1
|
Pugliese E, Rossoni A, Zeugolis DI. Enthesis repair - State of play. BIOMATERIALS ADVANCES 2024; 157:213740. [PMID: 38183690 DOI: 10.1016/j.bioadv.2023.213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres. Herein, we discuss enthesis repair and regeneration strategies, with particular focus on elegant interfacial and functionalised scaffold-based designs.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
2
|
Lu J, Li H, Zhang Z, Xu R, Wang J, Jin H. Platelet-rich plasma in the pathologic processes of tendinopathy: a review of basic science studies. Front Bioeng Biotechnol 2023; 11:1187974. [PMID: 37545895 PMCID: PMC10401606 DOI: 10.3389/fbioe.2023.1187974] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Tendinopathy is a medical condition that includes a spectrum of inflammatory and degenerative tendon changes caused by traumatic or overuse injuries. The pathological mechanism of tendinopathy has not been well defined, and no ideal treatment is currently available. Platelet-rich plasma (PRP) is an autologous whole blood derivative containing a variety of cytokines and other protein components. Various basic studies have found that PRP has the therapeutic potential to promote cell proliferation and differentiation, regulate angiogenesis, increase extracellular matrix synthesis, and modulate inflammation in degenerative tendons. Therefore, PRP has been widely used as a promising therapeutic agent for tendinopathy. However, controversies exist over the optimal treatment regimen and efficacy of PRP for tendinopathy. This review focuses on the specific molecular and cellular mechanisms by which PRP manipulates tendon healing to better understand how PRP affects tendinopathy and explore the reason for the differences in clinical trial outcomes. This article has also pointed out the future direction of basic research and clinical application of PRP in the treatment of tendinopathy, which will play a guiding role in the design of PRP treatment protocols for tendinopathy.
Collapse
Affiliation(s)
- Jialin Lu
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Han Li
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Ziyu Zhang
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Rui Xu
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Hui Jin
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Yang C, Teng Y, Geng B, Xiao H, Chen C, Chen R, Yang F, Xia Y. Strategies for promoting tendon-bone healing: Current status and prospects. Front Bioeng Biotechnol 2023; 11:1118468. [PMID: 36777256 PMCID: PMC9911882 DOI: 10.3389/fbioe.2023.1118468] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Tendon-bone insertion (TBI) injuries are common, primarily involving the rotator cuff (RC) and anterior cruciate ligament (ACL). At present, repair surgery and reconstructive surgery are the main treatments, and the main factor determining the curative effect of surgery is postoperative tendon-bone healing, which requires the stable combination of the transplanted tendon and the bone tunnel to ensure the stability of the joint. Fibrocartilage and bone formation are the main physiological processes in the bone marrow tract. Therefore, therapeutic measures conducive to these processes are likely to be applied clinically to promote tendon-bone healing. In recent years, biomaterials and compounds, stem cells, cell factors, platelet-rich plasma, exosomes, physical therapy, and other technologies have been widely used in the study of promoting tendon-bone healing. This review provides a comprehensive summary of strategies used to promote tendon-bone healing and analyses relevant preclinical and clinical studies. The potential application value of these strategies in promoting tendon-bone healing was also discussed.
Collapse
Affiliation(s)
- Chenhui Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China,Department of Orthopedic, Tianshui Hand and Foot Surgery Hospital, Tianshui, China
| | - Yuanjun Teng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Rongjin Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Fei Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China,*Correspondence: Yayi Xia,
| |
Collapse
|
4
|
Oda H, Kaizawa Y, Franklin A, Sanchez Rangel U, Storaci H, Min JG, Wang Z, Abrams GD, Chang J, Fox PM. Assessment of a Synergistic Effect of Platelet-Rich Plasma and Stem Cell-Seeded Hydrogel for Healing of Rat Chronic Rotator Cuff Injuries. Cell Transplant 2023; 32:9636897231190174. [PMID: 37592455 PMCID: PMC10467370 DOI: 10.1177/09636897231190174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
Outcomes after repair of chronic rotator cuff injuries remain suboptimal. Type-1 collagen-rich tendon hydrogel was previously reported to improve healing in a rat chronic rotator cuff injury model. Stem cell seeding of the tendon hydrogel improved bone quality in the same model. This study aimed to examine whether there was a synergistic and dose-dependent effect of platelet-rich plasma (PRP) on tendon-bone interface healing by combining PRP with stem cell-seeded tendon hydrogel. Human cadaveric tendons were processed into a hydrogel. PRP was prepared at two different platelet concentrations: an initial concentration (initial PRP group) and a higher concentration (concentrated PRP group). Tendon hydrogel was mixed with adipose-derived stem cells and one of the platelet concentrations. Methylcellulose, as opposed to saline, was used as a negative control due to comparable viscosity. The supraspinatus tendon was detached bilaterally in 33 Sprague-Dawley rats (66 shoulders). Eight weeks later, each detached tendon was repaired, and a hydrogel mixture or control was injected at the repair site. Eight weeks after repair, shoulder samples were harvested and assigned for biomechanical testing (n = 42 shoulders) or a combination of bone morphological and histological assessment (n = 24 shoulders). Biomechanical testing showed significantly higher failure load and stiffness in the concentrated PRP group than in control. Yield load in the initial and concentrated PRP groups were significantly higher than that in the control. There were no statistically significant differences between the initial and concentrated PRP groups. The addition of the highly concentrated PRP to stem cells-seeded tendon hydrogel improved healing biomechanically after chronic rotator cuff injury in rats compared to control. However, synergistic and dose-dependent effects were not seen.
Collapse
Affiliation(s)
- Hiroki Oda
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Yukitoshi Kaizawa
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Austin Franklin
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Uriel Sanchez Rangel
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Hunter Storaci
- Department of Orthopedic Surgery, Stanford University School of Medicine, Redwood City, CA, USA
| | - Jung Gi Min
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Zhen Wang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Geoffrey D. Abrams
- Department of Orthopedic Surgery, Stanford University School of Medicine, Redwood City, CA, USA
| | - James Chang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Paige M. Fox
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
5
|
Leukocyte and Platelet-Rich Plasma (L-PRP) in Tendon Models: A Systematic Review and Meta-Analysis of in vivo/ in vitro Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5289145. [PMID: 36569346 PMCID: PMC9780014 DOI: 10.1155/2022/5289145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Purpose To perform a systematic review on the application of leukocyte- and platelet-rich plasma (L-PRP) in tendon models by reviewing in vivo/in vitro studies. Methods The searches were performed via electronic databases including PubMed, Embase, and Cochrane Library up to September 2022 using the following keywords: ((tenocytes OR tendon OR tendinitis OR tendinosis OR tendinopathy OR tendon injury) AND (platelet-rich plasma OR PRP OR autologous conditioned plasma OR leukocyte- and platelet-rich plasma OR L-PRP OR leukocyte-richplatelet-rich plasma Lr-PRP)). Only in vitro and in vivo studies that assessed the potential effects of L-PRP on tendons and/or tenocytes are included in this study. Description of PRP, study design and methods, outcomes measured, and results are extracted from the data. Results A total of 17 studies (8 in vitro studies and 9 in vivo studies) are included. Thirteen studies (76%) reported leukocyte concentrations of L-PRP. Four studies (24%) reported the commercial kits. In in vitro studies, L-PRP demonstrated increased cell proliferation, cell migration, collagen synthesis, accelerated inflammation, and catabolic response in the short term. In addition, most in vivo studies indicated increased collagen type I content. According to in vivo studies reporting data, L-PRP reduced inflammation response in 71.0% of studies, while it enhanced the histological quality of tendons in 67.0% of studies. All 3 studies reporting data found increased biomechanical properties with L-PRP treatment. Conclusions Most evidence indicates that L-PRP has some potential effects on tendon healing compared to control. However, it appears that L-PRP works depending on the biological status of the damaged tendon. At an early stage, L-PRP may accelerate tendon healing, but at a later stage, it could be detrimental.
Collapse
|
6
|
Chevrier A, Hurtig MB, Lavertu M. Chitosan-platelet-rich plasma implants improve rotator cuff repair in a large animal model: Pilot study. J Biomater Appl 2022; 37:183-194. [PMID: 35435027 DOI: 10.1177/08853282221085058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Freeze-dried formulations of chitosan can be solubilized in platelet-rich plasma (PRP) to form injectable implants that are used as an adjunct treatment during surgical repair of the rotator cuff. The purpose of the current study was to assess chitosan-PRP implant residency, test safety, and assess efficacy over standard-of-care controls in a sheep model of rotator cuff repair. The infraspinatus tendon was transected unilaterally and immediately repaired with suture anchors in 22 skeletally mature ewes. In treatment groups, formulations containing chitosan, trehalose, and calcium chloride were solubilized with autologous leukocyte-rich PRP and injected at the tendon-bone interface and on top of the repaired site (1 mL or 2 mL doses). Implant residency was assessed histologically at 1 day. Outcome measures included MRI assessment at baseline, 6 weeks, and 12 weeks, histopathology and clinical pathology. Chitosan-PRP implants were resident at the injection site at 1 day and induced recruitment of polymorphonuclear cells. The tendon gap, which corresponds to the length of abnormally hyperintense tissue attached to the humeral head, was decreased by treatment with the 2 mL dose when compared to controls at 12 weeks on MRI images. Some histological features were improved by the 2 mL dose treatment compared to controls at 12 weeks. There was no treatment-specific effect on all standard safety outcome measures, which suggests high safety. This study provides preliminary evidence on the safety and efficacy of chitosan-PRP implants in a large animal model that could potentially be translated to a clinical setting.
Collapse
Affiliation(s)
- Anik Chevrier
- Department of Chemical Engineering, 5596Polytechnique Montreal, Montreal, QC, Canada
| | - Mark B Hurtig
- Department of Clinical Studies, 3653University of Guelph, Guelph, ON, Canada
| | - Marc Lavertu
- Department of Chemical Engineering and Institute of Biomedical Engineering, 5596Polytechnique Montreal, Montreal, QC, Canada
| |
Collapse
|
7
|
Viganò M, Ragni E, Marmotti A, de Girolamo L. The effects of orthobiologics in the treatment of tendon pathologies: a systematic review of preclinical evidence. J Exp Orthop 2022; 9:31. [PMID: 35394237 PMCID: PMC8994001 DOI: 10.1186/s40634-022-00468-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose The aim of this systematic review is to explore the current available knowledge about tendon disorders and orthobiologics derived by preclinical experiments to evaluate their role and efficacy in the different stages and conditions related to the tendon healing processes. Methods The systematic review was performed according to the PRISMA guidelines. Different electronic databases (MEDLINE, Web of Science, EMBASE) were searched for studies investigating orthobiologics (PRP and cell-based products from adipose tissue or bone marrow) in animal models or veterinary clinical trials for tendon pathologies (complete/partial tendon ruptures, rotator cuff tears, tendinopathy, enthesis-related injuries). Data regarding the specific product used, the treatment site/pathology, the host and the model were collected. The results were classified into the following categories: histological, biomechanical, molecular and imaging. Results A large pool of preclinical studies on tendon disorders have been found on platelet-rich plasma (PRP), while data about stromal vascular fraction (SVF) and bone marrow concentrate (BMAC) are still limited and frequently focused on expanded cells, rather than orthobiologics prepared at the point of care. The effect of PRP is related to an acceleration of the healing process, without improvements in the final structure and properties of repaired tendon. Cell-based products have been reported to produce more durable results, but the level of evidence is currently insufficient to draw clear indications. Conclusions The preclinical results about orthobiologics applications to tendon pathologies would support the rationale of their clinical use and encourage the performance of clinical trials aimed to confirm these data in human subjects. Supplementary Information The online version contains supplementary material available at 10.1186/s40634-022-00468-w.
Collapse
Affiliation(s)
- Marco Viganò
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Enrico Ragni
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
| | - Antonio Marmotti
- San Luigi Gonzaga Hospital, Orthopedics and Traumatology Department, University of Turin - Medical School, Turin, Italy
| | - Laura de Girolamo
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| |
Collapse
|
8
|
Peng Y, Wu W, Li X, Shangguan H, Diao L, Ma H, Wang G, Jia S, Zheng C. Effects of leukocyte-rich platelet-rich plasma and leukocyte-poor platelet-rich plasma on the healing of bone-tendon interface of rotator cuff in a mice model. Platelets 2022; 33:1075-1082. [PMID: 35257633 DOI: 10.1080/09537104.2022.2044462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Platelet-rich plasma (PRP) is widely used clinically to treat tendon injuries, and often contains leukocytes. However, the debate regarding the concentration of leukocytes in PRP is still ongoing. This study aimed to evaluate the therapeutic effects of leukocyte-rich platelet-rich plasma (LR-PRP) and leukocyte-poor platelet-rich plasma (LP-PRP) on the healing of the bone-tendon interface (BTI) of the rotator cuff. A total of 102 C57BL/6 mice were used. Thirty mice were used to prepare the PRP, while 72 underwent acute supraspinatus tendon injury repair. The animals were then randomly assigned to three groups: LR-PRP, LP-PRP and control groups. The mice were euthanized at 4 and 8 weeks postoperatively, and histological, immunological and biomechanical analyses were performed. The histological results showed that the fusion effect at the bone-tendon interface at 4 and 8 weeks after surgery was greater in the PRP groups and significantly increased at 4 weeks; however, at 8 weeks, the area of the fibrocartilage layer in the LP-PRP group increased significantly. M2 macrophages were observed at the repaired insertion for all the groups at 4 weeks. At 8 weeks, M2 macrophages withdrew back to the tendon in the control group, but some M2 macrophages were retained at the repaired site in the LR-PRP and LP-PRP groups. Enzyme-linked immunoassay results showed that the concentrations of IL-1β and TNF-α in the LR-PRP group were significantly higher than those in the other groups at 4 and 8 weeks, while the concentrations of IL-1β and TNF-α in the LP-PRP group were significantly lower than those in the control group. The biomechanical properties of the BTI were significantly improved in the PRP group. Significantly higher failure load and ultimate strength were seen in the LR-PRP and LP-PRP groups than in the control group at 4 and 8 weeks postoperatively. Thus, LR-RPR can effectively enhance the early stage of bone-tendon interface healing after rotator cuff repair, and LP-PRP could enhance the later stages of healing after rotator cuff injury.
Collapse
Affiliation(s)
- Yundong Peng
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Wenxia Wu
- College of Health Science, Wuhan Sports University, Wuhan, China.,Department of Rehabilitation Therapy, Jinci College of Shanxi Medical University, Jinzhong, China
| | - Xiaomei Li
- College of Health Science, Wuhan Sports University, Wuhan, China.,Medical College, Huainan Union University, Anhui, China
| | - Hengyi Shangguan
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Luyu Diao
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Haozhe Ma
- College of International Education, Wuhan Sports University, Wuhan, China
| | - Guanglan Wang
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Shaohui Jia
- College of Health Science, Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion, Wuhan Sports University, Wuhan, China
| | - Cheng Zheng
- Department of Sports Medicine, Affiliated Hospital, Wuhan Sports University, Wuhan, China
| |
Collapse
|
9
|
Combined therapy of platelet-rich plasma and basic fibroblast growth factor using gelatin-hydrogel sheet for rotator cuff healing in rat models. J Orthop Surg Res 2021; 16:605. [PMID: 34656163 PMCID: PMC8520192 DOI: 10.1186/s13018-021-02771-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction Excellent outcomes of arthroscopic rotator cuff repair for small and medium tears have been recently reported. However, re-tears after surgery have been a common complication after surgical repair of large and massive rotator cuff tears and often occur in early postoperative phase. It was previously reported that basic fibroblast growth factor and platelet-rich plasma enhanced rotator cuff tear healing. We hypothesized that this combined therapy could enhance rotator cuff healing after rotator cuff repair in a rat model. This study aimed to evaluate the efficacy of combined therapy of platelet-rich plasma and basic fibroblast growth factor with gelatin-hydrogel sheet. Methods To create a rotator cuff defect, the infraspinatus tendon of Sprague Dawley rat was resected from the greater tuberosity. The infraspinatus tendons were repaired and covered with gelatin-hydrogel sheet impregnated with PBS (control group), basic fibroblast growth factor (bFGF group), platelet-rich plasma (PRP group), or both basic fibroblast growth factor and platelet-rich plasma (combined group). Histological examinations were conducted using hematoxylin and eosin, safranin O, and immunofluorescence staining, such as Isolectin B4, type II collagen at 2 weeks postoperatively. For mechanical analysis, ultimate failure load of the tendon-humeral head complex was evaluated at 6 weeks postoperatively. Results In the hematoxylin and eosin staining, the tendon maturing score of the combined group was higher than that of the control group at postoperative 2 weeks. In the safranin O staining, stronger proteoglycan staining was observed in the combined group compared with the other groups at postoperative 2 weeks. Vascular staining with isolectin B4 in 3 treatment groups was significantly higher than that in the control group. Type II collagen expression in the combined group was significantly higher than those in the other groups. The ultimate failure load of the combined group was significantly higher than that of the control group. Conclusion Combined therapy of basic fibroblast growth factor and platelet-rich plasma promoted angiogenesis, tendon maturing and fibrocartilage regeneration at the enthesis, which could enhance the mechanical strength. It was suggested that combined basic fibroblast growth factor and platelet-rich plasma might enhance both tendon and bone–tendon junction healing, and basic fibroblast growth factor and platelet-rich plasma might be synergistic.
Collapse
|
10
|
Zhang C, Wu J, Li X, Wang Z, Lu WW, Wong TM. Current Biological Strategies to Enhance Surgical Treatment for Rotator Cuff Repair. Front Bioeng Biotechnol 2021; 9:657584. [PMID: 34178957 PMCID: PMC8226184 DOI: 10.3389/fbioe.2021.657584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
Rotator cuff tear is one of the most common shoulder problems encountered by orthopedic surgeons. Due to the slow healing process and high retear rate, rotator cuff tear has distressed millions of people all around the world every year, especially for the elderly and active athletes. This disease significantly impairs patients' motor ability and reduces their quality of life. Besides conservative treatment, open and arthroscopic surgery contributes a lot to accelerate the healing process of rotator cuff tear. Currently, there are many emerging novel treatment methods to promote rotator cuff repair. A variety of biological stimulus has been utilized in clinical practice. Among them, platelet-rich plasma, growth factors, stem cells, and exosomes are the most popular biologics in laboratory research and clinical trials. This review will focus on the biologics of bioaugmentation methods for rotator cuff repair and tendon healing, including platelet-rich plasma, growth factors, exosomes and stem cells, etc. Relevant studies are summarized in this review and future research perspectives are introduced.
Collapse
Affiliation(s)
- Cheng Zhang
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiang Li
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zejin Wang
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Weijia William Lu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology (CAS), Shenzhen, China
| | - Tak-Man Wong
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Wang C, Zhang Z, Ma Y, Liu X, Zhu Q. Platelet-rich plasma injection vs corticosteroid injection for conservative treatment of rotator cuff lesions: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24680. [PMID: 33607808 PMCID: PMC7899870 DOI: 10.1097/md.0000000000024680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/15/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND To explore the effectiveness of platelet-rich plasma (PRP) injection regarding functional recovery, pain relief, and range of motion (ROM) of shoulder compared with the corticosteroid injection in patients with rotator cuff lesions treated non-operatively. METHODS An electronic literature search was performed by 2 authors in the PubMed, Embase, Cochrane Library, and Web of Science databases to identify relevant randomized controlled trial (RCTs) that were published up to July 20, 2020. The quality of the included RCTs was evaluated using the approach recommended by the Cochrane Handbook for Systematic Reviews of Interventions. Standardized mean differences (SMDs) or mean differences (MDs) with 95% confidence intervals (CIs) were applied to calculate the pooled effect sizes. RESULTS Six RCTs were included in this systematic review. Meta-analysis revealed that corticosteroid injection yielded statistically significant superior functional recovery (SMD = -0.80; 95% CI, -1.42 to -0.18; P = .01) and pain relief (MD = 1.59; 95% CI, 0.30-2.89; P = .02) compared with PRP injection for rotator cuff lesions during the short-term follow-up period. However, at the medium-term and long-term follow-up, no statistically significant difference was identified between the 2 groups. Regarding the ROM of shoulder, no statistically significant difference was found between the 2 groups during the whole follow-up period. CONCLUSIONS The current clinical evidence revealed short-term efficacy of corticosteroid injection and no significant medium- to long-term difference between corticosteroid and PRP injection in the treatment of rotator cuff lesions. Additional studies with longer follow-ups, larger sample sizes, and more rigorous designs are needed to draw more reliable and accurate conclusions.
Collapse
|
12
|
Abstract
Tendon injuries constitute a significant healthcare problem with variable clinical outcomes. The complex interplay of tissue homeostasis, degeneration, repair, and regeneration makes the development of successful delivery therapeutic strategies challenging. Platelet-rich hemoderivatives, a source of supra-physiologic concentrations of human therapeutic factors, are a promising application to treat tendon injuries from the perspective of tendon tissue engineering, although the outcomes remain controversial.
Collapse
|
13
|
Mehta VM, Mandala CL, Shriver RJ, Benson M. Biomechanical Effects of Fiber Patch Augmentation on Rotator Cuff Repairs. Orthopedics 2020; 43:42-45. [PMID: 31693747 DOI: 10.3928/01477447-20191031-06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/07/2019] [Indexed: 02/03/2023]
Abstract
Rotator cuff repairs are a common orthopedic procedure that have a relatively high failure rate when tendon quality is poor. New biotechnology exists that can make tendons with poor quality more amenable to repair. This study examined the biomechanical effects of augmenting a rotator cuff repair with an absorbable fiber patch. Six human cadaveric supraspinatus tendons were prepared into 1-cm wide strips and then repaired to the rotator cuff footprint using a titanium anchor and a single mattress suture. Each shoulder underwent repair with and without a fiber patch. The specimens were subjected to cyclic loading (100 cycles) and load-to-failure (LTF) testing. Gap formation after 100 cycles was measured along with LTF in surviving specimens. Gap formation after 100 cycles was 1.07 mm in the suture-only group and 0.50 mm in the fiber patch-augmented group (P=.002). Load-to-failure was 54.26 N in the suture-only group and 109.53 N in the patch-augmented group (P<.001). The use of a fiber patch to augment rotator cuff repair reduced gap formation and increased LTF. [Orthopedics. 2020; 43(1):42-45.].
Collapse
|
14
|
Beigi MH, Atefi A, Ghanaei HR, Labbaf S, Ejeian F, Nasr-Esfahani MH. Activated platelet-rich plasma improves cartilage regeneration using adipose stem cells encapsulated in a 3D alginate scaffold. J Tissue Eng Regen Med 2019. [PMID: 29522657 DOI: 10.1002/term.2663] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the current study, the effect of superimposing platelet-rich plasma (PRP) on different culture mediums in a three-dimensional alginate scaffold encapsulated with adipose-derived mesenchymal stem cells for cartilage tissue repair is reported. The three-dimensional alginate scaffolds with co-administration of PRP and/or chondrogenic supplements had a significant effect on the differentiation of adipose mesenchymal stem cells into mature cartilage, as assessed by an evaluation of the expression of cartilage-related markers of Sox9, collagen II, aggrecan and collagen, and glycosaminoglycan assays. For in vivo studies, following induction of osteochondral lesion in a rabbit model, a high degree of tissue regeneration in the alginate plus cell group (treated with PRP plus chondrogenic medium) compared with other groups of cell-free alginate and untreated groups (control) were observed. After 8 weeks, in the alginate plus cell group, functional chondrocytes were observed, which produced immature matrix, and by 16 weeks, the matrix and hyaline-like cartilage became completely homogeneous and integrated with the natural surrounding cartilage in the defect site. Similar effect was also observed in the subchondral bone. The cell-free scaffolds formed fibrocartilage tissue, and the untreated group did not form a continuous cartilage over the defect by 16 weeks.
Collapse
Affiliation(s)
- Mohammad-Hossein Beigi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamid-Reza Ghanaei
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sheyda Labbaf
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Fatemeh Ejeian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad-Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
15
|
Calejo I, Costa-Almeida R, Reis RL, Gomes ME. Enthesis Tissue Engineering: Biological Requirements Meet at the Interface. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:330-356. [DOI: 10.1089/ten.teb.2018.0383] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Isabel Calejo
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa-Almeida
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Manuela E. Gomes
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
16
|
Han C, Na Y, Zhu Y, Kong L, Eerdun T, Yang X, Ren Y. Is platelet-rich plasma an ideal biomaterial for arthroscopic rotator cuff repair? A systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res 2019; 14:183. [PMID: 31221198 PMCID: PMC6585122 DOI: 10.1186/s13018-019-1207-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recently, many authors have reported the effects of platelet-rich plasma (PRP) on rotator cuff repair. Whether PRP treatment during arthroscopic rotator cuff repair improves tendon healing rates or restores full function remains unknown. The purpose of this meta-analysis was to evaluate the clinical improvement and radiological outcomes of PRP treatment in patients undergoing arthroscopic rotator cuff repair. METHODS PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials were searched. The study included only level 1 or 2 randomized controlled trials (RCTs) that compared the injection of platelet-rich plasma or platelet-rich fibrin matrix. The methodological quality of the trials was assessed using the Cochrane Handbook for Systematic Reviews of Interventions, 5.3. Continuous variables were analysed using the weighted mean difference, and categorical variables were assessed using relative risks. P < 0.05 was considered statistically significant. RESULTS The meta-analysis revealed a lower retear rate following PRP treatment than that following the control method (mean difference, 1.10; 95% CI, 1.03 to 1.18; P = 0.004). Constant shoulder scores improved with PRP (mean difference, 2.31; 95% CI, 1.02 to 3.61; P = 0.0005). PRP treatment also resulted in higher UCLA scores (mean difference, 0.98; 95% CI, 0.27 to 1.69; P = 0.007), and simple shoulder test scores were improved (mean difference, 0.43; 95% CI, 0.11 to 0.75; P = 0.008). Finally, lower visual analogue scale scores were observed with PRP augmentation (mean difference, - 0.35; 95% CI, - 0.57 to - 0.13; P = 0.002). CONCLUSIONS The current systematic review and meta-analysis reveals that PRP treatment with arthroscopic repair of rotator cuff tears decreases the retear rate and improves the clinical outcomes. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42016048416.
Collapse
Affiliation(s)
- Changxu Han
- Department of Arthroscopy and Sports Medicine, The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1 Yingfang Street, Huimin District, Hohhot, 010000, Inner Mongolia Autonomous Region, China
| | - Yuyan Na
- Department of Arthroscopy and Sports Medicine, The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1 Yingfang Street, Huimin District, Hohhot, 010000, Inner Mongolia Autonomous Region, China
| | - Yong Zhu
- Department of Spinal Surgery, The Second Hospital of Inner Mongolia Medical University, No. 1 Yingfang Street, Huimin District, Hohhot, 010000, Inner Mongolia Autonomous Region, China
| | - Lingyue Kong
- Department of Arthroscopy and Sports Medicine, The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1 Yingfang Street, Huimin District, Hohhot, 010000, Inner Mongolia Autonomous Region, China
| | - Tu Eerdun
- Department of Arthroscopy and Sports Medicine, The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1 Yingfang Street, Huimin District, Hohhot, 010000, Inner Mongolia Autonomous Region, China
| | - Xuejun Yang
- Department of Spinal Surgery, The Second Hospital of Inner Mongolia Medical University, No. 1 Yingfang Street, Huimin District, Hohhot, 010000, Inner Mongolia Autonomous Region, China.
| | - Yizhong Ren
- Department of Arthroscopy and Sports Medicine, The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1 Yingfang Street, Huimin District, Hohhot, 010000, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
17
|
Use of stem cells and growth factors in rotator cuff tendon repair. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2019; 29:747-757. [PMID: 30627922 DOI: 10.1007/s00590-019-02366-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
The management of rotator cuff tears continues to prove challenging for orthopaedic surgeons. Such tears affect most age groups and can lead to significant morbidity in patients. The aetiology of these tears is likely to be multifactorial; however, an understanding of the mechanisms involved is still under review. Despite advancements in surgical operative techniques and the materials used, post-operative recurrence rates after surgical repair remain high. A growing area of research surrounds biological adjuncts used to improve the healing potential of the repaired tissues. This review of recent publications focuses on the strengths and limitations of using stem cells and growth factors in rotator cuff repair.
Collapse
|
18
|
Narayanan G, Nair LS, Laurencin CT. Regenerative Engineering of the Rotator Cuff of the Shoulder. ACS Biomater Sci Eng 2018; 4:751-786. [PMID: 33418763 DOI: 10.1021/acsbiomaterials.7b00631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rotator cuff tears often heal poorly, leading to re-tears after repair. This is in part attributed to the low proliferative ability of the resident cells (tendon fibroblasts and tendon-stem cells) upon injury to the rotator cuff tissue and the low vascularity of the tendon insertion. In addition, surgical outcomes of current techniques used in clinical settings are often suboptimal, leading to the formation of neo-tissue with poor biomechanics and structural characteristics, which results in re-tears. This has prompted interest in a new approach, which we term as "Regenerative Engineering", for regenerating rotator cuff tendons. In the Regenerative Engineering paradigm, roles played by stem cells, scaffolds, growth factors/small molecules, the use of local physical forces, and morphogenesis interplayed with clinical surgery techniques may synchronously act, leading to synergistic effects and resulting in successful tissue regeneration. In this regard, various cell sources such as tendon fibroblasts and adult tissue-derived stem cells have been isolated, characterized, and investigated for regenerating rotator cuff tendons. Likewise, numerous scaffolds with varying architecture, geometry, and mechanical characteristics of biologic and synthetic origin have been developed. Furthermore, these scaffolds have been also fabricated with biochemical cues (growth factors and small molecules), facilitating tissue regeneration. In this Review, various strategies to regenerate rotator cuff tendons using stem cells, advanced materials, and factors in the setting of physical forces under the Regenerative Engineering paradigm are described.
Collapse
Affiliation(s)
- Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Lakshmi S Nair
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| |
Collapse
|
19
|
Takase F, Inui A, Mifune Y, Sakata R, Muto T, Harada Y, Ueda Y, Kokubu T, Kurosaka M. Effect of platelet-rich plasma on degeneration change of rotator cuff muscles: In vitro and in vivo evaluations. J Orthop Res 2017; 35:1806-1815. [PMID: 27684960 DOI: 10.1002/jor.23451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 09/23/2016] [Indexed: 02/04/2023]
Abstract
Atrophy with fatty degeneration is often seen in rotator cuff muscles with torn tendons. PRP has been reported to enhance tissue repair processes after tendon ruptures. However, the effect of PRP on atrophy and fatty degeneration of the muscle is not yet known. The aim of this study is to examine the effect of PRP on degeneration change of rotator cuff muscles in vitro and in vivo. A murine myogenic cell line and a rat rotator cuff tear model were used in this study and PRP was administrated into subacromial space which is widely used in clinical practice. In in vitro study, administration of PRP to C2C12 cells stimulated cell proliferation while inhibited both myogenic and adipogenic differentiation. In in vivo study, administration of PRP suppressed Oil Red-O positive lipid droplet formation. The expression of adipogenic genes was also decreased by PRP administration. In conclusion, PRP promoted proliferation of myoblast cells, while inhibiting adipogenic differentiation of myoblast cells and suppressing fatty degeneration change in rat torn rotator cuff muscles. Further investigations are needed to determine the clinical applicability of the PRP. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1806-1815, 2017.
Collapse
Affiliation(s)
- Fumiaki Takase
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ryosuke Sakata
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Tomoyuki Muto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshifumi Harada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yasuhiro Ueda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takeshi Kokubu
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
20
|
Abstract
Tendons connect muscles to bones, ensuring joint movement. With advanced age, tendons become more prone to degeneration followed by injuries. Tendon repair often requires lengthy periods of rehabilitation, especially in elderly patients. Existing medical and surgical treatments often fail to regain full tendon function. The development of novel treatment methods has been hampered due to limited understanding of basic tendon biology. Recently, it was discovered that tendons, similar to other mesenchymal tissues, contain tendon stem/progenitor cells (TSPCs) which possess the common stem cell properties. The current strategies for enhancing tendon repair consist mainly of applying stem cells, growth factors, natural and artificial biomaterials alone or in combination. In this review, we summarise the basic biology of tendon tissues and provide an update on the latest repair proposals for tendon tears.
Cite this article: EFORT Open Rev 2017;2:332-342. DOI: 10.1302/2058-5241.2.160075
Collapse
Affiliation(s)
- Fan Wu
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Michael Nerlich
- Department of Trauma Surgery, University Regensburg Medical Center, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Center, Regensburg, Germany and Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
21
|
Utilización del plasma rico en plaquetas en el tratamiento de la patología del manguito de los rotadores. ¿Qué hay demostrado científicamente? Rev Esp Cir Ortop Traumatol (Engl Ed) 2017; 61:249-258. [DOI: 10.1016/j.recot.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 02/16/2017] [Accepted: 03/14/2017] [Indexed: 01/07/2023] Open
|
22
|
Miranda I, Sánchez-Alepuz E, Lucas F, Carratalá V, González-Jofre C. Use of platelet-rich plasma in the treatment of rotator cuff pathology. What has been scientifically proven? Rev Esp Cir Ortop Traumatol (Engl Ed) 2017. [DOI: 10.1016/j.recote.2017.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
23
|
Jo CH, Shin WH, Park JW, Shin JS, Kim JE. Degree of tendon degeneration and stage of rotator cuff disease. Knee Surg Sports Traumatol Arthrosc 2017; 25:2100-2108. [PMID: 27896393 DOI: 10.1007/s00167-016-4376-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022]
Abstract
PURPOSE While tendon degeneration has been known to be an important cause of rotator cuff disease, few studies have objectively proven the association of tendon degeneration and rotator cuff disease. The purpose of this study was to investigate changes of tendon degeneration with respect to the stage of rotator cuff disease. METHODS A total of 48 patients were included in the study: 12 with tendinopathy, 12 with a partial-thickness tear (pRCT), 12 with a full-thickness tear (fRCT), and 12 as the control. A full-thickness supraspinatus tendon sample was harvested en bloc from the middle portion between the lateral edge and the musculotendinous junction of the tendon using a biopsy punch with a diameter of 3 mm. Harvested samples were evaluated using a semi-quantitative grading scale with 7 parameters after haematoxylin and eosin staining. RESULTS There was no significant difference in age, gender, symptom duration, and Kellgren-Lawrence grade between the groups except for the global fatty degeneration index. All of the seven parameters were significantly different between the groups and could be categorized as follows: early responders (fibre structure and arrangement), gradual responder (rounding of the nuclei), after-tear responders (cellularity, vascularity, and stainability), and late responder (hyalinization). The total degeneration scores were not significantly different between the control (6.08 ± 1.16) and tendinopathy (6.67 ± 1.83) (n.s.). However, the score of pRCT group (10.42 ± 1.31) was greater than that of tendinopathy (P < 0.001), and so was the score of fRCT (12.33 ± 1.15) than that of pRCT (p = 0.009). CONCLUSION This study showed that the degeneration of supraspinatus tendon increases as the stage of rotator cuff disease progresses from tendinopathy to pRCT, and then to fRCT. The degree of degeneration of tendinopathy was not different from that of normal but aged tendons, and significant tendon degeneration began from the stage of pRCT. The clinical relevance of the study is that strategies and goals of the treatment for rotator cuff disease should be specific to its stage, in order to prevent disease progression for tendinopathy and pRCT, as well to restore the structural integrity for fRCT. LEVEL OF EVIDENCE Diagnostic, Level I.
Collapse
Affiliation(s)
- Chris Hyunchul Jo
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-Gu, Seoul, 07061, Korea.
| | - Won Hyoung Shin
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-Gu, Seoul, 07061, Korea
| | - Ji Wan Park
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-Gu, Seoul, 07061, Korea
| | - Ji Sun Shin
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-Gu, Seoul, 07061, Korea
| | - Ji Eun Kim
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Nejati P, Ghahremaninia A, Naderi F, Gharibzadeh S, Mazaherinezhad A. Treatment of Subacromial Impingement Syndrome: Platelet-Rich Plasma or Exercise Therapy? A Randomized Controlled Trial. Orthop J Sports Med 2017; 5:2325967117702366. [PMID: 28567426 PMCID: PMC5439655 DOI: 10.1177/2325967117702366] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Subacromial impingement syndrome (SAIS) is the most common disorder of the shoulder. The evidence for the effectiveness of treatment options is inconclusive and limited. Therefore, there is a need for more evidence in this regard, particularly for long-term outcomes. HYPOTHESIS Platelet-rich plasma (PRP) would be an effective method in treating subacromial impingement. STUDY DESIGN Randomized controlled trial; Level of evidence, 1. METHODS This was a single-blinded randomized clinical trial with 1-, 3-, and 6-month follow-up. Sixty-two patients were randomly placed into 2 groups, receiving either PRP or exercise therapy. The outcome parameters were pain, shoulder range of motion (ROM), muscle force, functionality, and magnetic resonance imaging findings. RESULTS Both treatment options significantly reduced pain and increased shoulder ROM compared with baseline measurements. Both treatments also significantly improved functionality. However, the treatment choices were not significantly effective in improving muscle force. Trend analysis revealed that in the first and third months, exercise therapy was superior to PRP in pain, shoulder flexion and abduction, and functionality. However, in the sixth month, only shoulder abduction and total Western Ontario Rotator Cuff score were significantly different between the 2 groups. CONCLUSION Both PRP injection and exercise therapy were effective in reducing pain and disability in patients with SAIS, with exercise therapy proving more effective.
Collapse
Affiliation(s)
- Parisa Nejati
- Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Farrokh Naderi
- Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Safoora Gharibzadeh
- Research Centre for Emerging and Reemerging Infectious Diseases, Department of Epidemiology and Biostatistics, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Mazaherinezhad
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Giotis D, Aryaei A, Vasilakakos T, Paschos NK. Effectiveness of Biologic Factors in Shoulder Disorders. Open Orthop J 2017; 11:163-182. [PMID: 28400884 PMCID: PMC5366381 DOI: 10.2174/1874325001711010163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022] Open
Abstract
Background: Shoulder pathology can cause significant pain, discomfort, and loss of function that all interfere with activities of daily living and may lead to poor quality of life. Primary osteoarthritis and rotator cuff diseases with its sequalae are the main culprits. Management of shoulder disorders using biological factors gained an increasing interest over the last years. This interest reveals the need of effective treatments for shoulder degenerative disorders, and highlights the importance of a comprehensive and detailed understanding of the rapidly increasing knowledge in the field. Methods: This study will describe most of the available biology-based strategies that have been recently developed, focusing on their effectiveness in animal and clinical studies. Results: Data from in vitro work will also be briefly presented; in order to further elucidate newly acquired knowledge regarding mechanisms of tissue degeneration and repair that would probably drive translational work in the next decade. The role of platelet rich-plasma, growth factors, stem cells and other alternative treatments will be described in an evidence-based approach, in an attempt to provide guidelines for their clinical application. Finally, certain challenges that biologic treatments face today will be described as an initiative for future strategies. Conclusion: The application of different growth factors and mesenchymal stem cells appears as promising approaches for enhancing biologic repair. However, data from clinical studies are still limited, and future studies need to improve understanding of the repair process in cellular and molecular level and evaluate the effectiveness of biologic factors in the management of shoulder disorders.
Collapse
Affiliation(s)
- Dimitrios Giotis
- Department of Trauma & Orthopaedic Surgery, University of Ioannina, Ioannina, Greece
| | - Ashkan Aryaei
- Department of Biomedical Engineering, University of California, Davis, USA
| | - Theofanis Vasilakakos
- Department of Trauma & Orthopaedic Surgery, University of Ioannina, Ioannina, Greece
| | - Nikolaos K Paschos
- Department of Trauma & Orthopaedic Surgery, University of Ioannina, Ioannina, Greece; Department of Biomedical Engineering, University of California, Davis, USA
| |
Collapse
|
26
|
Chahla J, Cinque M, LaPrade RF, Mandelbaum B. Overview of Orthobiology and Biomechanics. BIO-ORTHOPAEDICS 2017:25-40. [DOI: 10.1007/978-3-662-54181-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
D'Ambrosi R, Palumbo F, Paronzini A, Ragone V, Facchini RM. Platelet-rich plasma supplementation in arthroscopic repair of full-thickness rotator cuff tears: a randomized clinical trial. Musculoskelet Surg 2016; 100:25-32. [PMID: 27900700 DOI: 10.1007/s12306-016-0415-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Results on the effectiveness of PRP supplementation in arthroscopic rotator cuff repair are conflicting, making it difficult to draw definitive conclusions. METHODS This was a prospective, randomized, and double-blind study with two groups of 20 patients each (PRP group and control group). Degenerative supraspinatus full-thickness tears grade C2-C3 were subjected to arthroscopic repair; PRP supplementation was given to patients in the PRP group. The outcomes were assessed by DASH, Constant scales, and ultrasound before and 6 months after surgery. Pain measured by VAS was evaluated preoperatively and 7 and 30 days after surgery. RESULTS The two groups did not differ significantly by age, sex, and dominance of the affected side. In all surgical procedures, a long head of the biceps tenotomy and single-row repair were performed. The preoperative VAS was 5.6 ± 2.4 in PRP group and 6.4 ± 1.5 in the control group (p > 0.05). The group supplemented with PRP reported a VAS significantly better in the first week (2.5 ± 1.9 vs 5.3 ± 2.1, p < 0.05) and during the first month after surgery (1.5 ± 1.0 vs 3.2 ± 1.7, p < 0.05) compared to the control group. The preoperative Constant and DASH scores were 39.95 ± 12 and 51 ± 15.2, respectively, in the PRP group and 41 ± 11 (p > 0.05) and 45 ± 12.6 (p > 0.05) in the control group. The average Constant score improved significantly after 6 months to 81 ± 11.2 (p < 0.05) in the PRP group and 78.5 ± 9 (p < 0.05) in the control group. No differences were noted between the two groups (p > 0.05). The DASH score after 6 months was 17.4 ± 8 (p < 0.05) for the treatment group (the PRP group) and 21 ± 8.4 (p < 0.05) for the control group. No statistically significant differences were found as regards the DASH score in the two groups after 6 months (p > 0.05). The two groups showed no differences in the ultrasound evaluation after 6 months either. No re-ruptures occurred in either group. CONCLUSIONS PRP leads to a reduction in pain during a short-term follow-up. Pain reduction allows for a more rapid recovery of mobilization and improvement in functionality. LEVEL OF EVIDENCE Randomized controlled trial, Level of evidence, 1.
Collapse
Affiliation(s)
- R D'Ambrosi
- U.O. Clinica Ortopedica e Traumatologica, Centro Traumatologico Ortopedico, Università degli Studi di Milano, Milan, Italy.
| | - F Palumbo
- U.O. Clinica Ortopedica e Traumatologica, Centro Traumatologico Ortopedico, Università degli Studi di Milano, Milan, Italy
| | - A Paronzini
- U.O. Clinica Ortopedica e Traumatologica, Centro Traumatologico Ortopedico, Università degli Studi di Milano, Milan, Italy
| | - V Ragone
- IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - R M Facchini
- U.O. Clinica Ortopedica e Traumatologica, Centro Traumatologico Ortopedico, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
28
|
Jo CH, Shin JS, Shin WH, Lee SY, Yoon KS, Shin S. Platelet-rich plasma for arthroscopic repair of medium to large rotator cuff tears: a randomized controlled trial. Am J Sports Med 2015; 43:2102-10. [PMID: 26015443 DOI: 10.1177/0363546515587081] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Two main questions about the use of platelet-rich plasma (PRP) for regeneration purposes are its effect on the speed of healing and the quality of healing. Despite recent numerous studies, evidence is still lacking in this area, especially in a representative patient population with medium to large rotator cuff tears. PURPOSE To assess the efficacy of PRP augmentation on the speed and quality of healing in patients undergoing arthroscopic repair for medium to large rotator cuff tears. STUDY DESIGN Randomized controlled trial; Level of evidence, 1. METHODS A total of 74 patients scheduled for arthroscopic repair of medium to large rotator cuff tears were randomly assigned to undergo either PRP-augmented repair (PRP group) or conventional repair (conventional group). In the PRP group, 3 PRP gels (3 × 3 mL) were applied to each patient between the torn end and the greater tuberosity. The primary outcome was the Constant score at 3 months after surgery. Secondary outcome measures included the visual analog scale (VAS) for pain, range of motion (ROM), muscle strength, overall satisfaction and function, functional scores, retear rate, and change in the cross-sectional area (CSA) of the supraspinatus muscle. RESULTS There was no difference between the 2 groups in the Constant score at 3 months (P > .05). The 2 groups had similar results on the VAS for pain, ROM, muscle strength, overall satisfaction and function, and other functional scores (all P > .05) except for the VAS for worst pain (P = .043). The retear rate of the PRP group (3.0%) was significantly lower than that of the conventional group (20.0%) (P = .032). The change in 1-year postoperative and immediately postoperative CSAs was significantly different between the 2 groups: -36.76 ± 45.31 mm(2) in the PRP group versus -67.47 ± 47.26 mm(2) in the conventional group (P = .014). CONCLUSION Compared with repairs without PRP augmentation, the current PRP preparation and application methods for medium to large rotator cuff repairs significantly improved the quality, as evidenced by a decreased retear rate and increased CSA of the supraspinatus, but not the speed of healing. However, further studies may be needed to investigate the effects of PRP on the speed of healing without risking the quality.
Collapse
Affiliation(s)
- Chris Hyunchul Jo
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea.
| | - Ji Sun Shin
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Won Hyoung Shin
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Yeon Lee
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kang Sup Yoon
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Sue Shin
- Department of Laboratory Medicine, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
|
30
|
Hogan MV, Kawakami Y, Murawski CD, Fu FH. Tissue engineering of ligaments for reconstructive surgery. Arthroscopy 2015; 31:971-9. [PMID: 25618491 DOI: 10.1016/j.arthro.2014.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/30/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023]
Abstract
PURPOSE The use of musculoskeletal bioengineering and regenerative medicine applications in orthopaedic surgery has continued to evolve. The aim of this systematic review was to address tissue-engineering strategies for knee ligament reconstruction. METHODS A systematic review of PubMed/Medline using the terms "knee AND ligament" AND "tissue engineering" OR "regenerative medicine" was performed. Two authors performed the search, independently assessed the studies for inclusion, and extracted the data for inclusion in the review. Both preclinical and clinical studies were reviewed, and the articles deemed most relevant were included in this article to provide relevant basic science and recent clinical translational knowledge concerning "tissue-engineering" strategies currently used in knee ligament reconstruction. RESULTS A total of 224 articles were reviewed in our initial PubMed search. Non-English-language studies were excluded. Clinical and preclinical studies were identified, and those with a focus on knee ligament tissue-engineering strategies including stem cell-based therapies, growth factor administration, hybrid biomaterial, and scaffold development, as well as mechanical stimulation modalities, were reviewed. CONCLUSIONS The body of knowledge surrounding tissue-engineering strategies for ligament reconstruction continues to expand. Presently, various tissue-engineering techniques have some potential advantages, including faster recovery, better ligamentization, and possibly, a reduction of recurrence. Preclinical research of these novel therapies continues to provide promising results. There remains a need for well-designed, high-powered comparative clinical studies to serve as a foundation for successful translation into the clinical setting going forward. LEVEL OF EVIDENCE Level IV, systematic review of Level IV studies.
Collapse
Affiliation(s)
- MaCalus V Hogan
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, U.S.A
| | - Yohei Kawakami
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, U.S.A
| | - Christopher D Murawski
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, U.S.A
| | - Freddie H Fu
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, U.S.A..
| |
Collapse
|
31
|
Atalay Y, Bozkurt MF, Gonul Y, Cakmak O, Agacayak KS, Köse I, Hazman O, Keles H, Turamanlar O, Eroglu M. The effects of amlodipine and platelet rich plasma on bone healing in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1973-81. [PMID: 25897207 PMCID: PMC4396585 DOI: 10.2147/dddt.s80778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aim The aim of this study was to evaluate the effects of calcium channel blocker (CCB) amlodipine (AML), platelet rich plasma (PRP), and a mixture of both materials on bone healing. Materials and methods Fifty-six male Wistar rats were randomly divided into four groups: group A, tibia defect model with no treatment; group B, tibia defect model treated with AML, 0.04 mg daily by oral gavage; group C, tibia defect model treated with local PRP; group D, tibia defect model treated with local PRP and AML, 0.04 mg daily by oral gavage. Results At day 21, bone healing was significantly better in groups C and D compared to group A (P<0.05), but comparisons showed no statistically significant difference in group B (P>0.05). At day 30, groups B and C showed no statistically significant difference (P>0.05) compared to group A, but bone healing in group D was significantly better than in group A (P<0.05). Statistically, AML did not affect alkaline phosphatase (ALP) activity at 21 and 30 days (P>0.05), but PRP and AML + PRP increased ALP activity statistically (P<0.05). Conclusion It can be concluded that AML had neither a positive nor a negative effect on bone healing, but when used in combination with PRP, it may be beneficial.
Collapse
Affiliation(s)
- Yusuf Atalay
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Mehmet Fatih Bozkurt
- Department of Pathology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Yucel Gonul
- Department of Anatomy, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Omer Cakmak
- Department of Periodontology, Faculty of Dentistry, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Kamil Serkan Agacayak
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Dicle University, Diyarbakır, Turkey
| | - Ibrahim Köse
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Adıyaman University, Adıyaman, Turkey
| | - Omer Hazman
- Department of Biochemistry, Faculty of Sciences, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Hikmet Keles
- Department of Pathology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Ozan Turamanlar
- Department of Anatomy, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Mehmet Eroglu
- Department of Orthopedics and Traumatology, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
32
|
Zhao JG, Zhao L, Jiang YX, Wang ZL, Wang J, Zhang P. Platelet-rich plasma in arthroscopic rotator cuff repair: a meta-analysis of randomized controlled trials. Arthroscopy 2015; 31:125-35. [PMID: 25278352 DOI: 10.1016/j.arthro.2014.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 07/27/2014] [Accepted: 08/07/2014] [Indexed: 02/08/2023]
Abstract
PURPOSE The purpose of this study was to appraise the retear rate and clinical outcomes of platelet-rich plasma use in patients undergoing arthroscopic full-thickness rotator cuff repair. METHODS We searched the Cochrane Library, PubMed, and EMBASE databases for randomized controlled trials comparing the outcomes of arthroscopic rotator cuff surgery with or without the use of platelet-rich plasma. Methodological quality was assessed by the Detsky quality scale. When there was no high heterogeneity, we used a fixed-effects model. Dichotomous variables were presented as risk ratios (RRs) with 95% confidence intervals (CIs), and continuous data were measured as mean differences with 95% CIs. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system was used to assess the quality of evidence for each individual outcome. RESULTS Eight randomized controlled trials were included, with the sample size ranging from 28 to 88. Overall methodological quality was high. Fixed-effects analysis showed that differences were not significant between the 2 groups in retear rate (RR, 0.94; 95% CI, 0.70 to 1.25; P = .66), Constant score (mean difference, 1.12; 95% CI, -1.38 to 3.61; P = .38), and University of California at Los Angeles (UCLA) score (mean difference, -0.68; 95% CI, -2.00 to 0.65; P = .32). The strength of GRADE evidence was categorized respectively as low for retear, moderate for Constant score, and low for UCLA shoulder score. CONCLUSIONS Our meta-analysis does not support the use of platelet-rich plasma in the arthroscopic repair of full-thickness rotator cuff tears over repairs without platelet-rich plasma because of similar retear rates and clinical outcomes. LEVEL OF EVIDENCE Level II, meta-analysis of Level I and II randomized controlled trials.
Collapse
Affiliation(s)
- Jia-Guo Zhao
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin, China.
| | - Li Zhao
- Department of Sports Medicine and Arthroscopic Surgery, Tianjin Hospital, Tianjin, China
| | - Yan-Xia Jiang
- Department of Internal Medicine, First People's Hospital of Jingdezhen City, Jingdezhen, China
| | - Zeng-Liang Wang
- Department of Sports Medicine and Arthroscopic Surgery, Tianjin Hospital, Tianjin, China
| | - Jia Wang
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin, China
| | - Peng Zhang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
33
|
Wu Y, Dong Y, Chen S, Li Y. Effect of platelet-rich plasma and bioactive glass powder for the improvement of rotator cuff tendon-to-bone healing in a rabbit model. Int J Mol Sci 2014; 15:21980-91. [PMID: 25464384 PMCID: PMC4284689 DOI: 10.3390/ijms151221980] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/13/2014] [Accepted: 11/25/2014] [Indexed: 02/06/2023] Open
Abstract
To test the hypothesis that a platelet-rich plasma (PRP) plus bioactive glass (BG) mixture could shorten the tendon-bone healing process in rotator cuff tendon repair, thirty mature male New Zealand white rabbits were randomly divided into three groups, Control, PRP, and PRP + BG. All groups underwent a surgical procedure to establish a rotator cuff tendon healing model. Mechanical examinations and histological assays were taken to verify the adhesion of the tendon-bone. Real-time PCR was adopted to analyze Bone Morphogenetic Protein-2 (BMP-2). The maximum load-to-failure value in mechanical examinations was significantly higher in the PRP + BG group than that in the control group after six weeks (Control 38.73 ± 8.58, PRP 54.49 ± 8.72, PRP + BG 79.15 ± 7.62, p < 0.001), but it was not significantly different at 12 weeks (PRP 74.27 ± 7.74, PRP + BG 82.57 ± 6.63, p = 0.145). In histological assays, H&E (hematoxylin-eosin) staining showed that the interface between the tendon-bone integration was much sturdier in the PRP + BG group compared to the other two groups at each time point, and more ordered arranged tendon fibers can be seen at 12 weeks. At six weeks, the mRNA expression levels of BMP-2 in the PRP + BG group were higher than those in the other groups (PRP + BG 0.65 ± 0.11, PRP 2.284 ± 0.07, Control 0.12 ± 0.05, p < 0.05). However, there was no significant difference in the mRNA expression levels of BMP-2 among the three groups at 12 weeks (p = 0.922, 0.067, 0.056). BMP-2 levels in PRP and PRP+BG groups were significantly lower at 12 weeks compared to six weeks (p = 0.006, <0.001).We found that the PRP + BG mixture could enhance tendon-bone healing in rotator cuff tendon repair.
Collapse
Affiliation(s)
- Yang Wu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yu Dong
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yunxia Li
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
34
|
Regenerative medicine in rotator cuff injuries. BIOMED RESEARCH INTERNATIONAL 2014; 2014:129515. [PMID: 25184132 PMCID: PMC4145545 DOI: 10.1155/2014/129515] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/23/2014] [Accepted: 07/27/2014] [Indexed: 02/07/2023]
Abstract
Rotator cuff injuries are a common source of shoulder pathology and result in an important decrease in quality of patient life. Given the frequency of these injuries, as well as the relatively poor result of surgical intervention, it is not surprising that new and innovative strategies like tissue engineering have become more appealing. Tissue-engineering strategies involve the use of cells and/or bioactive factors to promote tendon regeneration via natural processes. The ability of numerous growth factors to affect tendon healing has been extensively analyzed in vitro and in animal models, showing promising results. Platelet-rich plasma (PRP) is a whole blood fraction which contains several growth factors. Controlled clinical studies using different autologous PRP formulations have provided controversial results. However, favourable structural healing rates have been observed for surgical repair of small and medium rotator cuff tears. Cell-based approaches have also been suggested to enhance tendon healing. Bone marrow is a well known source of mesenchymal stem cells (MSCs). Recently, ex vivo human studies have isolated and cultured distinct populations of MSCs from rotator cuff tendons, long head of the biceps tendon, subacromial bursa, and glenohumeral synovia. Stem cells therapies represent a novel frontier in the management of rotator cuff disease that required further basic and clinical research.
Collapse
|
35
|
Spanoudes K, Gaspar D, Pandit A, Zeugolis DI. The biophysical, biochemical, and biological toolbox for tenogenic phenotype maintenance in vitro. Trends Biotechnol 2014; 32:474-82. [PMID: 25043371 DOI: 10.1016/j.tibtech.2014.06.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/16/2014] [Accepted: 06/25/2014] [Indexed: 12/14/2022]
Abstract
Tendon injuries constitute an unmet clinical need, with 3 to 5 million new incidents occurring annually worldwide. Tissue grafting and biomaterial-based approaches fail to provide environments that are conducive to regeneration; instead they lead to nonspecific cell adhesion and scar tissue formation, which collectively impair functionality. Cell based therapies may potentially recover native tendon function, if tenocyte trans-differentiation can be evaded and stem cell differentiation towards tenogenic lineage is attained. To this end, recreating an artificial in vivo tendon niche by engineering functional in vitro microenvironments is a research priority. Clinically relevant cell based therapies for tendon repair and regeneration could be created using tools that harness biophysical beacons (surface topography, mechanical loading), biochemical cues (oxygen tension), and biological signals (growth factors).
Collapse
Affiliation(s)
- Kyriakos Spanoudes
- Network of Excellence for Functional Biomaterials (NFB), Biosciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Diana Gaspar
- Network of Excellence for Functional Biomaterials (NFB), Biosciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), Biosciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Network of Excellence for Functional Biomaterials (NFB), Biosciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|