1
|
Connolly EE, Ervin JF, Plassman BL, Welsh-Bohmer KA, Wang SHJ. Star-shaped TDP-43 inclusions in the oldest-old. J Neuropathol Exp Neurol 2025; 84:356-359. [PMID: 39495967 PMCID: PMC11923738 DOI: 10.1093/jnen/nlae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Affiliation(s)
- Erin E Connolly
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - John F Ervin
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Brenda L Plassman
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Kathleen A Welsh-Bohmer
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Shih-Hsiu J Wang
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
2
|
Mikhailenko E, Colangelo K, Tuimala J, Kero M, Savola S, Raunio A, Kok EH, Tanskanen M, Mäkelä M, Puttonen H, Mäyränpää MI, Kumar D, Kaivola K, Paetau A, Tienari PJ, Polvikoski T, Myllykangas L. Limbic-predominant age-related TDP-43 encephalopathy in the oldest old: a population-based study. Brain 2025; 148:154-167. [PMID: 38938199 PMCID: PMC11706281 DOI: 10.1093/brain/awae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Population-based cohort studies are essential for understanding the pathological basis of dementia in older populations. Previous studies have shown that limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) increases with age, but there have been only a few studies, which have investigated this entity in a population-based setting. Here we studied the frequency of LATE-NC and its associations with other brain pathologies and cognition in a population aged ≥ 85 years. The population-based Vantaa 85+ study cohort includes all 601 individuals aged ≥85 years who were living in Vantaa, Finland in 1991. A neuropathological examination was performed on 304 subjects (50.5%) and LATE-NC staging was possible in 295 of those. Dementia status and Mini-Mental State Examination (MMSE) scores were defined in the baseline study and three follow-ups (1994-99). The LATE-NC stages were determined based on TDP-43 immunohistochemistry, according to recently updated recommendations. Arteriolosclerosis was digitally assessed by calculating the average sclerotic index of five random small arterioles in amygdala and hippocampal regions, and frontal white matter. The association of LATE-NC with arteriolosclerosis and previously determined neuropathological variables including Alzheimer's disease neuropathologic change (ADNC), Lewy-related pathology (LRP), hippocampal sclerosis (HS) and cerebral amyloid angiopathy (CAA), and cognitive variables were analysed by Fisher's exact test, linear and logistic regression (univariate and multivariate) models. LATE-NC was found in 189 of 295 subjects (64.1%). Stage 2 was the most common (28.5%) and stage 3 the second most common (12.9%), whereas stages 1a, 1b and 1c were less common (9.5%, 5.1% and 8.1%, respectively). Stages 1a (P < 0.01), 2 (P < 0.001) and 3 (P < 0.001) were significantly associated with dementia and lower MMSE scores. LATE-NC was associated with ADNC (P < 0.001), HS (P < 0.001), diffuse neocortical LRP (P < 0.002), and arteriolosclerosis in amygdala (P < 0.02). In most cases LATE-NC occurred in combination alongside other neuropathological changes. There were only six subjects with dementia who had LATE-NC without high levels of ADNC or LRP (2% of the cohort, 3% of the cases with dementia), and five of these had HS. In all multivariate models, LATE-NC was among the strongest independent predictors of dementia. When LATE-NC and ADNC were assessed in a multivariate model without other dementia-associated pathologies, the attributable risk was higher for LATE-NC than ADNC (24.2% versus 18.6%). This population-based study provides evidence that LATE-NC is very common and one of the most significant determinants of dementia in the general late-life aged population.
Collapse
Affiliation(s)
| | - Kia Colangelo
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
| | - Jarno Tuimala
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
| | - Mia Kero
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Sara Savola
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Anna Raunio
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Eloise H Kok
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
| | - Maarit Tanskanen
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
| | - Mira Mäkelä
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
| | - Henri Puttonen
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | | | - Karri Kaivola
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, 00014 Finland
- Department of Neurology, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Anders Paetau
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Pentti J Tienari
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, 00014 Finland
- Department of Neurology, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Tuomo Polvikoski
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
3
|
Shahidehpour RK, Nelson PT, Bachstetter AD. A pathologic study of Perivascular pTDP-43 Lin bodies in LATE-NC. Acta Neuropathol Commun 2024; 12:114. [PMID: 38997773 PMCID: PMC11241908 DOI: 10.1186/s40478-024-01826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND TAR DNA-Binding Protein 43 (TDP-43) pathological inclusions are a distinctive feature in dozens of neurodegenerative pathologies, including limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC). Prior investigations identified vascular-associated TDP-43-positive micro-lesions, known as "Lin bodies," located on or near the brain capillaries of some individuals with LATE-NC. This study aimed to investigate the relationship between the accumulation of Lin bodies and glial cells in LATE-NC and the potential co-localization with ferritin, a protein associated with iron storage. Using multiplexed immunohistochemistry and digital pathology tools, we conducted pathological analyses to investigate the relationship between Lin bodies and glial markers (GFAP for astrocytes, IBA1 for microglia) and ferritin. Analyses were conducted on post-mortem brain tissues collected from individuals with pathologically confirmed Alzheimer's disease neuropathological changes (ADNC) and LATE-NC. RESULTS As shown previously, there was a robust association between Lin bodies and GFAP-positive astrocyte processes. Moreover, we also observed Lin bodies frequently co-localizing with ferritin, suggesting a potential link to compromised vascular integrity. Subsequent analyses demonstrated increased astrocytosis near Lin body-positive vessels compared to those without Lin bodies, particularly in ADNC cases. These results suggest that the accumulation of Lin bodies may elicit an increased glial response, particularly among astrocytes, possibly related to impaired vascular integrity. CONCLUSIONS Lin bodies are associated with a local reactive glial response. The strong association of Lin bodies with ferritin suggests that the loss of vascular integrity may be either a cause or a consequence of the pTDP-43 pathology. The reactive glia surrounding the affected vessels could further compromise vascular function.
Collapse
Affiliation(s)
- Ryan K Shahidehpour
- Spinal cord and brain injury research center, Sander-Brown Center on Aging, Department of Neuroscience, University of Kentucky, 741 S. Limestone St, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| | - Adam D Bachstetter
- Spinal cord and brain injury research center, Sander-Brown Center on Aging, Department of Neuroscience, University of Kentucky, 741 S. Limestone St, Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Woodworth DC, Nguyen KM, Sordo L, Scambray KA, Head E, Kawas CH, Corrada MM, Nelson PT, Sajjadi SA. Comprehensive assessment of TDP-43 neuropathology data in the National Alzheimer's Coordinating Center database. Acta Neuropathol 2024; 147:103. [PMID: 38896163 PMCID: PMC11186885 DOI: 10.1007/s00401-024-02728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 06/21/2024]
Abstract
TDP-43 proteinopathy is a salient neuropathologic feature in a subset of frontotemporal lobar degeneration (FTLD-TDP), in amyotrophic lateral sclerosis (ALS-TDP), and in limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and is associated with hippocampal sclerosis of aging (HS-A). We examined TDP-43-related pathology data in the National Alzheimer's Coordinating Center (NACC) in two parts: (I) availability of assessments, and (II) associations with clinical diagnoses and other neuropathologies in those with all TDP-43 measures available. Part I: Of 4326 participants with neuropathology data collected using forms that included TDP-43 assessments, data availability was highest for HS-A (97%) and ALS (94%), followed by FTLD-TDP (83%). Regional TDP-43 pathologic assessment was available for 77% of participants, with hippocampus the most common region. Availability for the TDP-43-related measures increased over time, and was higher in centers with high proportions of participants with clinical FTLD. Part II: In 2142 participants with all TDP-43-related assessments available, 27% of participants had LATE-NC, whereas ALS-TDP or FTLD-TDP (ALS/FTLD-TDP) was present in 9% of participants, and 2% of participants had TDP-43 related to other pathologies ("Other TDP-43"). HS-A was present in 14% of participants, of whom 55% had LATE-NC, 20% ASL/FTLD-TDP, 3% Other TDP-43, and 23% no TDP-43. LATE-NC, ALS/FTLD-TDP, and Other TDP-43, were each associated with higher odds of dementia, HS-A, and hippocampal atrophy, compared to those without TDP-43 pathology. LATE-NC was associated with higher odds for Alzheimer's disease (AD) clinical diagnosis, AD neuropathologic change (ADNC), Lewy bodies, arteriolosclerosis, and cortical atrophy. ALS/FTLD-TDP was associated with higher odds of clinical diagnoses of primary progressive aphasia and behavioral-variant frontotemporal dementia, and cortical/frontotemporal lobar atrophy. When using NACC data for TDP-43-related analyses, researchers should carefully consider the incomplete availability of the different regional TDP-43 assessments, the high frequency of participants with ALS/FTLD-TDP, and the presence of other forms of TDP-43 pathology.
Collapse
Affiliation(s)
- Davis C Woodworth
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Katelynn M Nguyen
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Lorena Sordo
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Kiana A Scambray
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Claudia H Kawas
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - María M Corrada
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - S Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Nelson PT, Fardo DW, Wu X, Aung KZ, Cykowski MD, Katsumata Y. Limbic-predominant age-related TDP-43 encephalopathy (LATE-NC): Co-pathologies and genetic risk factors provide clues about pathogenesis. J Neuropathol Exp Neurol 2024; 83:396-415. [PMID: 38613823 PMCID: PMC11110076 DOI: 10.1093/jnen/nlae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Xian Wu
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Khine Zin Aung
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Yuriko Katsumata
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Cholerton B, Latimer CS, Crane PK, Corrada MM, Gibbons LE, Larson EB, Kawas CH, Keene CD, Montine TJ. Neuropathologic Burden and Dementia in Nonagenarians and Centenarians: Comparison of 2 Community-Based Cohorts. Neurology 2024; 102:e208060. [PMID: 38175995 PMCID: PMC11097771 DOI: 10.1212/wnl.0000000000208060] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/10/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to compare 2 large clinicopathologic cohorts of participants aged 90+ and to determine whether the association between neuropathologic burden and dementia in these older groups differs substantially from those seen in younger-old adults. METHODS Autopsied participants from The 90+ Study and Adult Changes in Thought (ACT) Study community-based cohort studies were evaluated for dementia-associated neuropathologic changes. Associations between neuropathologic variables and dementia were assessed using logistic or linear regression, and the weighted population attributable fraction (PAF) per type of neuropathologic change was estimated. RESULTS The 90+ Study participants (n = 414) were older (mean age at death = 97.7 years) and had higher amyloid/tau burden than ACT <90 (n = 418) (mean age at death = 83.5 years) and ACT 90+ (n = 401) (mean age at death = 94.2 years) participants. The ACT 90+ cohort had significantly higher rates of limbic-predominant age-related TDP-43 encephalopathy (LATE-NC), microvascular brain injury (μVBI), and total neuropathologic burden. Independent associations between individual neuropathologic lesions and odds of dementia were similar between all 3 groups, with the exception of μVBI, which was associated with increased dementia risk in the ACT <90 group only (odds ratio 1.5, 95% CI 1.2-1.8, p < 0.001). Weighted PAF scores indicated that eliminating μVBI, although more prevalent in ACT 90+ participants, would have little effect on dementia. Conversely, eliminating μVBI in ACT <90 could theoretically reduce dementia at a similar rate to that of AD neuropathologic change (weighted PAF = 6.1%, 95% CI 3.8-8.4, p = 0.001). Furthermore, reducing LATE-NC in The 90+ Study could potentially reduce dementia to a greater degree (weighted PAF = 5.1%, 95% CI 3.0-7.3, p = 0.001) than either ACT cohort (weighted PAFs = 1.69, 95% CI 0.4-2.7). DISCUSSION Our results suggest that specific neuropathologic features may differ in their effect on dementia among nonagenarians and centenarians from cohorts with different selection criteria and study design. Furthermore, microvascular lesions seem to have a more significant effect on dementia in younger compared with older participants. The results from this study demonstrate that different populations may require distinct dementia interventions, underscoring the need for disease-specific biomarkers.
Collapse
Affiliation(s)
- Brenna Cholerton
- From the Department of Pathology (B.C., T.J.M.), Stanford University School of Medicine, CA; Departments of Laboratory Medicine and Pathology (C.S.L., C.D.K.), Medicine (P.K.C.), and General Internal Medicine (L.E.G., E.B.L.), University of Washington, Seattle; Departments of Neurology (M.M.C., C.H.K.), Epidemiology (M.M.C.), and Neurobiology & Behavior (C.H.K.), University of California, Irvine; and Kaiser Permanente Washington Health Research Institute (E.B.L.), Seattle
| | - Caitlin S Latimer
- From the Department of Pathology (B.C., T.J.M.), Stanford University School of Medicine, CA; Departments of Laboratory Medicine and Pathology (C.S.L., C.D.K.), Medicine (P.K.C.), and General Internal Medicine (L.E.G., E.B.L.), University of Washington, Seattle; Departments of Neurology (M.M.C., C.H.K.), Epidemiology (M.M.C.), and Neurobiology & Behavior (C.H.K.), University of California, Irvine; and Kaiser Permanente Washington Health Research Institute (E.B.L.), Seattle
| | - Paul K Crane
- From the Department of Pathology (B.C., T.J.M.), Stanford University School of Medicine, CA; Departments of Laboratory Medicine and Pathology (C.S.L., C.D.K.), Medicine (P.K.C.), and General Internal Medicine (L.E.G., E.B.L.), University of Washington, Seattle; Departments of Neurology (M.M.C., C.H.K.), Epidemiology (M.M.C.), and Neurobiology & Behavior (C.H.K.), University of California, Irvine; and Kaiser Permanente Washington Health Research Institute (E.B.L.), Seattle
| | - Maria M Corrada
- From the Department of Pathology (B.C., T.J.M.), Stanford University School of Medicine, CA; Departments of Laboratory Medicine and Pathology (C.S.L., C.D.K.), Medicine (P.K.C.), and General Internal Medicine (L.E.G., E.B.L.), University of Washington, Seattle; Departments of Neurology (M.M.C., C.H.K.), Epidemiology (M.M.C.), and Neurobiology & Behavior (C.H.K.), University of California, Irvine; and Kaiser Permanente Washington Health Research Institute (E.B.L.), Seattle
| | - Laura E Gibbons
- From the Department of Pathology (B.C., T.J.M.), Stanford University School of Medicine, CA; Departments of Laboratory Medicine and Pathology (C.S.L., C.D.K.), Medicine (P.K.C.), and General Internal Medicine (L.E.G., E.B.L.), University of Washington, Seattle; Departments of Neurology (M.M.C., C.H.K.), Epidemiology (M.M.C.), and Neurobiology & Behavior (C.H.K.), University of California, Irvine; and Kaiser Permanente Washington Health Research Institute (E.B.L.), Seattle
| | - Eric B Larson
- From the Department of Pathology (B.C., T.J.M.), Stanford University School of Medicine, CA; Departments of Laboratory Medicine and Pathology (C.S.L., C.D.K.), Medicine (P.K.C.), and General Internal Medicine (L.E.G., E.B.L.), University of Washington, Seattle; Departments of Neurology (M.M.C., C.H.K.), Epidemiology (M.M.C.), and Neurobiology & Behavior (C.H.K.), University of California, Irvine; and Kaiser Permanente Washington Health Research Institute (E.B.L.), Seattle
| | - Claudia H Kawas
- From the Department of Pathology (B.C., T.J.M.), Stanford University School of Medicine, CA; Departments of Laboratory Medicine and Pathology (C.S.L., C.D.K.), Medicine (P.K.C.), and General Internal Medicine (L.E.G., E.B.L.), University of Washington, Seattle; Departments of Neurology (M.M.C., C.H.K.), Epidemiology (M.M.C.), and Neurobiology & Behavior (C.H.K.), University of California, Irvine; and Kaiser Permanente Washington Health Research Institute (E.B.L.), Seattle
| | - C Dirk Keene
- From the Department of Pathology (B.C., T.J.M.), Stanford University School of Medicine, CA; Departments of Laboratory Medicine and Pathology (C.S.L., C.D.K.), Medicine (P.K.C.), and General Internal Medicine (L.E.G., E.B.L.), University of Washington, Seattle; Departments of Neurology (M.M.C., C.H.K.), Epidemiology (M.M.C.), and Neurobiology & Behavior (C.H.K.), University of California, Irvine; and Kaiser Permanente Washington Health Research Institute (E.B.L.), Seattle
| | - Thomas J Montine
- From the Department of Pathology (B.C., T.J.M.), Stanford University School of Medicine, CA; Departments of Laboratory Medicine and Pathology (C.S.L., C.D.K.), Medicine (P.K.C.), and General Internal Medicine (L.E.G., E.B.L.), University of Washington, Seattle; Departments of Neurology (M.M.C., C.H.K.), Epidemiology (M.M.C.), and Neurobiology & Behavior (C.H.K.), University of California, Irvine; and Kaiser Permanente Washington Health Research Institute (E.B.L.), Seattle
| |
Collapse
|
7
|
Hiya S, Maldonado-Díaz C, Walker JM, Richardson TE. Cognitive symptoms progress with limbic-predominant age-related TDP-43 encephalopathy stage and co-occurrence with Alzheimer disease. J Neuropathol Exp Neurol 2023; 83:2-10. [PMID: 37966908 PMCID: PMC10746699 DOI: 10.1093/jnen/nlad098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is a neuropathologic entity characterized by transactive response DNA-binding protein of 43-kDa (TDP-43)-immunoreactive inclusions that originate in the amygdala and then progress to the hippocampi and middle frontal gyrus. LATE-NC may mimic Alzheimer disease clinically and often co-occurs with Alzheimer disease neuropathologic change (ADNC). This report focuses on the cognitive effects of isolated and concomitant LATE-NC and ADNC. Cognitive/neuropsychological, neuropathologic, genetic, and demographic variables were analyzed in 28 control, 31 isolated LATE-NC, 244 isolated ADNC, and 172 concurrent LATE-NC/ADNC subjects from the National Alzheimer's Coordinating Center. Cases with LATE-NC and ADNC were significantly older than controls; cases with ADNC had a significantly higher proportion of cases with at least one APOE ε4 allele. Both LATE-NC and ADNC exhibited deleterious effects on overall cognition proportional to their neuropathological stages; concurrent LATE-NC/ADNC exhibited the worst overall cognitive effect. Multivariate logistic regression analysis determined an independent risk of cognitive impairment for progressive LATE-NC stages (OR 1.66; p = 0.0256) and ADNC levels (OR 3.41; p < 0.0001). These data add to the existing knowledge on the clinical consequences of LATE-NC pathology and the growing literature on the effects of multiple concurrent neurodegenerative pathologies.
Collapse
Affiliation(s)
- Satomi Hiya
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolina Maldonado-Díaz
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
8
|
Chang K, Ling JP, Redding-Ochoa J, An Y, Li L, Dean SA, Blanchard TG, Pylyukh T, Barrett A, Irwin KE, Moghekar A, Resnick SM, Wong PC, Troncoso JC. Loss of TDP-43 splicing repression occurs early in the aging population and is associated with Alzheimer's disease neuropathologic changes and cognitive decline. Acta Neuropathol 2023; 147:4. [PMID: 38133681 DOI: 10.1007/s00401-023-02653-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
LATE-NC, the neuropathologic changes of limbic-predominant age-related TAR DNA-binding protein 43 kDa (TDP-43) encephalopathy are frequently associated with Alzheimer's disease (AD) and cognitive impairment in older adults. The association of TDP-43 proteinopathy with AD neuropathologic changes (ADNC) and its impact on specific cognitive domains are not fully understood and whether loss of TDP-43 function occurs early in the aging brain remains unknown. Here, using a large set of autopsies from the Baltimore Longitudinal Study of Aging (BLSA) and another younger cohort, we were able to study brains from subjects 21-109 years of age. Examination of these brains show that loss of TDP-43 splicing repression, as judged by TDP-43 nuclear clearance and expression of a cryptic exon in HDGFL2, first occurs during the 6th decade, preceding by a decade the appearance of TDP-43+ neuronal cytoplasmic inclusions (NCIs). We corroborated this observation using a monoclonal antibody to demonstrate a cryptic exon-encoded neoepitope within HDGFL2 in neurons exhibiting nuclear clearance of TDP-43. TDP-43 nuclear clearance is associated with increased burden of tau pathology. Age at death, female sex, high CERAD neuritic plaque score, and high Braak neurofibrillary stage significantly increase the odds of LATE-NC. Faster rates of cognitive decline on verbal memory (California Verbal Learning Test immediate recall), visuospatial ability (Card Rotations Test), mental status (MMSE) and semantic fluency (Category Fluency Test) were associated with LATE-NC. Notably, the effects of LATE-NC on verbal memory and visuospatial ability are independent of ADNC. However, the effects of TDP-43 nuclear clearance in absence of NCI on the longitudinal trajectories and levels of cognitive measures are not significant. These results establish that loss of TDP-43 splicing repression is an early event occurring in the aging population during the development of TDP-43 proteinopathy and is associated with increased tau pathology. Furthermore, LATE-NC correlates with high levels of ADNC but also has an impact on specific memory and visuospatial functions in aging that is independent of AD.
Collapse
Affiliation(s)
- Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department and Graduate Institute of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, 100225, Taiwan
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ling Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Office of the Chief Medical Examiner, State of Maryland, Baltimore, MD, 21223, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Stephanie A Dean
- Office of the Chief Medical Examiner, State of Maryland, Baltimore, MD, 21223, USA
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tatiana Pylyukh
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alexander Barrett
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Katherine E Irwin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
9
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
10
|
Nelson PT, Lee EB, Cykowski MD, Alafuzoff I, Arfanakis K, Attems J, Brayne C, Corrada MM, Dugger BN, Flanagan ME, Ghetti B, Grinberg LT, Grossman M, Grothe MJ, Halliday GM, Hasegawa M, Hokkanen SRK, Hunter S, Jellinger K, Kawas CH, Keene CD, Kouri N, Kovacs GG, Leverenz JB, Latimer CS, Mackenzie IR, Mao Q, McAleese KE, Merrick R, Montine TJ, Murray ME, Myllykangas L, Nag S, Neltner JH, Newell KL, Rissman RA, Saito Y, Sajjadi SA, Schwetye KE, Teich AF, Thal DR, Tomé SO, Troncoso JC, Wang SHJ, White CL, Wisniewski T, Yang HS, Schneider JA, Dickson DW, Neumann M. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol 2023; 145:159-173. [PMID: 36512061 PMCID: PMC9849315 DOI: 10.1007/s00401-022-02524-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA.
| | - Edward B Lee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Qinwen Mao
- University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Liisa Myllykangas
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | - Janna H Neltner
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA
| | | | | | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo, Japan
| | | | | | | | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, BostonBoston, MAMA, USA
| | | | | | | |
Collapse
|
11
|
Kawakatsu S, Kobayashi R, Morioka D, Hayashi H, Utsunomiya A, Kabasawa T, Ohe R, Futakuchi M, Otani K. Clinicopathological diversity of semantic dementia: Comparisons of patients with early-onset versus late-onset, left-sided versus right-sided temporal atrophy, and TDP-type A versus type C pathology. Neuropathology 2023; 43:5-26. [PMID: 36336915 DOI: 10.1111/neup.12859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
Semantic dementia (SD) is a unique clinicopathological entity associated with TDP-type C pathology. We present four cases of SD that illustrate the clinicopathological diversity of TDP-43 pathology, including early-onset cases of TDP-type C with corticospinal tract (CST) and motor neuron pathology and late-onset cases of TDP-type A with combined pathology. Case 1 was a 62-year-old man with semantic variant of primary progressive aphasia (svPPA) with left-predominant temporal atrophy and TDP-type C pathology with low Alzheimer's disease neuropathologic changes (ADNC). Case 2 was a 63-year-old woman with right-predominant temporal atrophy and TDP-type C pathology who had prosopagnosia and personality changes. Phosphorylated(p)-TDP-43-positive long dystrophic neurites (DNs) were observed throughout the cerebral cortex; they were more abundant in the relatively spared cortices and less so in the severely degenerated cortices. We observed CST degeneration with TDP-43 pathology in the upper and lower motor neurons, without apparent motor symptoms, in SD with TDP-type C pathology. Case 3 was a 76-year-old man who had svPPA and personality changes, with left-predominant temporal atrophy and TDP-type A pathology with high ADNC and argyrophilic grain (AG) stage 3. Case 4 was an 82-year-old man who had prosopagnosia and later developed symptoms of dementia with Lewy bodies (DLB) with right-predominant temporal atrophy and TDP-type A pathology with high ADNC, DLB of diffuse neocortical type, and AG stage 3. The distribution of p-TDP-43-positive NCIs and short DNs was localized in the anterior and inferior temporal cortices. An inverse relationship between the extent of TDP pathology and neuronal loss was also observed in SD with TDP-type A pathology. In contrast, the extent of AD, DLB, and AG pathology was greater in severely degenerated regions. CST degeneration was either absent or very mild in SD with TDP-type A. Understanding the clinicopathological diversity of SD will help improve its diagnosis and treatment.
Collapse
Affiliation(s)
- Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu City, Japan.,Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Daichi Morioka
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroshi Hayashi
- Department of Occupational Therapy, School of Health Sciences, Fukushima Medical University, Fukushima City, Japan
| | - Aya Utsunomiya
- Department of Pathology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takanobu Kabasawa
- Department of Pathology, Yamagata University School of Medicine, Yamagata, Japan
| | - Rintaro Ohe
- Department of Pathology, Yamagata University School of Medicine, Yamagata, Japan
| | - Mitsuru Futakuchi
- Department of Pathology, Yamagata University School of Medicine, Yamagata, Japan
| | - Koichi Otani
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
12
|
Gauthreaux K, Mock C, Teylan MA, Culhane JE, Chen YC, Chan KCG, Katsumata Y, Nelson PT, Kukull WA. Symptomatic Profile and Cognitive Performance in Autopsy-Confirmed Limbic-Predominant Age-Related TDP-43 Encephalopathy With Comorbid Alzheimer Disease. J Neuropathol Exp Neurol 2022; 81:975-987. [PMID: 36264254 PMCID: PMC9677237 DOI: 10.1093/jnen/nlac093] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43) proteinopathy is the hallmark of limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC). LATE-NC is a common copathology with Alzheimer disease neuropathologic change (ADNC). Data from the National Alzheimer's Coordinating Center were analyzed to compare clinical features and copathologies of autopsy-confirmed ADNC with versus without comorbid LATE-NC. A total of 735 participants with ADNC alone and 365 with ADNC with LATE-NC were included. Consistent with prior work, brains with LATE-NC had more severe ADNC, more hippocampal sclerosis, and more brain arteriolosclerosis copathologies. Behavioral symptoms and cognitive performance on neuropsychological tests were compared, stratified by ADNC severity (low/intermediate vs high). Participants with ADNC and LATE-NC were older, had higher ADNC burden, and had worse cognitive performance than participants with ADNC alone. In the low/intermediate ADNC strata, participants with comorbid LATE-NC had higher prevalence of behavioral symptoms (apathy, disinhibition, agitation, personality change). They also had worsened performance in episodic memory and language/semantic memory. Differences narrowed in the high ADNC strata, with worsened performance in only episodic memory in the comorbid LATE-NC group. The co-occurrence of LATE-NC with ADNC is associated with a different pattern of behavioral and cognitive performance than ADNC alone, particularly in people with low/intermediate ADNC burden.
Collapse
Affiliation(s)
- Kathryn Gauthreaux
- From the Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Charles Mock
- From the Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Merilee A Teylan
- From the Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Jessica E Culhane
- From the Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Yen-Chi Chen
- From the Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Kwun C G Chan
- From the Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Division of Neuropathology, Department of Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Walter A Kukull
- From the Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Louis ED, Iglesias-Hernandez D, Hernandez NC, Flowers X, Kuo SH, Vonsattel JPG, Faust PL. Characterizing Lewy Pathology in 231 Essential Tremor Brains From the Essential Tremor Centralized Brain Repository. J Neuropathol Exp Neurol 2022; 81:796-806. [PMID: 35950950 PMCID: PMC9487643 DOI: 10.1093/jnen/nlac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Essential Tremor Centralized Brain Repository is the largest repository of prospectively collected essential tremor (ET) brains (n = 231). Hence, we are uniquely poised to address several questions: What proportion of ET cases has Lewy pathology (LP)? What is the nature of that pathology and how does it relate to other comorbidities? Each brain had a complete neuropathological assessment, including α-synuclein immunostaining. We created a 10-category classification scheme to fully encapsulate the patterns of LP observed. Four metrics of cerebellar pathology were also quantified. Mean age at death = 89.0 ± 6.4 years. Fifty-eight (25.1%) had LP and 46 (19.9%) had early to late stages of Parkinson disease (PD). LP was very heterogeneous. Of 58 cases with LP, 14 (24.1%) clinically developed possible PD or PD after a latency of 5 or more years. There was a similar degree of cerebellar pathology in ET cases both with and without LP. In summary, 1 in 4 ET cases had LP-a proportion that seems higher than expected based on studies among control populations. Heterogeneous LP likely reflects clinical associations between ET and PD, and ET with Alzheimer disease-type neuropathology. These data further our understanding of ET and its relatedness to other degenerative diseases.
Collapse
Affiliation(s)
- Elan D Louis
- From the Department of Neurology, University of Texas Southwestern, Dallas, Texas, USA
| | | | - Nora C Hernandez
- From the Department of Neurology, University of Texas Southwestern, Dallas, Texas, USA
| | - Xena Flowers
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
| | - Sheng-Han Kuo
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jean Paul G Vonsattel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, New York, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|