1
|
White AJ, Harary M, Casaos J, Everson RG. Current immunotherapy techniques in meningioma. Expert Rev Anticancer Ther 2024; 24:931-941. [PMID: 39233324 DOI: 10.1080/14737140.2024.2399252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION Although meningiomas are the most common primary brain tumor, there are limited treatment options for recurrent or aggressive lesions. Compared to other brain tumors, meningiomas may be uniquely amenable to immunotherapy by virtue of their location outside the blood-brain barrier. AREAS COVERED This review describes our current understanding of the immunology of the meninges, as well as immune cell infiltration and immune signaling in meningioma. Current literature on meningioma immunology and immunotherapy was comprehensively reviewed and summarized by a comprehensive search of MEDLINE (1/1/1990-6/1/2024). Further, we describe the current state of immunotherapeutic approaches, as well as potential future targets. Potential immunotherapeutic approaches include immune checkpoint inhibition, CAR-T approaches, tumor vaccine therapy, and immunogenic molecular markers. EXPERT OPINION Meningioma immunotherapy is in early stages, as no immunotherapies are currently included in treatment guidelines. There is substantial heterogeneity in immune cell infiltration, immunogenicity, and immune escape across tumors, even within tumor grade. Furthering our understanding of meningioma immunology and tumor classification will allow for careful selection of tumors and patient populations that may benefit from primary or adjunctive immunotherapy for meningioma.
Collapse
Affiliation(s)
- Alexandra J White
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Maya Harary
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Joshua Casaos
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Richard G Everson
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Rath S, Shafeea MS, Abdul Hussein AF, Shamil Hashim A, Hassanaien S, Pastrana-Brandes S, Chaurasia B. CAR-T-cell therapy in meningioma: current investigations, advancements and insight into future directions. Ann Med Surg (Lond) 2024; 86:5957-5965. [PMID: 39359850 PMCID: PMC11444591 DOI: 10.1097/ms9.0000000000002491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/11/2024] [Indexed: 10/04/2024] Open
Abstract
Meningiomas, the most common tumors of the central nervous system (CNS), present significant challenges in treatment, particularly for atypical and anaplastic subtypes where standard therapies often fall short of therapeutic expectations. Chimeric antigen receptor (CAR) T-cell therapy, a groundbreaking immunotherapy approach, has demonstrated great success in hematological malignancies but faces obstacles in solid tumors, including CNS tumors like glioblastomas. This article provides a comprehensive review of the efficacy of CAR-T therapy in meningiomas, highlighting the tumor's immunogenic potential and the challenges associated with applying this therapy in clinical practice. Through an extensive literature review, the study explores potential antigens for CAR-T targeting in meningiomas, shedding light on the tumor-immune microenvironment interactions. Challenges such as tumor heterogeneity, blood-brain barrier penetration, off-target effects, and tumor recurrence are discussed, alongside potential strategies to overcome these obstacles. The study also investigates recent advancements in CAR-T therapy, including the identification of novel target antigens and the development of engineering approaches to enhance therapeutic efficacy. Furthermore, the article highlights the importance of ongoing research efforts in exploring the tumor-immune dynamics in meningiomas and underscores the urgent need for clinical trials to validate the safety and efficacy of CAR-T therapy in this context. By addressing these challenges, CAR-T therapy holds the promise of revolutionizing meningioma treatment, offering new hope for patients suffering from this disease.
Collapse
Affiliation(s)
- Shree Rath
- All India Institute of Medical Sciences, Bhubaneswar, India
| | - Murtaja Satea Shafeea
- Department of Surgery, University of Warith Al-Anbiyaa, College of Medicine, Karbala
| | | | | | | | - Santiago Pastrana-Brandes
- Department of Executive and Continuing Professional Ed, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal
| |
Collapse
|
3
|
Rath S, Shafeea MS, Abdul Hussein AF, Shamil Hashim A, Hassanaien S, Pastrana-Brandes S, Chaurasia B. CAR-T-cell therapy in meningioma: current investigations, advancements and insight into future directions. Ann Med Surg (Lond) 2024; 86:5957-5965. [DOI: https:/doi.org/10.1097/ms9.0000000000002491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/11/2024] [Indexed: 04/10/2025] Open
Abstract
Meningiomas, the most common tumors of the central nervous system (CNS), present significant challenges in treatment, particularly for atypical and anaplastic subtypes where standard therapies often fall short of therapeutic expectations. Chimeric antigen receptor (CAR) T-cell therapy, a groundbreaking immunotherapy approach, has demonstrated great success in hematological malignancies but faces obstacles in solid tumors, including CNS tumors like glioblastomas. This article provides a comprehensive review of the efficacy of CAR-T therapy in meningiomas, highlighting the tumor’s immunogenic potential and the challenges associated with applying this therapy in clinical practice. Through an extensive literature review, the study explores potential antigens for CAR-T targeting in meningiomas, shedding light on the tumor-immune microenvironment interactions. Challenges such as tumor heterogeneity, blood-brain barrier penetration, off-target effects, and tumor recurrence are discussed, alongside potential strategies to overcome these obstacles. The study also investigates recent advancements in CAR-T therapy, including the identification of novel target antigens and the development of engineering approaches to enhance therapeutic efficacy. Furthermore, the article highlights the importance of ongoing research efforts in exploring the tumor-immune dynamics in meningiomas and underscores the urgent need for clinical trials to validate the safety and efficacy of CAR-T therapy in this context. By addressing these challenges, CAR-T therapy holds the promise of revolutionizing meningioma treatment, offering new hope for patients suffering from this disease.
Collapse
Affiliation(s)
- Shree Rath
- All India Institute of Medical Sciences, Bhubaneswar, India
| | - Murtaja Satea Shafeea
- Department of Surgery, University of Warith Al-Anbiyaa, College of Medicine, Karbala
| | | | | | | | - Santiago Pastrana-Brandes
- Department of Executive and Continuing Professional Ed, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal
| |
Collapse
|
4
|
Luce A, Abate M, Scognamiglio G, Montella M, Iervolino D, Campione S, Di Mauro A, Sepe O, Gigantino V, Tathode MS, Ferrara G, Monaco R, De Dominicis G, Misso G, Gentile V, Franco R, Zappavigna S, Caraglia M. Immune cell infiltration and inflammatory landscape in primary brain tumours. J Transl Med 2024; 22:521. [PMID: 38816839 PMCID: PMC11140972 DOI: 10.1186/s12967-024-05309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Primary malignant brain tumours are more than one-third of all brain tumours and despite the molecular investigation to identify cancer driver mutations, the current therapeutic options available are challenging due to high intratumour heterogeneity. In addition, an immunosuppressive and inflammatory tumour microenvironment strengthens cancer progression. Therefore, we defined an immune and inflammatory profiling of meningioma and glial tumours to elucidate the role of the immune infiltration in these cancer types. METHODS Using tissue microarrays of 158 brain tumour samples, we assessed CD3, CD4, CD8, CD20, CD138, Granzyme B (GzmB), 5-Lipoxygenase (5-LOX), Programmed Death-Ligand 1 (PD-L1), O-6-Methylguanine-DNA Methyltransferase (MGMT) and Transglutaminase 2 (TG2) expression by immunohistochemistry (IHC). IHC results were correlated using a Spearman correlation matrix. Transcript expression, correlation, and overall survival (OS) analyses were evaluated using public datasets available on GEPIA2 in Glioblastoma (GBM) and Lower Grade Glioma (LGG) cohorts. RESULTS Seven out of ten markers showed a significantly different IHC expression in at least one of the evaluated cohorts whereas CD3, CD4 and 5-LOX were differentially expressed between GBMs and astrocytomas. Correlation matrix analysis revealed that 5-LOX and GzmB expression were associated in both meningiomas and GBMs, whereas 5-LOX expression was significantly and positively correlated to TG2 in both meningioma and astrocytoma cohorts. These findings were confirmed with the correlation analysis of TCGA-GBM and LGG datasets. Profiling of mRNA levels indicated a significant increase in CD3 (CD3D, CD3E), and CD138 (SDC1) expression in GBM compared to control tissues. CD4 and 5-LOX (ALOX5) mRNA levels were significantly more expressed in tumour samples than in normal tissues in both GBM and LGG. In GBM cohort, GzmB (GZMB), SDC1 and MGMT gene expression predicted a poor overall survival (OS). Moreover, in LGG cohort, an increased expression of CD3 (CD3D, CD3E, CD3G), CD8 (CD8A), GZMB, CD20 (MS4A1), SDC1, PD-L1, ALOX5, and TG2 (TGM2) genes was associated with worse OS. CONCLUSIONS Our data have revealed that there is a positive and significant correlation between the expression of 5-LOX and GzmB, both at RNA and protein level. Further evaluation is needed to understand the interplay of 5-LOX and immune infiltration in glioma progression.
Collapse
Affiliation(s)
- Amalia Luce
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Marianna Abate
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, 83031, Ariano Irpino, Italy
| | - Giosuè Scognamiglio
- Pathological Anatomy and Cytopathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Marco Montella
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Domenico Iervolino
- Pathological Anatomy and Cytopathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Severo Campione
- Department of Advanced Technology, Pathology Unit, Cardarelli Hospital, 80131, Naples, Italy
| | - Annabella Di Mauro
- Pathological Anatomy and Cytopathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Orlando Sepe
- Pathological Anatomy and Cytopathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Vincenzo Gigantino
- Pathological Anatomy and Cytopathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Madhura S Tathode
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Gerardo Ferrara
- Pathological Anatomy and Cytopathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Roberto Monaco
- Department of Advanced Technology, Pathology Unit, Cardarelli Hospital, 80131, Naples, Italy
| | - Gianfranco De Dominicis
- Department of Advanced Technology, Pathology Unit, Cardarelli Hospital, 80131, Naples, Italy
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Vittorio Gentile
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Renato Franco
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy.
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, 83031, Ariano Irpino, Italy
| |
Collapse
|
5
|
Tomanelli M, Florio T, Vargas GC, Pagano A, Modesto P. Domestic Animal Models of Central Nervous System Tumors: Focus on Meningiomas. Life (Basel) 2023; 13:2284. [PMID: 38137885 PMCID: PMC10744527 DOI: 10.3390/life13122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Intracranial primary tumors (IPTs) are aggressive forms of malignancies that cause high mortality in both humans and domestic animals. Meningiomas are frequent adult IPTs in humans, dogs, and cats, and both benign and malignant forms cause a decrease in life quality and survival. Surgery is the primary therapeutic approach to treat meningiomas, but, in many cases, it is not resolutive. The chemotherapy and targeted therapy used to treat meningiomas also display low efficacy and many side effects. Therefore, it is essential to find novel pharmacological approaches to increase the spectrum of therapeutic options for meningiomas. This review analyzes the similarities between human and domestic animal (dogs and cats) meningiomas by evaluating the molecular and histological characteristics, diagnosis criteria, and treatment options and highlighting possible research areas to identify novel targets and pharmacological approaches, which are useful for the diagnosis and therapy of this neoplasia to be used in human and veterinary medicine.
Collapse
Affiliation(s)
- Michele Tomanelli
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Tullio Florio
- Pharmacology Section, Department of Internal Medicine (DIMI), University of Genova, 16126 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gabriela Coronel Vargas
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology, Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy
| |
Collapse
|