1
|
Huang L, Zhang S, Wu J, Guo B, Gao T, Shah SZA, Huang B, Li Y, Zhu B, Fan J, Wang L, Xiao Y, Liu W, Tian Y, Fang Z, Lv Y, Xie L, Yao S, Ke G, Huang X, Huang Y, Li Y, Jia Y, Li Z, Feng G, Huo Y, Li W, Zhou Q, Hao J, Hu B, Chen H. Immunity-and-matrix-regulatory cells enhance cartilage regeneration for meniscus injuries: a phase I dose-escalation trial. Signal Transduct Target Ther 2023; 8:417. [PMID: 37907503 PMCID: PMC10618459 DOI: 10.1038/s41392-023-01670-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Immunity-and-matrix-regulatory cells (IMRCs) derived from human embryonic stem cells have unique abilities in modulating immunity and regulating the extracellular matrix, which could be mass-produced with stable biological properties. Despite resemblance to mesenchymal stem cells (MSCs) in terms of self-renew and tri-lineage differentiation, the ability of IMRCs to repair the meniscus and the underlying mechanism remains undetermined. Here, we showed that IMRCs demonstrated stronger immunomodulatory and pro-regenerative potential than umbilical cord MSCs when stimulated by synovial fluid from patients with meniscus injury. Following injection into the knees of rabbits with meniscal injury, IMRCs enhanced endogenous fibrocartilage regeneration. In the dose-escalating phase I clinical trial (NCT03839238) with eighteen patients recruited, we found that intra-articular IMRCs injection in patients was safe over 12 months post-grafting. Furthermore, the effective results of magnetic resonance imaging (MRI) of meniscus repair and knee functional scores suggested that 5 × 107 cells are optimal for meniscus injury treatment. In summary, we present the first report of a phase I clinical trial using IMRCs to treat meniscus injury. Our results demonstrated that intra-articular injection of IMRCs is a safe and effective therapy by providing a permissive niche for cartilage regeneration.
Collapse
Affiliation(s)
- Liangjiang Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wu
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Baojie Guo
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Tingting Gao
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Sayed Zulfiqar Ali Shah
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Fan
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Liu Wang
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yani Xiao
- Beijing Key Lab for Pre-clinical Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Wenjing Liu
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yao Tian
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhengyu Fang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Lv
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingfeng Xie
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Yao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaotan Ke
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Beijing Key Lab for Pre-clinical Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Yujuan Li
- Beijing Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Yi Jia
- Beijing Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Zhongwen Li
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guihai Feng
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Huo
- Beijing Key Lab for Pre-clinical Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Wei Li
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Hao
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Baoyang Hu
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Azaman FA, Brennan Fournet ME, Sheikh Ab Hamid S, Zawawi MSF, da Silva Junior VA, Devine DM. Enhancement of Scaffold In Vivo Biodegradability for Bone Regeneration Using P28 Peptide Formulations. Pharmaceuticals (Basel) 2023; 16:876. [PMID: 37375823 DOI: 10.3390/ph16060876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The field of bone tissue engineering has shown a great variety of bone graft substitute materials under development to date, with the aim to reconstruct new bone tissue while maintaining characteristics close to the native bone. Currently, insufficient scaffold degradation remains the critical limitation for the success of tailoring the bone formation turnover rate. This study examines novel scaffold formulations to improve the degradation rate in vivo, utilising chitosan (CS), hydroxyapatite (HAp) and fluorapatite (FAp) at different ratios. Previously, the P28 peptide was reported to present similar, if not better performance in new bone production to its native protein, bone morphogenetic protein-2 (BMP-2), in promoting osteogenesis in vivo. Therefore, various P28 concentrations were incorporated into the CS/HAp/FAp scaffolds for implantation in vivo. H&E staining shows minimal scaffold traces in most of the defects induced after eight weeks, showing the enhanced biodegradability of the scaffolds in vivo. The HE stain highlighted the thickened periosteum indicating a new bone formation in the scaffolds, where CS/HAp/FAp/P28 75 µg and CS/HAp/FAp/P28 150 µg showed the cortical and trabecular thickening. CS/HAp/FAp 1:1 P28 150 µg scaffolds showed a higher intensity of calcein green label with the absence of xylenol orange label, which indicates that mineralisation and remodelling was not ongoing four days prior to sacrifice. Conversely, double labelling was observed in the CS/HAp/FAp 1:1 P28 25 µg and CS/HAp/FAp/P28 75 µg, which indicates continued mineralisation at days ten and four prior to sacrifice. Based on the HE and fluorochrome label, CS/HAp/FAp 1:1 with P28 peptides presented a consistent positive osteoinduction following the implantation in the femoral condyle defects. These results show the ability of this tailored formulation to improve the scaffold degradation for bone regeneration and present a cost-effective alternative to BMP-2.
Collapse
Affiliation(s)
- Farah Alwani Azaman
- PRISM Research Institute, Technological University of the Shannon (TUS), N37 HD68 Athlone, Ireland
- Tissue Bank, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), 16150 Kota Bharu, Malaysia
| | | | - Suzina Sheikh Ab Hamid
- Tissue Bank, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), 16150 Kota Bharu, Malaysia
| | - Muhamad Syahrul Fitri Zawawi
- Tissue Bank, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), 16150 Kota Bharu, Malaysia
| | | | - Declan M Devine
- PRISM Research Institute, Technological University of the Shannon (TUS), N37 HD68 Athlone, Ireland
| |
Collapse
|
3
|
Haberal B, Sahin O, Terzi A, Simsek EK, Mahmuti A, Tuncay İC. Treatment of Full-Thickness Cartilage Defects with Pedunculated and Free Synovial Grafts: A Comparative Study in an Animal Model. Indian J Orthop 2020; 54:720-725. [PMID: 32850038 PMCID: PMC7429569 DOI: 10.1007/s43465-020-00067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AIMS AND OBJECTIVES The purpose of this study was to compare the potential effects of pedunculated and free synovial grafts in the repair of full-thickness articular cartilage defects on an animal model with histological and immunohistochemical analysis. MATERIALS AND METHODS A comparative study in an animal model was performed with 24 rabbits, divided into two groups. Full-thickness cartilage defects were created bilaterally on the knees of all rabbits. Pedunculated and free synovial grafts were applied to the right knees of Group 1 and Group 2, respectively. Left knees were left as the control group. Six rabbits from each group were randomly selected for euthanasia 4 and 8 weeks postoperatively. All samples were examined histologically with a cartilage scoring system. For immunohistochemical analysis, the degree of collagen 2 staining was determined using a staging system. All data were statistically compared between the study groups with Student's t-test or Mann-Whitney U-test. The correlations between categorical variables were analyzed with Fisher's exact test and Chi-square test. RESULTS In Group 1, the mean defect size had significantly decreased at 8 weeks postsurgery. It was also significantly smaller than that of Group 2. Both pedunculated and free synovial grafts had significantly better histological and immunohistochemical outcomes compared with the controls. Contrastingly, the results of comparison between the study groups (Group 1 vs. 2) at the 4th and 8th week were not statistically significant with regard to histological scores and immunohistochemical staining. CONCLUSION Synovial tissue, whether pedunculated or free, provided much better cartilage recovery compared with the control. It can be used as a mesenchymal stem cell (MSC) source, and synovium-derived MSCs have the chondrogenic potential for the in vivo treatment of full-thickness cartilage defects.
Collapse
Affiliation(s)
- Bahtiyar Haberal
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Baskent University, Yukari Bahçelievler Mah, Maresal Fevzi Çakmak Cd. 10. Sok. No: 45, Bahçelievler, Çankaya, 06490 Ankara, Turkey
| | - Orcun Sahin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Baskent University, Yukari Bahçelievler Mah, Maresal Fevzi Çakmak Cd. 10. Sok. No: 45, Bahçelievler, Çankaya, 06490 Ankara, Turkey
| | - Aysen Terzi
- Department of Pathology, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Ekin Kaya Simsek
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Baskent University, Yukari Bahçelievler Mah, Maresal Fevzi Çakmak Cd. 10. Sok. No: 45, Bahçelievler, Çankaya, 06490 Ankara, Turkey
| | - Ates Mahmuti
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Baskent University, Yukari Bahçelievler Mah, Maresal Fevzi Çakmak Cd. 10. Sok. No: 45, Bahçelievler, Çankaya, 06490 Ankara, Turkey
| | - İsmail Cengiz Tuncay
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Baskent University, Yukari Bahçelievler Mah, Maresal Fevzi Çakmak Cd. 10. Sok. No: 45, Bahçelievler, Çankaya, 06490 Ankara, Turkey
| |
Collapse
|
4
|
Khalilifar MA, Baghaban Eslaminejad MR, Ghasemzadeh M, Hosseini S, Baharvand H. In Vitro and In Vivo Comparison of Different Types of Rabbit Mesenchymal Stem Cells for Cartilage Repair. CELL JOURNAL 2019; 21:150-160. [PMID: 30825288 PMCID: PMC6397606 DOI: 10.22074/cellj.2019.6149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/08/2018] [Indexed: 01/09/2023]
Abstract
Objective Systematic studies indicate a growing number of clinical studies that use mesenchymal stem cells (MSCs) for the
treatment of cartilage lesions. The current experimental and preclinical study aims to comparatively evaluate the potential of
MSCs from a variety of tissues for the treatment of cartilage defect in rabbit’s knee which has not previously been reported.
Materials and Methods In this experimental study, MSCs isolated from bone marrow (BMMSCs), adipose (AMSCs), and ears
(EMSCs) of rabbits and expanded under in vitro culture. The growth rate and differentiation ability of MSCs into chondrocyte
and the formation of cartilage pellet were investigated by drawing the growth curve and real-time polymerase chain reaction
(RT-PCR), respectively. Then, the critical cartilage defect was created on the articular cartilage (AC) of the rabbit distal femur,
and MSCs in collagen carrier were transplanted. The studied groups were as the control (only defect), sham (defect with
scaffold), BMMSCs in the scaffold, EMSCs in the scaffold, and EMSCs in the scaffold with cartilage pellets. Histological and
the gene expression analysis were performed following the transplantation.
Results Based on our comparative in vitro investigation, AMSCs possessed the highest growth rate, as well as the
lowest chondrogenic differentiation potential. In this context, MSCs of the ear showed a significantly higher growth rate
and cartilage differentiation potential than those of bone marrow tissue (P<0.05). According to our in vivo assessments,
BMMSC- and EMSC-seeded scaffolds efficiently improved the cartilage defect 4 weeks post-transplantation, while no
improvement was observed in the group contained the cartilage pellets.
Conclusion It seems that the ear contains MSCs that promote cartilage regeneration as much as the conventional MSCs
from the bone marrow. Considering a high proliferation rate and easy harvesting of MSCs of the ear, this finding could be of
value for the regenerative medicine.
Collapse
Affiliation(s)
- Mohammad Ali Khalilifar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mohamad Reza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic Address:
| | - Mohammad Ghasemzadeh
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
5
|
Gurer B, Cabuk S, Karakus O, Yilmaz N, Yilmaz C. In vivo cartilage tissue engineering. J Orthop Surg Res 2018; 13:107. [PMID: 29739464 PMCID: PMC5941486 DOI: 10.1186/s13018-018-0823-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
Background Biologic treatment options for cartilage injuries require chondrocyte expansion using cell culture. Clinical application is accomplished in two surgical sessions and is expensive. If isolation of chondrocytes and stimulus for proliferation and extracellular matrix synthesis can be achieved in vivo, the treatment can be performed in one session and the cost can be reduced. Methods A 2.5-cm diameter full-thickness chondral defect was created in the knees of five groups of sheep. In one group, some of the chondral tissues obtained from the creation of the defect were diced into small pieces and were placed into the defect and were covered with a collagen membrane (MIV group). In the other group, the collagen membrane was soaked in collagenase prior to usage. In the next group, the collagen membrane was soaked in both collagenase and growth factors. Matrix-induced autologous chondrocyte implantation (MACI) was applied to another group in two sessions, and the last group was left untreated. After 15 weeks of follow-up, repair tissues were compared macroscopically, histomorphometrically, and biochemically for tissue concentrations of glycosaminoglycan and type II collagen. Results MACI and MIV groups demonstrated better healing than others and were similar. Addition of collagenase or growth factors did not improve the results. Addition of collagenase did not have detrimental effect on the surrounding cartilage. Conclusions With the described method, it is possible to obtain comparable results with MACI. Further studies are also needed to see if it works similarly in humans.
Collapse
Affiliation(s)
- B Gurer
- Mersin University Medical School, Mersin, Turkey.,Omer Halis Demir University Hospital, Nigde, Turkey
| | - S Cabuk
- Department of Orthopedics and Traumatology, Mersin University Medical School, Mersin, Turkey
| | - O Karakus
- Omer Halis Demir University Hospital, Nigde, Turkey. .,Fatih Sultan Mehmet Teaching and Research Hospital, İstanbul, Turkey. .,, İstanbul, Turkey.
| | - N Yilmaz
- Department of Histology and Embryology, Mersin University Medical School, Mersin, Turkey
| | - C Yilmaz
- Department of Orthopedics and Traumatology, Mersin University Medical School, Mersin, Turkey
| |
Collapse
|
6
|
Gürer B, Yılmaz C, Yılmaz ŞN, Çabuk S, Bölgen N. A novel strategy for cartilage tissue engineering: Collagenase-loaded cryogel scaffolds in a sheep model. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1327433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Burak Gürer
- Department of Orthopedics and Traumatology, Medical School, Mersin University, Mersin, Turkey
| | - Cengiz Yılmaz
- Department of Orthopedics and Traumatology, Medical School, Mersin University, Mersin, Turkey
| | - Ş. Necat Yılmaz
- Department of Histology and Embryology, Medical School, Mersin University, Mersin, Turkey
| | - Sertan Çabuk
- Department of Orthopedics and Traumatology, Medical School, Mersin University, Mersin, Turkey
| | - Nimet Bölgen
- Chemical Engineering Department, Engineering Faculty, Mersin University, Mersin, Turkey
| |
Collapse
|
7
|
Tosun HB, Gürger M, Gümüştaş SA, Uludag A, Üçer Ö, Serbest S, Çelik S. The effect of sodium hyaluronate-chondroitin sulfate combined solution on cartilage formation in osteochondral defects of the rabbit knee: an experimental study. Ther Clin Risk Manag 2017; 13:523-532. [PMID: 28458555 PMCID: PMC5403121 DOI: 10.2147/tcrm.s133635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective In focal cartilage lesions, multipotent mesenchymal stem cells in bone marrow are aimed to be moved into the defect area using subchondral drilling or microfracture method. However, repaired tissue insufficiently fills the defect area or cannot meet natural hyaline tissue functions, due to fibrous structure. We investigated the effect of a combined solution of sodium hyaluronate + chondroitin sulfate (HA+CS) administered intra-articularly after subchondral drilling on newly formed cartilage in rabbits with focal osteochondral defects. Materials and methods A total of 32 New Zealand White mature rabbits, whose weights ranged from 2.5 to 3 kg, were randomly divided into four groups. Full-thickness osteochondral defect was formed in the left-knee medial femur condyles of all rabbits. Subchondral drilling was then performed. The following treatment protocol was administered intra-articularly on knee joints on days 7, 14, and 21 after surgery: group 1, 0.3 mL combined solution of HA+CS (20 mg CS combined with 16 mg HA/mL); group 2, 0.3 mL HA (16 mg/mL); group 3, 0.3 mL CS (20 mg/mL); and group 4 (control group), 0.3 mL saline solution. In the sixth week, all animals were killed and then evaluated histopathologically and biochemically. Results There was significant articular cartilage formation in the HA+CS group compared to the HA, CS, and control groups. Hyaline cartilage formation was observed only in the HA+CS group. Cartilage-surface continuity and smoothness were significantly higher in the HA+CS and HA groups compared to the other groups. Normal cartilage mineralization was found to be significantly higher in the HA+CS group compared to the other groups. Increased levels of VEGFA and IL-1β in synovial fluid were observed in the HA+CS group. Conclusion After subchondral drilling, intra-articular HA-CS combination therapy is a good choice to promote better quality new cartilage-tissue formation in the treatment of focal osteochondral defects.
Collapse
Affiliation(s)
- Haci Bayram Tosun
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Adıyaman University, Adıyaman
| | | | - Seyit Ali Gümüştaş
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Adıyaman University, Adıyaman
| | - Abuzer Uludag
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Adıyaman University, Adıyaman
| | - Özlem Üçer
- Department of Pathology, Faculty of Medicine, Firat University, Elazığ
| | - Sancar Serbest
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Suat Çelik
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Adıyaman University, Adıyaman
| |
Collapse
|
8
|
Abdallah AN, Shamaa AA, Tookhy OSE, Mottaleb EMAE. Evaluation of Low Level Laser-Activated Stromal Vascular Fraction as a Single Procedure for Treatment of Experimental Chondral Defects. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajas.2016.15.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Willers C, Partsalis T, Zheng MH. Articular cartilage repair: procedures versus products. Expert Rev Med Devices 2014; 4:373-92. [PMID: 17488231 DOI: 10.1586/17434440.4.3.373] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review discusses the current perspectives and practices regarding the treatment of articular cartilage injury. Specifically, the authors have delineated and examined articular cartilage repair techniques as either surgical procedures or manufactured products. Although both methodologies are used to treat articular cartilage injury, there are obvious advantages and disadvantages to the application of both, with the literature providing few recommendations on the most suitable regimen for the patient and surgeon. In recent times, cell-based tissue engineering products, predominantly autologous chondrocyte implantation, have been the subject of much research and have become clinically popular. Herein, we review the most used procedures and products in cartilage repair, compare and contrast their outcomes, and evaluate the issues that must be overcome in order to improve patient efficacy in the future.
Collapse
Affiliation(s)
- Craig Willers
- Department of Orthopaedics, School of Pathology and Surgery, University of Western Australia, 2nd Floor, M-block, QEII Medical Centre, Nedlands, Perth, WA 6009, Australia.
| | | | | |
Collapse
|
10
|
Shi J, Zhang X, Zhu J, Pi Y, Hu X, Zhou C, Ao Y. Nanoparticle delivery of the bone morphogenetic protein 4 gene to adipose-derived stem cells promotes articular cartilage repair in vitro and in vivo. Arthroscopy 2013; 29:2001-2011.e2. [PMID: 24286799 DOI: 10.1016/j.arthro.2013.09.076] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate the effect of poly(lactic-co-glycolic acid) (PLGA) nanoparticles delivering pDC316-BMP4-EGFP plasmid into rabbit adipose-derived stem cells (ADSCs) in vitro and chondrogenesis of the bone morphogenetic protein 4 (BMP-4)--transfected ADSCs seeded onto poly(L-lactic-co-glycolic acid) (PLLGA) scaffold in a rabbit model. METHODS Cell viability and transfection efficiency of PLGA nanoparticles were measured by Cell Counting Kit-8 (Dojindo, Kumamoto, Japan) and flow cytometry. The BMP-4 and chondrogenesis markers were detected by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Thirty rabbits (60 knees) with full-thickness cylinder articular cartilage defects (diameter, 4.5 mm; depth, 0.8 mm) on the femoral trochlea were divided into a group in which the BMP-4--transfected ADSCs were seeded onto PLLGA scaffold and implanted into the defects (group ABNP), a group with untransfected ADSCs seeded onto scaffold (group ABP), and a group with a scaffold without cells (group P). Outcomes were evaluated by histology, Rudert score, Pineda score, and scanning electronic microscopy by 2 blinded observers at weeks 6 and 12 postoperatively. Statistical analyses were performed with analysis of variance and the Kruskal-Wallis test. The statistical significance level was set at P < .05. RESULTS The expression of chondrogenesis-related genes and proteins was significantly increased in BMP-4--transfected ADSCs in vitro (P < .05). The cell viability was 79.86% ± 5.04% after 24 hours. The transfection efficiency was 25.86% ± 4.27% after 72 hours. Defects in group ABNP showed the best in vivo cartilage regeneration. At week 12, the Rudert scores in group ABNP (7.00 ± 1.75) were better than those in group ABP (6.00 ± 2.00) or group P (5.00 ± 1.75) (P < .05), as were the Pineda scores (2.50 ± 3.00, 5.00 ± 2.00, and 6.00 ± 1.75, respectively; P < .001). CONCLUSIONS BMP-4 plasmid can be successfully delivered into ADSCs by PLGA nanoparticles and promoted in vitro chondrogenesis. When compared with the control cells, BMP-4--transfected ADSCs seeded onto PLLGA scaffold significantly improve in vivo chondrogenesis in a rabbit articular defect model. CLINICAL RELEVANCE PLGA nanoparticles and BMP-4 have potential for gene therapy in the treatment of chondral defects of the knee.
Collapse
Affiliation(s)
- Junjun Shi
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Betsch M, Schneppendahl J, Thuns S, Herten M, Sager M, Jungbluth P, Hakimi M, Wild M. Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model. PLoS One 2013; 8:e71602. [PMID: 23951201 PMCID: PMC3741121 DOI: 10.1371/journal.pone.0071602] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bone marrow aspiration concentrate (BMAC) may possess a high potency for cartilage and osseous defect healing because it contains stem cells and multiple growth factors. Alternatively, platelet rich plasma (PRP), which contains a cocktail of multiple growth factors released from enriched activated thrombocytes may potentially stimulate the mesenchymal stem cells (MSCs) in bone marrow to proliferate and differentiate. METHODS A critical size osteochondral defect (10×6 mm) in both medial femoral condyles was created in 14 Goettinger mini-pigs. All animals were randomized into the following four groups: biphasic scaffold alone (TRUFIT BGS, Smith & Nephew, USA), scaffold with PRP, scaffold with BMAC and scaffold in combination with BMAC and PRP. After 26 weeks all animals were euthanized and histological slides were cut, stained and evaluated using a histological score and immunohistochemistry. RESULTS The thrombocyte number was significantly increased (p = 0.049) in PRP compared to whole blood. In addition the concentration of the measured growth factors in PRP such as BMP-2, BMP-7, VEGF, TGF-β1 and PDGF were significantly increased when compared to whole blood (p<0.05). In the defects of the therapy groups areas of chondrogenic tissue were present, which stained blue with toluidine blue and positively for collagen type II. Adding BMAC or PRP in a biphasic scaffold led to a significant improvement of the histological score compared to the control group, but the combination of BMAC and PRP did not further enhance the histological score. CONCLUSIONS The clinical application of BMAC or PRP in osteochondral defect healing is attractive because of their autologous origin and cost-effectiveness. Adding either PRP or BMAC to a biphasic scaffold led to a significantly better healing of osteochondral defects compared with the control group. However, the combination of both therapies did not further enhance healing.
Collapse
Affiliation(s)
- Marcel Betsch
- Department of Trauma and Hand Surgery, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Johannes Schneppendahl
- Department of Trauma and Hand Surgery, University Hospital Duesseldorf, Duesseldorf, Germany
- * E-mail:
| | - Simon Thuns
- Department of Trauma and Hand Surgery, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Monika Herten
- Clinic for Vascular and Endovascular Surgery, University Hospital Muenster, Muenster, Germany
| | - Martin Sager
- Central Animal Research Facility, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Pascal Jungbluth
- Department of Trauma and Hand Surgery, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Mohssen Hakimi
- Department of Trauma and Hand Surgery, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Michael Wild
- Department of Trauma and Orthopaedic Surgery, Klinikum Darmstadt, Darmstadt, Germany
| |
Collapse
|
12
|
Kim SS, Kang MS, Lee KY, Lee MJ, Wang L, Kim HJ. Therapeutic effects of mesenchymal stem cells and hyaluronic Acid injection on osteochondral defects in rabbits' knees. Knee Surg Relat Res 2012; 24:164-72. [PMID: 22977794 PMCID: PMC3438278 DOI: 10.5792/ksrr.2012.24.3.164] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/26/2011] [Accepted: 07/06/2012] [Indexed: 02/01/2023] Open
Abstract
Purpose To evaluate the treatment results of intraarticular injection according to the frequency of hyaluronic acid with mesenchymal stem cells on the osteochondral defect of rabbits' medial femoral condyles. Materials and Methods A 5 mm diameter and 4 mm depth osteochondral defect was made on the medial femoral condyles of 18 rabbits, divided into six groups. One week after osteochondral defect, group B was injected intraarticularly with hyaluronic acid (HA), group C with mesenchymal stem cells (MSCs), and group D, E and F with both HA and MSCs. Group E and F received second HA injection a week after. Further, group F received third HA injection in the third week. Results In a macroscopic evaluation, groups B (6; range, 5-8), C (6; range, 6-7), D (7; range, 6-7), E (6.5; range, 6-8) and F (7.5; range, 6-8) showed statistically significant improvements in osteochondral defect healing, compared with that of group A (4; range, 3-5) (p=0.002). In histological evaluation, groups B (11.5; range, 11-13), C (13; range, 12-18), D (16; range, 13-18), E (17.5; range, 13-20), and F (19.5; range, 12-22) showed statistically significant differences in osteochondral defect healing, compared with group A (8; range, 6-9) (p=0.006). Conclusions The intraarticular injections of MSCs or HA can play an effective role during the healing osteochondral defects in rabbits.
Collapse
Affiliation(s)
- Sung Soo Kim
- Department of Orthopaedic Surgery, Dong-A University College of Medicine, Busan, Korea
| | | | | | | | | | | |
Collapse
|
13
|
Vaquero J, Forriol F. Knee chondral injuries: clinical treatment strategies and experimental models. Injury 2012; 43:694-705. [PMID: 21733516 DOI: 10.1016/j.injury.2011.06.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 05/30/2011] [Accepted: 06/15/2011] [Indexed: 02/02/2023]
Abstract
Articular cartilage has a very limited capacity to repair and as such premature joint degeneration is often the end point of articular injuries. Patients with chondral injury have asymptomatic periods followed by others in which discomfort or pain is bearable. The repair of focal cartilage injuries requires a precise diagnosis, a completed knee evaluation to give the correct indication for surgery proportional to the damage and adapted to each patient. Many of the surgical techniques currently performed involve biotechnology. The future of cartilage repair should be based on an accurate diagnosis using new MRI techniques. Clinical studies would allow us to establish the correct indications and surgical techniques implanting biocompatible and biodegradable matrices with or without stem cells and growth factors. Arthroscopic techniques with the design of new instruments can facilitate repair of patella and tibial plateau lesions.
Collapse
Affiliation(s)
- Javier Vaquero
- Hospital Gregorio Marañon, Orthopaedic Surgery Department, Madrid, Spain
| | | |
Collapse
|
14
|
Li Q, Tang J, Wang R, Bei C, Xin L, Zeng Y, Tang X. Comparing the chondrogenic potential in vivo of autogeneic mesenchymal stem cells derived from different tissues. ACTA ACUST UNITED AC 2010; 39:31-8. [PMID: 21117872 DOI: 10.3109/10731191003776769] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE to compare the chondrogenic ability of mesenchymal stem cells (MSCs) derived from different tissues in rabbits' full-thickness articular cartilage defects. METHODS sixty New Zealand white rabbits of ordinary grade with a body weight of 2.5 approximately 3.5kg were selected for this study. Six were sacrificed for preparation of deminerized bone matrix (DBM) as scaffold. Fifty-four were used for cartilage defects model. Full-thickness cartilage defect of knee joint was created on trochlear groove at two sides of the femur with a diameter of 4 mm and thickness of 3 mm. All 54 rabbits were randomly divided into 6 groups and treated by autogeneic MSCs isolated from bone marrow, periosteum, synovium, adipose tissue and muscle, respectively. The 6th group was a control group with nothing plugged into the defects. Every three rabbits were killed at three time points, which were 4, 8, and 12 weeks after the operation in each group. The reparative tissue samples were evaluated grossly, histologically, immunohistochemically, and graded according to gross and histological scales 12 weeks postoperatively. We input the scores into SPSS 11.5 software and the analysis of variance (one-way-ANOVA) and student-newman-keuls (SNK-q) test were used to process statistical analysis and find out if the differences between each group had statistical significance. RESULTS fifty-four rabbits are included in the final analysis. The defects are all repaired by hyaline-like tissue except the control group. The bone-marrow-MSCs produced much more cartilage matrix than that of other groups. Gross and histological grading scale indicates that the defects repaired by MSCs isolated from bone marrow are superior to that repaired by MSCs isolated from periosteum, synovium, adipose tissue, and muscle (p < 0.05). In adipose-MSCs and muscle-MSCs group, some defects are even repaired by fibrous tissue. CONCLUSION bone-marrow-MSCs have greater in vivo chondrogenic potential than periosteum-, synovium-, adipose- and muscle-MSCs.
Collapse
Affiliation(s)
- Qiang Li
- Department of Orthopaedics, the Affiliated Hospital of Guilin Medical College, Guilin, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Kim M, Foo LF, Uggen C, Lyman S, Ryaby JT, Moynihan DP, Grande DA, Potter HG, Pleshko N. Evaluation of early osteochondral defect repair in a rabbit model utilizing fourier transform-infrared imaging spectroscopy, magnetic resonance imaging, and quantitative T2 mapping. Tissue Eng Part C Methods 2010; 16:355-64. [PMID: 19586313 PMCID: PMC2945312 DOI: 10.1089/ten.tec.2009.0020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 07/07/2009] [Indexed: 02/03/2023] Open
Abstract
CONTEXT Evaluation of the morphology and matrix composition of repair cartilage is a critical step toward understanding the natural history of cartilage repair and efficacy of potential therapeutics. In the current study, short-term articular cartilage repair (3 and 6 weeks) was evaluated in a rabbit osteochondral defect model treated with thrombin peptide (TP-508) using magnetic resonance imaging (MRI), quantitative T2 mapping, and Fourier transform-infrared imaging spectroscopy (FT-IRIS). METHODS Three-mm-diameter osteochondral defects were made in the rabbit trochlear groove and filled with either TP-508 plus poly-lactoglycolidic acid microspheres or poly-lactoglycolidic acid microspheres alone (placebo). Repair tissue and adjacent normal cartilage were evaluated at 3 and 6 weeks postdefect creation. Intact knees were evaluated by magnetic resonance imaging for repair morphology, and with quantitative T2 mapping to assess collagen orientation. Histological sections were evaluated by FT-IRIS for parameters that reflect collagen quantity and quality, as well as proteoglycan (PG) content. RESULTS AND CONCLUSION There was no significant difference in volume of repair tissue at either time point. At 6 weeks, placebo repair tissue demonstrated longer T2 values (p < 0.01) than TP-508 did. Although both placebo and TP-508 repair tissue demonstrated longer T2 values than adjacent normal cartilage did, the 6-week T2 values of the TP-508 specimens were closer to those of the adjacent normal cartilage than were the placebo values. FT-IRIS analysis demonstrated a significant increase in collagen content, integrity, and PG content of the TP-508 repair tissue from 3 to 6 weeks (p < or = 0.05). In addition, the collagen and PG content of the TP-508 samples were closer to normal cartilage at 3 weeks than were the placebo samples. Further, there was a significant inverse correlation between the T2 relaxation values and collagen orientation in the normal cartilage. However, there were no significant correlations between T2 relaxation values and any FT-IRIS parameter in the repair tissue. Together, the data demonstrate that MRI and FT-IRIS assessment of cartilage repair tissue provide molecular information that furthers understanding of the cartilage repair process.
Collapse
Affiliation(s)
- Minwook Kim
- Musculoskeletal Imaging & Spectroscopy Laboratory, Hospital for Special Surgery, New York, New York
| | - Li F. Foo
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| | | | - Steven Lyman
- Outcomes Research, Hospital for Special Surgery, New York, New York
| | | | | | | | - Hollis G. Potter
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| | - Nancy Pleshko
- Musculoskeletal Imaging & Spectroscopy Laboratory, Hospital for Special Surgery, New York, New York
| |
Collapse
|
16
|
Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:105-15. [PMID: 19831641 DOI: 10.1089/ten.teb.2009.0452] [Citation(s) in RCA: 401] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Articular cartilage injury and degeneration are leading causes of disability. Animal studies are critically important to developing effective treatments for cartilage injuries. This review focuses on the use of animal models for the study of the repair and regeneration of focal cartilage defects. Animals commonly used in cartilage repair studies include murine, lapine, canine, caprine, porcine, and equine models. There are advantages and disadvantages to each model. Small animal rodent and lapine models are cost effective, easy to house, and useful for pilot and proof-of-concept studies. The availability of transgenic and knockout mice provide opportunities for mechanistic in vivo study. Athymic mice and rats are additionally useful for evaluating the cartilage repair potential of human cells and tissues. Their small joint size, thin cartilage, and greater potential for intrinsic healing than humans, however, limit the translational value of small animal models. Large animal models with thicker articular cartilage permit study of both partial thickness and full thickness chondral repair, as well as osteochondral repair. Joint size and cartilage thickness for canine, caprine, and mini-pig models remain significantly smaller than that of humans. The repair and regeneration of chondral and osteochondral defects of size and volume comparable to that of clinically significant human lesions can be reliably studied primarily in equine models. While larger animals may more closely approximate the human clinical situation, they carry greater logistical, financial, and ethical considerations. A multifactorial analysis of each animal model should be carried out when planning in vivo studies. Ultimately, the scientific goals of the study will be critical in determining the appropriate animal model.
Collapse
Affiliation(s)
- Constance R Chu
- Cartilage Restoration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | |
Collapse
|
17
|
Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 2009; 17:705-13. [PMID: 19101179 DOI: 10.1016/j.joca.2008.11.008] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 11/11/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Review the literature for single site cartilage defect research and evaluate the respective strengths and weaknesses of different preclinical animal models. METHOD A literature search for animal models evaluating single site cartilage defects was performed. Variables tabulated and analyzed included animal species, age and number, defect depth and diameter and study duration. Cluster analyses were then used to separate animals with only distal femoral defects into similar groups based on defect dimensions. Representative human studies were included allowing comparison of common clinical lesions to animal models. The suitability of each species for single site cartilage defect research and its relevance to clinical human practice is then discussed. RESULTS One hundred thirteen studies relating to single site cartilage defects were reviewed. Cluster analysis included 101 studies and placed the murine, laprine, ovine, canine, porcine and caprine models in group 1. Group 2 contained ovine, canine, porcine, caprine and equine models. Group 3 contained only equine models and humans. Species in each group are similar with regard to defect dimensions. Some species occur in multiple groups reflecting utilization of a variety defect sizes. We report and discuss factors to be considered when selecting a preclinical animal model for single site cartilage defect research. DISCUSSION Standardization of study design and outcome parameters would help to compare different studies evaluating various novel therapeutic concepts. Comparison to the human clinical counterpart during study design may help increase the predictive value of preclinical research using animal models and improve the process of developing efficacious therapies.
Collapse
|
18
|
Lind M, Larsen A, Clausen C, Osther K, Everland H. Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold: an in vivo study in goats. Knee Surg Sports Traumatol Arthrosc 2008; 16:690-8. [PMID: 18418579 DOI: 10.1007/s00167-008-0522-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 03/04/2008] [Indexed: 11/29/2022]
Abstract
Polylactic acid polymers have been used extensively as biomaterials and have shown promising properties for cartilage tissue engineering. Numerous scaffold materials exist and the optimal scaffold needs to be identified. We have tried to assess the possibilities for cartilage repair by the use of two different scaffold techniques; autologous chondrocytes in a fibrin hydrogel and a novel MPEG-PLGA scaffold, where autologous chondrocytes are immobilized within the MPEG-PLGA scaffold by a fibrin hydrogel. Twenty adult goats were used for the study. A 6 mm circular full-thickness cartilage defect was created in both medial femoral condyles. The defects were randomized to the following four treatment groups. (1) Empty defect (control). (2) Subchondral drilling (control). (3) Fibrin hydrogel with autologous chondrocytes. (4) Fibrin hydrogel/chondrocyte solution in a MPEG-PLGA porous scaffold. Animals were followed for 4 month. Eight defects in each treatment group completed the study. ICRS macroscopic scoring (0-12). Indentation test was performed to assess stiffness of repair tissue. Histological analyses was performed using O'Driscoll and Pineda cartilage scores as well as percentage tissue filling of the defects. The MPEG-PLGA/chondrocytes scaffold was the superior treatment modality based on the macroscopic surface score, histological scores and defect filling. The mechanical test demonstrated no difference between treatment groups. The MPEG-PLGA/chondrocyte composite demonstrated significantly better cartilage repair response than empty defects, osteochondral drilling and fibrin hydrogel with chondrocytes. The novel MPEG-PLGA scaffold in combination with chondrocytes need further studies with respect to longer follow-up times.
Collapse
Affiliation(s)
- Martin Lind
- Sportstrauma Clinic, University Hospital of Aarhus, Tage Hansens Gade 2, 8000 Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
19
|
Shangkai C, Naohide T, Koji Y, Yasuji H, Masaaki N, Tomohiro T, Yasushi T. Transplantation of Allogeneic Chondrocytes Cultured in Fibroin Sponge and Stirring Chamber to Promote Cartilage Regeneration. ACTA ACUST UNITED AC 2007; 13:483-92. [PMID: 17518599 DOI: 10.1089/ten.2006.0181] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cartilage regeneration using a fibroin sponge and a stirring chamber was investigated to improve the potential of articular cartilage tissue engineering. Chondrocytes seeded on the fibroin-sponge scaffolds were cultured in the stirring chamber (a bioreactor facilitating mechanical stimulation) for up to 3 weeks. Changes in DNA content, glycosaminoglycan (GAG) amount, integrin subunits alpha5 and beta1 fluorescence intensity, and morphologic appearance, were studied to evaluate tissue maturity. Seeded scaffolds subjected to the stirring chamber demonstrated significant increases in both DNA content (38.9%) and GAG content (54.3%) at day 21 compared to the control group. In addition, the stirring chamber system facilitated a maturation of cartilage tissue showed by histologic examination, after a staining of proteoglycan and type II collagen. Clinical feasibility of the fibroin and stirring chamber system was evaluated using rabbit models with cartilage defect. Large defects on rabbit knee joints were repaired with regenerated cartilage, which resembles hyaline cartilage at 12 weeks after operation. These studies demonstrated the potential of such mechanically stimulated scaffold/cell constructs to support chondrogenesis in vivo.
Collapse
Affiliation(s)
- Chueh Shangkai
- Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Madry H, Weimer A, Kohn D, Cucchiarini M. Tissue-Engineering zur Knorpelreparatur verbessert durch Gentransfer. DER ORTHOPADE 2007; 36:236-47. [PMID: 17340098 DOI: 10.1007/s00132-007-1059-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cartilage tissue engineering is the creation of functional substitutes of native articular cartilage in bioreactors by attaching chondrogenic cells to polymer scaffolds. One limitation of tissue engineering is the delivery of regulatory signals to cells according to specific temporal and spatial patterns. Using gene transfer techniques, polypeptide growth factor genes such as the human insulin-like growth factor I (IGF-I) gene can be transferred into chondrocytes. When these modified cells are used for cartilage tissue engineering, the resulting cartilaginous constructs have improved structural and functional characteristics compared to constructs based on nonmodified cells. The combination of cartilage tissue engineering with overexpression of potential therapeutic genes using gene transfer technologies provides a basis for the development of novel molecular therapies for the repair of cartilage defects.
Collapse
Affiliation(s)
- H Madry
- Labor für Experimentelle Orthopädie,Klinik für Orthopädie und Orthopädische Chirurgie, Universitätsklinikum des Saarlandes, 66421, Homburg.
| | | | | | | |
Collapse
|