zulaika M, Martí I, Troncoso M, Tomás-Vila M, Bullich G, García-Pérez MA, Sobrido-Gómez MJ, López-Laso E, Fons C, Del Toro M, Macaya A, Beltran S, Gutiérrez-Solana LG, Pérez-Jurado LA, Aguilera-Albesa S, de Munain AL, Casasnovas C, Pujol A. ClinPrior: an algorithm for diagnosis and novel gene discovery by network-based prioritization. Genome Med 2023; 15:68. [PMID: 37679823 PMCID: PMC10486091 DOI: 10.1186/s13073-023-01214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) and whole-genome sequencing (WGS) have become indispensable tools to solve rare Mendelian genetic conditions. Nevertheless, there is still an urgent need for sensitive, fast algorithms to maximise WES/WGS diagnostic yield in rare disease patients. Most tools devoted to this aim take advantage of patient phenotype information for prioritization of genomic data, although are often limited by incomplete gene-phenotype knowledge stored in biomedical databases and a lack of proper benchmarking on real-world patient cohorts. METHODS We developed ClinPrior, a novel method for the analysis of WES/WGS data that ranks candidate causal variants based on the patient's standardized phenotypic features (in Human Phenotype Ontology (HPO) terms). The algorithm propagates the data through an interactome network-based prioritization approach. This algorithm was thoroughly benchmarked using a synthetic patient cohort and was subsequently tested on a heterogeneous prospective, real-world series of 135 families affected by hereditary spastic paraplegia (HSP) and/or cerebellar ataxia (CA). RESULTS ClinPrior successfully identified causative variants achieving a final positive diagnostic yield of 70% in our real-world cohort. This includes 10 novel candidate genes not previously associated with disease, 7 of which were functionally validated within this project. We used the knowledge generated by ClinPrior to create a specific interactome for HSP/CA disorders thus enabling future diagnoses as well as the discovery of novel disease genes. CONCLUSIONS ClinPrior is an algorithm that uses standardized phenotype information and interactome data to improve clinical genomic diagnosis. It helps in identifying atypical cases and efficiently predicts novel disease-causing genes. This leads to increasing diagnostic yield, shortening of the diagnostic Odysseys and advancing our understanding of human illnesses.
Collapse
Affiliation(s)
- Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Valentina Vélez-Santamaría
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain
| | - Edgard Verdura
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Agustí Rodríguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Unit, Pediatrics Department, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Nathalie Launay
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Cristina Guilera
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Juan José Martínez
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Christian Homedes-Pedret
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain
- Neurology Department, Hospital Universitari General de Catalunya, Barcelona, Spain
| | - M Antonia Albertí-Aguiló
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain
| | - Miren Zulaika
- Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute (Biodonostia HRI), San Sebastian, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Itxaso Martí
- Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute (Biodonostia HRI), San Sebastian, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Donostia University Hospital, University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | - Mónica Troncoso
- Pediatric Neurology Department, Central Campus, Hospital Clínico San Borja Arriarán, Universidad de Chile, Santiago, Chile
| | - Miguel Tomás-Vila
- Neuropediatrics Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Gemma Bullich
- Centro Nacional Análisis Genómico (CNAG) - Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, Spain
| | - M Asunción García-Pérez
- Pediatric Neurology Unit, Pediatrics Department, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - María-Jesús Sobrido-Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Coruña Institute of Biomedical Research (INIBIC), A Coruña, Spain
- Hospital Clínico Universitario, A Coruña, Spain
| | - Eduardo López-Laso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Unit, Pediatrics Department, Reina Sofía University Hospital, Córdoba, Spain
- Maimonides Institute For Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
| | - Carme Fons
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Sant Joan de Déu University Hospital, Member of the ERN EpiCARE, Barcelona, Spain
- Sant Joan de Déu Research Institute, (IRSJD), Barcelona, Spain
| | - Mireia Del Toro
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alfons Macaya
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Beltran
- Centro Nacional Análisis Genómico (CNAG) - Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Departament de Genètica, Facultat de Biologia, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, 08028, Spain
| | - Luis G Gutiérrez-Solana
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Children's University Hospital Niño Jesús, Madrid, Spain
| | - Luis A Pérez-Jurado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Genetics Service, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Pediatrics Department, Navarra Health Service, Pamplona, Spain
- Navarrabiomed, Biomedical Research Center, Pamplona, Spain
| | - Adolfo López de Munain
- Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute (Biodonostia HRI), San Sebastian, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
- Neurology Department, Donostia University Hospital, San Sebastian, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain.
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
12
|
Ma W, Liu R, Zhao K, Zhong J. Vital role of SHMT2 in diverse disease. Biochem Biophys Res Commun 2023; 671:160-165. [PMID: 37302290 DOI: 10.1016/j.bbrc.2023.05.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
One-carbon metabolism is essential for our human cells to carry out nucleotide synthesis, methylation, and reductive metabolism through one-carbon units, and these pathways ensure the high proliferation rate of cancer cells. Serine hydroxymethyltransferase 2 (SHMT2) is a key enzyme in one-carbon metabolism. This enzyme can convert serine into a one-carbon unit bound to tetrahydrofolate and glycine, ultimately supporting the synthesis of thymidine and purines and promoting the growth of cancer cells. Due to SHMT2's crucial role in the one-carbon cycle, it is ubiquitous in human cells and even in all organisms and highly conserved. Here, we summarize the impact of SHMT2 on the progression of various cancers to highlight its potential use in the development of cancer treatments.
Collapse
Affiliation(s)
- Wenqi Ma
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China
| | - Ronghan Liu
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China
| | - Kai Zhao
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China
| | - Jiangbo Zhong
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China.
| |
Collapse
|
13
|
Fiddler JL, Blum JE, Heyden KE, Castillo LF, Thalacker-Mercer AE, Field MS. Impairments in SHMT2 expression or cellular folate availability reduce oxidative phosphorylation and pyruvate kinase activity. GENES & NUTRITION 2023; 18:5. [PMID: 36959541 PMCID: PMC10037823 DOI: 10.1186/s12263-023-00724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Serine hydroxymethyltransferase 2 (SHMT2) catalyzes the reversible conversion of tetrahydrofolate (THF) and serine-producing THF-conjugated one-carbon units and glycine in the mitochondria. Biallelic SHMT2 variants were identified in humans and suggested to alter the protein's active site, potentially disrupting enzymatic function. SHMT2 expression has also been shown to decrease with aging in human fibroblasts. Immortalized cell models of total SHMT2 loss or folate deficiency exhibit decreased oxidative capacity and impaired mitochondrial complex I assembly and protein levels, suggesting folate-mediated one-carbon metabolism (FOCM) and the oxidative phosphorylation system are functionally coordinated. This study examined the role of SHMT2 and folate availability in regulating mitochondrial function, energy metabolism, and cellular proliferative capacity in both heterozygous and homozygous cell models of reduced SHMT2 expression. In this study, primary mouse embryonic fibroblasts (MEF) were isolated from a C57Bl/6J dam crossed with a heterozygous Shmt2+/- male to generate Shmt2+/+ (wild-type) or Shmt2+/- (HET) MEF cells. In addition, haploid chronic myeloid leukemia cells (HAP1, wild-type) or HAP1 cells lacking SHMT2 expression (ΔSHMT2) were cultured for 4 doublings in either low-folate or folate-sufficient culture media. Cells were examined for proliferation, total folate levels, mtDNA content, protein levels of pyruvate kinase and PGC1α, pyruvate kinase enzyme activity, mitochondrial membrane potential, and mitochondrial function. RESULTS Homozygous loss of SHMT2 in HAP1 cells impaired cellular folate accumulation and altered mitochondrial DNA content, formate production, membrane potential, and basal respiration. Formate rescued proliferation in HAP1, but not ΔSHMT2, cells cultured in low-folate medium. Pyruvate kinase activity and protein levels were impaired in ΔSHMT2 cells and in MEF cells exposed to low-folate medium. Mitochondrial biogenesis protein levels were elevated in Shmt2+/- MEF cells, while mitochondrial mass was increased in both homozygous and heterozygous models of SHMT2 loss. CONCLUSIONS The results from this study indicate disrupted mitochondrial FOCM impairs mitochondrial folate accumulation and respiration, mitochondrial formate production, glycolytic activity, and cellular proliferation. These changes persist even after a potentially compensatory increase in mitochondrial biogenesis as a result of decreased SHMT2 levels.
Collapse
Affiliation(s)
- Joanna L Fiddler
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Jamie E Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Katarina E Heyden
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Luisa F Castillo
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
14
|
Iacobucci I, Monaco V, Canè L, Bibbò F, Cioffi V, Cozzolino F, Guarino A, Zollo M, Monti M. Spike S1 domain interactome in non-pulmonary systems: A role beyond the receptor recognition. Front Mol Biosci 2022; 9:975570. [PMID: 36225252 PMCID: PMC9550266 DOI: 10.3389/fmolb.2022.975570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which, since 2019 in China, has rapidly become a worldwide pandemic. The aggressiveness and global spread were enhanced by the many SARS-CoV-2 variants that have been isolated up to now. These mutations affect mostly the viral glycoprotein Spike (S), the capsid protein mainly involved in the early stages of viral entry processes, through the recognition of specific receptors on the host cell surface. In particular, the subunit S1 of the Spike glycoprotein contains the Receptor Binding Domain (RBD) and it is responsible for the interaction with the angiotensin-converting enzyme 2 (ACE2). Although ACE2 is the primary Spike host receptor currently studied, it has been demonstrated that SARS-CoV-2 is also able to infect cells expressing low levels of ACE2, indicating that the virus may have alternative receptors on the host cells. The identification of the alternative receptors can better elucidate the pathogenicity and the tropism of SARS-CoV-2. Therefore, we investigated the Spike S1 interactomes, starting from host membrane proteins of non-pulmonary cell lines, such as human kidney (HK-2), normal colon (NCM460D), and colorectal adenocarcinoma (Caco-2). We employed an affinity purification-mass spectrometry (AP-MS) to pull down, from the membrane protein extracts of all cell lines, the protein partners of the recombinant form of the Spike S1 domain. The purified interactors were identified by a shotgun proteomics approach. The lists of S1 potential interacting proteins were then clusterized according to cellular localization, biological processes, and pathways, highlighting new possible S1 intracellular functions, crucial not only for the entrance mechanisms but also for viral replication and propagation processes.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Luisa Canè
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Francesca Bibbò
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Valentina Cioffi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Massimo Zollo
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| |
Collapse
|
15
|
Mao Y, Zhang T. Knockdown of SHMT2 enhances the sensitivity of gastric cancer cells to radiotherapy through the Wnt/β-catenin pathway. Open Life Sci 2022; 17:1249-1255. [PMID: 36213384 PMCID: PMC9490860 DOI: 10.1515/biol-2022-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors. The mechanism of GC radioresistance and new radiosensitizers must be revealed and developed to treat GC. Serine hydroxymethyltransferase 2 (SHMT2) is responsible for encoding the mitochondrial form of the pyridoxal phosphate-dependent enzyme. SHMT2 plays a critical role in several types of cancers, while its possible effect on the radiological resistance in GC is still unclear. In this study, we investigated the role of SHMT2 in the radiological resistance of GC. Our data confirmed that SHMT2 was highly expressed in radiation-resistant GC cells. SHMT2 reduced the radiosensitivity of GC cells. In addition, SHMT2 is involved in radiation-induced GC cell apoptosis. Further, SHMT2 regulated the Wnt/β-catenin pathway, therefore reducing the radiosensitivity of GC cells in vivo. In conclusion, we revealed that depletion of SHMT2 enhanced the sensitivity of GC cells to interventional radiotherapy through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yu Mao
- Department of General Surgery Unit 1, Yuhuan People’s Hospital , Taizhou , Zhejiang Province, 317699 , China
| | - Tiyong Zhang
- Department of Radiology, Qianjiang Central Hospital of Chongqing Municipality , No. 63, West Ninth Road , Qianjiang District City , Chongqing, 409000 , China
| |
Collapse
|
16
|
Jin Y, Jung SN, Lim MA, Oh C, Piao Y, Kim HJ, Nguyena Q, Kang YE, Chang JW, Won HR, Koo BS. SHMT2 Induces Stemness and Progression of Head and Neck Cancer. Int J Mol Sci 2022; 23:ijms23179714. [PMID: 36077112 PMCID: PMC9456418 DOI: 10.3390/ijms23179714] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Various enzymes in the one-carbon metabolic pathway are closely related to the development of tumors, and they can all be potential targets for cancer therapy. Serine hydroxymethyltransferase2 (SHMT2), a key metabolic enzyme, is very important for the proliferation and growth of cancer cells. However, the function and mechanism of SHMT2 in head and neck cancer (HNC) are not clear. An analysis of The Cancer Genome Atlas (TCGA) data showed that the expression of SHMT2 was higher in tumor tissue than in normal tissue, and its expression was significantly associated with male sex, aggressive histological grade, lymph node metastasis, distant metastasis, advanced TNM stage, and lymphovascular invasion in HNC. SHMT2 knockdown in FADU and SNU1041 cell lines significantly inhibited cell proliferation, colony formation, migration, and invasion. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses using TCGA data revealed that SHMT2 was closely related to cancer stem cell regulation and maintenance. Furthermore, we found that silencing SHMT2 inhibited the expression of stemness markers and tumor spheroid formation compared with a control group. On the contrary, stemness markers were significantly increased after SHMT2 overexpression in HEP-2 cells. Interestingly, we found that knocking down SHMT2 reduced the expression of genes related to the Notch and Wnt pathways. Finally, silencing SHMT2 significantly reduced tumor growth and decreased stemness markers in a xenograft model. Taken together, our study suggests that targeting SHMT2 may play an important role in inhibiting HNC progression.
Collapse
Affiliation(s)
- Yanli Jin
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Seung-Nam Jung
- Department of Otolaryngology—Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Mi Ae Lim
- Department of Otolaryngology—Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Chan Oh
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yudan Piao
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hae Jong Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - QuocKhanh Nguyena
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jae Won Chang
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Otolaryngology—Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Ho-Ryun Won
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Otolaryngology—Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Bon Seok Koo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Otolaryngology—Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence: ; Tel.: +82-42-280-7690
| |
Collapse
|
17
|
Bullich G, Matalonga L, Pujadas M, Papakonstantinou A, Piscia D, Tonda R, Artuch R, Gallano P, Garrabou G, González JR, Grinberg D, Guitart M, Laurie S, Lázaro C, Luengo C, Martí R, Milà M, Ovelleiro D, Parra G, Pujol A, Tizzano E, Macaya A, Palau F, Ribes A, Pérez-Jurado LA, Beltran S. Systematic Collaborative Reanalysis of Genomic Data Improves Diagnostic Yield in Neurologic Rare Diseases. J Mol Diagn 2022; 24:529-542. [PMID: 35569879 DOI: 10.1016/j.jmoldx.2022.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 11/26/2022] Open
Abstract
Many patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%).
Collapse
Affiliation(s)
- Gemma Bullich
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Leslie Matalonga
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Montserrat Pujadas
- Genetics Unit, University Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Anastasios Papakonstantinou
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Davide Piscia
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raúl Tonda
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Pia Gallano
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Genetics Department, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Glòria Garrabou
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Muscle Research and Mitochondrial Function Laboratory, CELLEX-Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Internal Medicine Department, Hospital Clinic of Barcelona, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan R González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Grinberg
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Míriam Guitart
- Genetics Laboratory, Paediatric Unit, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Steven Laurie
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Conxi Lázaro
- Molecular Diagnostic Unit, Hereditary Cancer Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalan Institute of Oncology, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Cristina Luengo
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ramon Martí
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Milà
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Institut d'Investigació Biomèdica August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - David Ovelleiro
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Genís Parra
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aurora Pujol
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)-Hospital Duran i Reynals, Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Eduardo Tizzano
- Department of Clinical and Molecular Genetics, Medicine Genetics Group Vall d'Hebron Institut de Recerca (VHIR), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Universitat Autònoma de Barcelona, Hospital Vall d´Hebron, Barcelona, Spain
| | - Alfons Macaya
- Pediatric Neurology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Palau
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetic and Molecular Medicine, Pediatric Institute of Rare Diseases (IPER), Hospital Sant Joan de Déu, Clinic Institute of Medicine and Dermatology, Hospital Clínic de Barcelona and Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Antònia Ribes
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Secció d'Errors Congènits del Metabolisme-Institute of Clinical Biochemistry (IBC), Servei de Bioquímica i Genètìca Molecular, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Luis A Pérez-Jurado
- Genetics Unit, University Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Women's and Children's Hospital, South Australian Health and Medical Research Institute and The University of Adelaide, Adelaide, South Australia, Australia
| | - Sergi Beltran
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
18
|
Majethia P, Bhat V, Yatheesha B, Siddiqui S, Shukla A. Second report of SHMT2 related neurodevelopmental disorder with cardiomyopathy, spasticity, and brain abnormalities. Eur J Med Genet 2022; 65:104481. [DOI: 10.1016/j.ejmg.2022.104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/02/2022] [Accepted: 03/12/2022] [Indexed: 11/03/2022]
|
19
|
Fang H, Xie A, Du M, Li X, Yang K, Fu Y, Yuan X, Fan R, Yu W, Zhou Z, Sang T, Nie K, Li J, Zhao Q, Chen Z, Yang Y, Hong C, Lyu J. SERAC1 is a component of the mitochondrial serine transporter complex required for the maintenance of mitochondrial DNA. Sci Transl Med 2022; 14:eabl6992. [PMID: 35235340 DOI: 10.1126/scitranslmed.abl6992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SERAC1 deficiency is associated with the mitochondrial 3-methylglutaconic aciduria with deafness, (hepatopathy), encephalopathy, and Leigh-like disease [MEGD(H)EL] syndrome, but the role of SERAC1 in mitochondrial physiology remains unknown. Here, we generated Serac1-/- mice that mimic the major diagnostic clinical and biochemical phenotypes of the MEGD(H)EL syndrome. We found that SERAC1 localizes to the outer mitochondrial membrane and is a protein component of the one-carbon cycle. By interacting with the mitochondrial serine transporter protein SFXN1, SERAC1 facilitated and was required for SFXN1-mediated serine transport from the cytosol to the mitochondria. Loss of SERAC1 impaired the one-carbon cycle and disrupted the balance of the nucleotide pool, which led to primary mitochondrial DNA (mtDNA) depletion in mice, HEK293T cells, and patient-derived immortalized lymphocyte cells due to insufficient supply of nucleotides. Moreover, both in vitro and in vivo supplementation of nucleosides/nucleotides restored mtDNA content and mitochondrial function. Collectively, our findings suggest that MEGD(H)EL syndrome shares both clinical and molecular features with the mtDNA depletion syndrome, and nucleotide supplementation may be an effective therapeutic strategy for MEGD(H)EL syndrome.
Collapse
Affiliation(s)
- Hezhi Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Anran Xie
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Miaomiao Du
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310000, China.,Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Xueyun Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.,Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 318000, China
| | - Kaiqiang Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yinxu Fu
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiangshu Yuan
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Runxiao Fan
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weidong Yu
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhuohua Zhou
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tiantian Sang
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ke Nie
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jin Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiongya Zhao
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Zhehui Chen
- Department of Pediatrics, Peking University First Hospital, Beijing 100000, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing 100000, China
| | - Chaoyang Hong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Jianxin Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310000, China.,Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
20
|
The role of SHMT2 in modulating lipid metabolism in hepatocytes via glycine-mediated mTOR activation. Amino Acids 2022; 54:823-834. [PMID: 35212811 DOI: 10.1007/s00726-022-03141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/09/2022] [Indexed: 11/01/2022]
Abstract
Serine hydroxymethyltransferase 2 (SHMT2) converts serine into glycine in the mitochondrial matrix, transferring a methyl group to tetrahydrofolate. SHMT2 plays an important role in the maintenance of one-carbon metabolism. Previously, we found a negative correlation between the serine concentration and the progression of fatty liver disease (FLD). However, little is known about the role of SHMT2 in hepatic lipid metabolism. We established SHMT2 knockdown (KD) mouse primary hepatocytes using RNA interference to investigate the role of SHMT2 in lipid metabolism. SHMT2 KD hepatocytes showed decreased lipid accumulation with reduced glycine levels compared to the scramble cells, which was restored upon reintroducing SHMT2. SHMT2 KD hepatocytes showed downregulation of the mTOR/PPARɣ pathway with decreased gene expression related to lipogenesis and fatty acid uptake. Pharmacological activation of mTOR or PPARɣ overexpression blocked the inhibitory effect of SHMT2 KD on lipid accumulation. We also showed that glycine activated mTOR/PPARɣ signaling and identified glycine as a mediator of SHMT2-responsive lipid accumulation in hepatocytes. In conclusion, silencing SHMT2 in hepatocytes ameliorates lipid accumulation via the glycine-mediated mTOR/PPARɣ pathway. Our findings underscore the possibility of SHMT2 as a therapeutic target of FLD.
Collapse
|
21
|
Genetic overlap and causality between blood metabolites and migraine. Am J Hum Genet 2021; 108:2086-2098. [PMID: 34644541 DOI: 10.1016/j.ajhg.2021.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
The availability of genome-wide association studies (GWASs) for human blood metabolome provides an excellent opportunity for studying metabolism in a heritable disease such as migraine. Utilizing GWAS summary statistics, we conduct comprehensive pairwise genetic analyses to estimate polygenic genetic overlap and causality between 316 unique blood metabolite levels and migraine risk. We find significant genome-wide genetic overlap between migraine and 44 metabolites, mostly lipid and organic acid metabolic traits (FDR < 0.05). We also identify 36 metabolites, mostly related to lipoproteins, that have shared genetic influences with migraine at eight independent genomic loci (posterior probability > 0.9) across chromosomes 3, 5, 6, 9, and 16. The observed relationships between genetic factors influencing blood metabolite levels and genetic risk for migraine suggest an alteration of metabolite levels in individuals with migraine. Our analyses suggest higher levels of fatty acids, except docosahexaenoic acid (DHA), a very long-chain omega-3, in individuals with migraine. Consistently, we found a causally protective role for a longer length of fatty acids against migraine. We also identified a causal effect for a higher level of a lysophosphatidylethanolamine, LPE(20:4), on migraine, thus introducing LPE(20:4) as a potential therapeutic target for migraine.
Collapse
|
22
|
Fiddler JL, Xiu Y, Blum JE, Lamarre SG, Phinney WN, Stabler SP, Brosnan ME, Brosnan JT, Thalacker-Mercer AE, Field MS. Reduced Shmt2 Expression Impairs Mitochondrial Folate Accumulation and Respiration, and Leads to Uracil Accumulation in Mouse Mitochondrial DNA. J Nutr 2021; 151:2882-2893. [PMID: 34383924 DOI: 10.1093/jn/nxab211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Adequate cellular thymidylate (dTMP) pools are essential for preservation of nuclear and mitochondrial genome stability. Previous studies have indicated that disruption in nuclear dTMP synthesis leads to increased uracil misincorporation into DNA, affecting genome stability. To date, the effects of impaired mitochondrial dTMP synthesis in nontransformed tissues have been understudied. OBJECTIVES This study aimed to determine the effects of decreased serine hydroxymethyltransferase 2 (Shmt2) expression and dietary folate deficiency on mitochondrial DNA (mtDNA) integrity and mitochondrial function in mouse tissues. METHODS Liver mtDNA content, and uracil content in liver mtDNA, were measured in Shmt2+/- and Shmt2+/+ mice weaned onto either a folate-sufficient control diet (2 mg/kg folic acid; C) or a modified diet lacking folic acid (0 mg/kg folic acid) for 7 wk. Shmt2+/- and Shmt2+/+ mouse embryonic fibroblast (MEF) cells were cultured in defined culture medium containing either 0 or 25 nM folate (6S-5-formyl-tetrahydrofolate, folinate) to assess proliferative capacity and mitochondrial function. Chi-square tests, linear mixed models, and 2-factor ANOVA with Tukey post hoc analyses were used to analyze data. RESULTS Shmt2 +/- mice exhibited a 48%-67% reduction in SHMT2 protein concentrations in tissues. Interestingly, Shmt2+/- mice consuming the folate-sufficient C diet exhibited a 25% reduction in total folate in liver mitochondria. There was also a >20-fold increase in uracil in liver mtDNA in Shmt2+/- mice consuming the C diet, and dietary folate deficiency also increased uracil content in mouse liver mtDNA from both Shmt2+/+ and Shmt2+/- mice. Furthermore, decreased Shmt2 expression in MEF cells reduced cell proliferation, mitochondrial membrane potential, and oxygen consumption rate. CONCLUSIONS This study demonstrates that Shmt2 heterozygosity and dietary folate deficiency impair mitochondrial dTMP synthesis in mice, as evidenced by the increased uracil in mtDNA. In addition, Shmt2 heterozygosity impairs mitochondrial function in MEF cells. These findings suggest that elevated uracil in mtDNA may impair mitochondrial function.
Collapse
Affiliation(s)
- Joanna L Fiddler
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Yuwen Xiu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Jamie E Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Simon G Lamarre
- Department of Biology, University of Moncton, Moncton, New Brunswick, Canada
| | | | - Sally P Stabler
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Schmelter C, Fomo KN, Perumal N, Pfeiffer N, Grus FH. Regulation of the HTRA2 Protease Activity by an Inhibitory Antibody-Derived Peptide Ligand and the Influence on HTRA2-Specific Protein Interaction Networks in Retinal Tissues. Biomedicines 2021; 9:biomedicines9081013. [PMID: 34440217 PMCID: PMC8427973 DOI: 10.3390/biomedicines9081013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial serine protease HTRA2 has many versatile biological functions ranging from being an important regulator of apoptosis to being an essential component for neuronal cell survival and mitochondrial homeostasis. Loss of HTRA2 protease function is known to cause neurodegeneration, whereas overactivation of its proteolytic function is associated with cell death and inflammation. In accordance with this, our group verified in a recent study that the synthetic peptide ASGYTFTNYGLSWVR, encoding the hypervariable sequence part of an antibody, showed a high affinity for the target protein HTRA2 and triggered neuroprotection in an in vitro organ culture model for glaucoma. To unravel this neuroprotective mechanism, the present study showed for the first time that the synthetic CDR1 peptide significantly (p < 0.01) inhibited the proteolytic activity of HTRA2 up to 50% using a specific protease function assay. Furthermore, using state-of-the-art co-immunoprecipitation technologies in combination with high-resolution MS, we identified 50 significant protein interaction partners of HTRA2 in the retina of house swine (p < 0.01; log2 fold change > 1.5). Interestingly, 72% of the HTRA2-specific interactions (23 of 31 binders) were inhibited by additional treatment with UCF-101 (HTRA2 protease inhibitor) or the synthetic CDR peptide. On the other hand, the remaining 19 binders of HTRA2 were exclusively identified in the UCF101 and/or CDR group. However, many of the interactors were involved in the ER to Golgi anterograde transport (e.g., AP3D1), aggrephagy (e.g., PSMC1), and the pyruvate metabolism/citric acid cycle (e.g., SHMT2), and illustrated the complex protein interaction networks of HTRA2 in neurological tissues. In conclusion, the present study provides, for the first time, a comprehensive protein catalogue of HTRA2-specific interaction partners in the retina, and will serve as reference map in the future for studies focusing on HTRA2-mediated neurodegeneration.
Collapse
|
24
|
Alston CL, Stenton SL, Hudson G, Prokisch H, Taylor RW. The genetics of mitochondrial disease: dissecting mitochondrial pathology using multi-omic pipelines. J Pathol 2021; 254:430-442. [PMID: 33586140 PMCID: PMC8600955 DOI: 10.1002/path.5641] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria play essential roles in numerous metabolic pathways including the synthesis of adenosine triphosphate through oxidative phosphorylation. Clinically, mitochondrial diseases occur when there is mitochondrial dysfunction – manifesting at any age and affecting any organ system; tissues with high energy requirements, such as muscle and the brain, are often affected. The clinical heterogeneity is parallel to the degree of genetic heterogeneity associated with mitochondrial dysfunction. Around 10% of human genes are predicted to have a mitochondrial function, and defects in over 300 genes are reported to cause mitochondrial disease. Some involve the mitochondrial genome (mtDNA), but the vast majority occur within the nuclear genome. Except for a few specific genetic defects, there remains no cure for mitochondrial diseases, which means that a genetic diagnosis is imperative for genetic counselling and the provision of reproductive options for at‐risk families. Next‐generation sequencing strategies, particularly exome and whole‐genome sequencing, have revolutionised mitochondrial diagnostics such that the traditional muscle biopsy has largely been replaced with a minimally‐invasive blood sample for an unbiased approach to genetic diagnosis. Where these genomic approaches have not identified a causative defect, or where there is insufficient support for pathogenicity, additional functional investigations are required. The application of supplementary ‘omics’ technologies, including transcriptomics, proteomics, and metabolomics, has the potential to greatly improve diagnostic strategies. This review aims to demonstrate that whilst a molecular diagnosis can be achieved for many cases through next‐generation sequencing of blood DNA, the use of patient tissues and an integrated, multidisciplinary multi‐omics approach is pivotal for the diagnosis of more challenging cases. Moreover, the analysis of clinically relevant tissues from affected individuals remains crucial for understanding the molecular mechanisms underlying mitochondrial pathology. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sarah L Stenton
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
25
|
Disrupting upstream translation in mRNAs is associated with human disease. Nat Commun 2021; 12:1515. [PMID: 33750777 PMCID: PMC7943595 DOI: 10.1038/s41467-021-21812-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/12/2021] [Indexed: 12/04/2022] Open
Abstract
Ribosome-profiling has uncovered pervasive translation in non-canonical open reading frames, however the biological significance of this phenomenon remains unclear. Using genetic variation from 71,702 human genomes, we assess patterns of selection in translated upstream open reading frames (uORFs) in 5’UTRs. We show that uORF variants introducing new stop codons, or strengthening existing stop codons, are under strong negative selection comparable to protein-coding missense variants. Using these variants, we map and validate gene-disease associations in two independent biobanks containing exome sequencing from 10,900 and 32,268 individuals, respectively, and elucidate their impact on protein expression in human cells. Our results suggest translation disrupting mechanisms relating uORF variation to reduced protein expression, and demonstrate that translation at uORFs is genetically constrained in 50% of human genes. The significance of translated upstream open reading frames is not well known. Here, the authors investigate genetic variants in these regions, finding that they are under high evolutionary constraint and may contribute to disease.
Collapse
|