1
|
Serrano GE, Aslam S, Walker JE, Piras IS, Huentelman MJ, Arce RA, Glass MJ, Intorcia AJ, Suszczewicz KE, Borja CI, Cline MP, Qiji SH, Lorenzini I, Beh ST, Mariner M, Krupp A, McHattie R, Shull A, Wermager ZR, Beach TG. Characterization of Isolated Human Astrocytes from Aging Brain. Int J Mol Sci 2025; 26:3416. [PMID: 40244314 PMCID: PMC11990013 DOI: 10.3390/ijms26073416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Astrocytes have multiple crucial roles, including maintaining brain homeostasis and synaptic function, performing phagocytic clearance, and responding to injury and repair. It has been suggested that astrocyte performance is progressively impaired with aging, leading to imbalances in the brain's internal milieu that eventually impact neuronal function and lead to neurodegeneration. Until now, most evidence of astrocytic dysfunction in aging has come from experiments done with whole tissue homogenates, astrocytes collected by laser capture, or cell cultures derived from animal models or cell lines. In this study, we used postmortem-derived whole cells sorted with anti-GFAP antibodies to compare the unbiased, whole-transcriptomes of human astrocytes from control, older non-impaired individuals and subjects with different neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (ADD), and progressive supranuclear palsy (PSP). We found hundreds of dysregulated genes between disease and control astrocytes. In addition, we identified numerous genes shared between these common neurodegenerative disorders that are similarly dysregulated; in particular, UBC a gene for ubiquitin, which is a protein integral to cellular homeostasis and critically important in regulating function and outcomes of proteins under cellular stress, was upregulated in PSP, PD, and ADD when compared to control.
Collapse
Affiliation(s)
- Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Sidra Aslam
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Jessica E. Walker
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Ignazio S. Piras
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (I.S.P.); (M.J.H.)
| | - Matthew J. Huentelman
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (I.S.P.); (M.J.H.)
| | - Richard A. Arce
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Michael J. Glass
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Anthony J. Intorcia
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | | | - Claryssa I. Borja
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Madison P. Cline
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Sanaria H. Qiji
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Ileana Lorenzini
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Suet Theng Beh
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Monica Mariner
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Addison Krupp
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Rylee McHattie
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Anissa Shull
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Zekiel R. Wermager
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| |
Collapse
|
2
|
Nicoletti T. Rare Disorders as Models for De(Re)generation: Is the Vacuolar ATPase a Clue to Understanding Tauopathies? Eur Neurol 2024; 87:312-314. [PMID: 39236695 DOI: 10.1159/000541286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Affiliation(s)
- Tommaso Nicoletti
- Institut für Neuropathologie, Universitätsmedizin Essen, Essen, Germany
| |
Collapse
|
3
|
DeRosier F, Hibbs C, Alessi K, Padda I, Rodriguez J, Pradeep S, Parmar MS. Progressive supranuclear palsy: Neuropathology, clinical presentation, diagnostic challenges, management, and emerging therapies. Dis Mon 2024; 70:101753. [PMID: 38908985 DOI: 10.1016/j.disamonth.2024.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by the accumulation of 4R-tau protein aggregates in various brain regions. PSP leads to neuronal loss, gliosis, and tau-positive inclusions, such as neurofibrillary tangles, tufted astrocytes, and coiled bodies. These pathological changes mainly affect the brainstem and the basal ganglia, resulting in distinctive MRI features, such as the hummingbird and morning glory signs. PSP shows clinical heterogeneity and presents as different phenotypes, the most classical of which is Richardson's syndrome (PSP-RS). The region of involvement and the mode of atrophy spread can further distinguish subtypes of PSP. PSP patients can experience various signs and symptoms, such as postural instability, supranuclear ophthalmoplegia, low amplitude fast finger tapping, and irregular sleep patterns. The most common symptoms of PSP are postural instability, falls, vertical gaze palsy, bradykinesia, and cognitive impairment. These features often overlap with those of Parkinson's disease (PD) and other Parkinsonian syndromes, making the diagnosis challenging. PSP is an essential clinical topic to research because it is a devastating and incurable disease. However, there are still many gaps in knowledge about its pathophysiology, diagnosis, and treatment. Several clinical trials are underway to test noveltherapies that target tau in various ways, such as modulating its post-translational modifications, stabilizing its interaction with microtubules, or enhancing its clearance by immunotherapy. These approaches may offer new hope for slowing down the progression of PSP. In this review, we aim to provide an overview of the current knowledge on PSP, from its pathogenesis to its management. We also discuss the latest advances and future directions in PSP research.
Collapse
Affiliation(s)
- Frederick DeRosier
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America
| | - Cody Hibbs
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America
| | - Kaitlyn Alessi
- Department of Family Medicine, University of Florida, Gainesville, United States of America
| | - Inderbir Padda
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, New York, United States of America
| | - Jeanette Rodriguez
- Department of Family Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, Florida, United States of America
| | - Swati Pradeep
- Department of Movement Disorders, UTHealth Houston Neurosciences Neurology - Texas Medical Center, Texas, United States of America
| | - Mayur S Parmar
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America.
| |
Collapse
|
4
|
Nicoletti T, Bink A, Helmchen B, Briel N, Frontzek K, Vlad B, Gaspert A, Boudriot E, Jung HH, Reuss AM, Weller M, Hortobágyi T. Neurologic involvement in cystinosis: Focus on brain lesions and new evidence of four-repeat (4R-) Tau immunoreactivity. J Neurol Sci 2024; 456:122841. [PMID: 38101161 DOI: 10.1016/j.jns.2023.122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Nephropathic cystinosis is a rare autosomal recessive storage disorder caused by CTNS gene mutations, leading to autophagy-lysosomal pathway impairment and cystine crystals accumulation. Neurologic involvement is highly variable and includes both neurodevelopmental and neurodegenerative disturbances, as well as focal neurologic deficits. By presenting longitudinal data of a 28-year-old patient with a large infratentorial lesion, we summarized the pathology, clinical and imaging features of neurological involvement in cystinosis patients. Brain damage in form of cystinosis-related cerebral lesions occurs in advanced disease phases and is characterized by the accumulation of cystine crystals, subsequent inflammation with vasculitis-like features, necrosis, and calcification. Epilepsy is a frequent comorbidity in affected individuals. Steroids might play a role in the symptomatic treatment of "stroke-like" episodes due to edematous-inflammatory lesions, but probably do not change the overall prognosis. Lifelong compliance to depleting therapy with cysteamine still represents the main therapeutic option. However, consequences of CTNS gene defects are not restricted to cystine accumulation. New evidence of four-repeat (4R-) Tau immunoreactivity suggests concurrent progressive neurodegeneration in cystinosis patients, highlighting the need of innovative therapeutic strategies, and shedding light on the crosstalk between proteinopathies and autophagy-lysosomal system defects. Eventually, emerging easily accessible biomarkers such as serum neurofilament light chains (NfL) might detect subclinical neurologic involvement in cystinosis patients.
Collapse
Affiliation(s)
- Tommaso Nicoletti
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland.
| | - Andrea Bink
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland; Department of Neuroradiology, University Hospital Zurich, Switzerland
| | - Birgit Helmchen
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Nils Briel
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland; Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Karl Frontzek
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland; Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Benjamin Vlad
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Ariana Gaspert
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Elisabeth Boudriot
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Hans Heinrich Jung
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Anna Maria Reuss
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Tibor Hortobágyi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Gaulton KJ, Preissl S, Ren B. Interpreting non-coding disease-associated human variants using single-cell epigenomics. Nat Rev Genet 2023; 24:516-534. [PMID: 37161089 PMCID: PMC10629587 DOI: 10.1038/s41576-023-00598-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
Genome-wide association studies (GWAS) have linked hundreds of thousands of sequence variants in the human genome to common traits and diseases. However, translating this knowledge into a mechanistic understanding of disease-relevant biology remains challenging, largely because such variants are predominantly in non-protein-coding sequences that still lack functional annotation at cell-type resolution. Recent advances in single-cell epigenomics assays have enabled the generation of cell type-, subtype- and state-resolved maps of the epigenome in heterogeneous human tissues. These maps have facilitated cell type-specific annotation of candidate cis-regulatory elements and their gene targets in the human genome, enhancing our ability to interpret the genetic basis of common traits and diseases.
Collapse
Affiliation(s)
- Kyle J Gaulton
- Department of Paediatrics, Paediatric Diabetes Research Center, University of California San Diego School of Medicine, La Jolla, CA, USA.
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Bing Ren
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
| |
Collapse
|
6
|
Vogler L, Ballweg A, Bohr B, Briel N, Wind K, Antons M, Kunze LH, Gnörich J, Lindner S, Gildehaus FJ, Baumann K, Bartenstein P, Boening G, Ziegler SI, Levin J, Zwergal A, Höglinger GU, Herms J, Brendel M. Assessment of synaptic loss in mouse models of β-amyloid and tau pathology using [ 18F]UCB-H PET imaging. Neuroimage Clin 2023; 39:103484. [PMID: 37541098 PMCID: PMC10407951 DOI: 10.1016/j.nicl.2023.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVE In preclinical research, the use of [18F]Fluorodesoxyglucose (FDG) as a biomarker for neurodegeneration may induce bias due to enhanced glucose uptake by immune cells. In this study, we sought to investigate synaptic vesicle glycoprotein 2A (SV2A) PET with [18F]UCB-H as an alternative preclinical biomarker for neurodegenerative processes in two mouse models representing the pathological hallmarks of Alzheimer's disease (AD). METHODS A total of 29 PS2APP, 20 P301S and 12 wild-type mice aged 4.4 to 19.8 months received a dynamic [18F]UCB-H SV2A-PET scan (14.7 ± 1.5 MBq) 0-60 min post injection. Quantification of tracer uptake in cortical, cerebellar and brainstem target regions was implemented by calculating relative volumes of distribution (VT) from an image-derived-input-function (IDIF). [18F]UCB-H binding was compared across all target regions between transgenic and wild-type mice. Additional static scans were performed in a subset of mice to compare [18F]FDG and [18F]GE180 (18 kDa translocator protein tracer as a surrogate for microglial activation) standardized uptake values (SUV) with [18F]UCB-H binding at different ages. Following the final scan, a subset of mouse brains was immunohistochemically stained with synaptic markers for gold standard validation of the PET results. RESULTS [18F]UCB-H binding in all target regions was significantly reduced in 8-months old P301S transgenic mice when compared to wild-type controls (temporal lobe: p = 0.014; cerebellum: p = 0.0018; brainstem: p = 0.0014). Significantly lower SV2A tracer uptake was also observed in 13-months (temporal lobe: p = 0.0080; cerebellum: p = 0.006) and 19-months old (temporal lobe: p = 0.0042; cerebellum: p = 0.011) PS2APP transgenic versus wild-type mice, whereas the brainstem revealed no significantly altered [18F]UCB-H binding. Immunohistochemical analyses of post-mortem mouse brain tissue confirmed the SV2A PET findings. Correlational analyses of [18F]UCB-H and [18F]FDG using Pearson's correlation coefficient revealed a significant negative association in the PS2APP mouse model (R = -0.26, p = 0.018). Exploratory analyses further stressed microglial activation as a potential reason for this inverse relationship, since [18F]FDG and [18F]GE180 quantification were positively correlated in this cohort (R = 0.36, p = 0.0076). CONCLUSION [18F]UCB-H reliably depicts progressive synaptic loss in PS2APP and P301S transgenic mice, potentially qualifying as a more reliable alternative to [18F]FDG as a biomarker for assessment of neurodegeneration in preclinical research.
Collapse
Affiliation(s)
- Letizia Vogler
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Anna Ballweg
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Bernd Bohr
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Nils Briel
- Center for Neuropathology, LMU Munich, Munich, Germany
| | - Karin Wind
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Melissa Antons
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Lea H Kunze
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Franz-Josef Gildehaus
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Karlheinz Baumann
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Guido Boening
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany; German Center for Vertigo and Balance Disorders (DSGZ), University Hospital of Munich, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
7
|
Koga S, Metrick MA, Golbe LI, Santambrogio A, Kim M, Soto-Beasley AI, Walton RL, Baker MC, De Castro CF, DeTure M, Russell D, Navia BA, Sandiego C, Ross OA, Vendruscolo M, Caughey B, Dickson DW. Case report of a patient with unclassified tauopathy with molecular and neuropathological features of both progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol Commun 2023; 11:88. [PMID: 37264457 DOI: 10.1186/s40478-023-01584-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are distinct clinicopathological subtypes of frontotemporal lobar degeneration. They both have atypical parkinsonism, and they usually have distinct clinical features. The most common clinical presentation of PSP is Richardson syndrome, and the most common presentation of CBD is corticobasal syndrome. In this report, we describe a patient with a five-year history of Richardson syndrome and a family history of PSP in her mother and sister. A tau PET scan (18F-APN-1607) revealed low-to-moderate uptake in the substantia nigra, globus pallidus, thalamus and posterior cortical areas, including temporal, parietal and occipital cortices. Neuropathological evaluation revealed widespread neuronal and glial tau pathology in cortical and subcortical structures, including tufted astrocytes in the motor cortex, striatum and midbrain tegmentum. The subthalamic nucleus had mild-to-moderate neuronal loss with globose neurofibrillary tangles, consistent with PSP. On the other hand, there were also astrocytic plaques, a pathological hallmark of CBD, in the neocortex and striatum. To further characterize the mixed pathology, we applied two machine learning-based diagnostic pipelines. These models suggested diagnoses of PSP and CBD depending on the brain region - PSP in the motor cortex and superior frontal gyrus and CBD in caudate nucleus. Western blots of insoluble tau from motor cortex showed a banding pattern consistent with mixed features of PSP and CBD, whereas tau from the superior frontal gyrus showed a pattern consistent with CBD. Real-time quaking-induced conversion (RT-QuIC) using brain homogenates from the motor cortex and superior frontal gyrus showed ThT maxima consistent with PSP, while reaction kinetics were consistent with CBD. There were no pathogenic variants in MAPT with whole genome sequencing. We conclude that this patient had an unclassified tauopathy and features of both PSP and CBD. The different pathologies in specific brain regions suggests caution in diagnosis of tauopathies with limited sampling.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Michael A Metrick
- LPVD, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge University, Cambridge, UK
| | - Lawrence I Golbe
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alessia Santambrogio
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge University, Cambridge, UK
| | - Minji Kim
- Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - David Russell
- Institute for Neurodegenerative Disorders, Temple Medical Center, New Haven, CT, USA
- Invicro, LLC, New Haven, CT, USA
| | | | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge University, Cambridge, UK
| | - Byron Caughey
- LPVD, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| |
Collapse
|