1
|
Della Salda L, Bongiovanni L, Massimini M, Romanucci M, Vercelli A, Colosimo A, Di Matteo R, Defourny SVP. p63 immunoexpression in hair follicles of normal and alopecia X-affected skin of Pomeranian dogs. Vet Dermatol 2023; 34:567-575. [PMID: 37518946 DOI: 10.1111/vde.13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/10/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Alopecia X in Pomeranians is caused by a hair cycle deregulation, associated with downregulation of key regulatory genes of the Wnt and Shh pathways, and stem-cell markers. However, the pathogenesis remains unclear. p63 is an important transcription factor correlated with the aforementioned hair cycle modulating genes. HYPOTHESIS/OBJECTIVES The aim of this study was to highlight possible changes of p63 immunohistochemical expression within the hair follicles in canine alopecia X compared with normal skin. ANIMALS Skin biopsies from 19 alopecia X-affected and six control Pomeranians were analysed. MATERIALS AND METHODS Serial histological sections of skin biopsies harbouring anagen, telogen and kenogen hair follicles were immunohistochemically evaluated for differences in p63 expression in the affected and control samples. RESULTS Dogs with alopecia X had a significantly decreased immunoexpression of p63 in telogen and kenogen hair follicles. CONCLUSIONS AND CLINICAL RELEVANCE The decrease of p63 immunoexpression observed in canine alopecia X suggests an involvement of p63 in hair cycle.
Collapse
Affiliation(s)
| | - Laura Bongiovanni
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
- Department of Biomolecular Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | | | - Antonella Vercelli
- Veterinary Clinic and Analysis Laboratory 'Città di Torino', Turin, Italy
| | - Alessia Colosimo
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Ramona Di Matteo
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | |
Collapse
|
2
|
Li Y, Giovannini S, Wang T, Fang J, Li P, Shao C, Wang Y, Shi Y, Candi E, Melino G, Bernassola F. p63: a crucial player in epithelial stemness regulation. Oncogene 2023; 42:3371-3384. [PMID: 37848625 PMCID: PMC10638092 DOI: 10.1038/s41388-023-02859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Epithelial tissue homeostasis is closely associated with the self-renewal and differentiation behaviors of epithelial stem cells (ESCs). p63, a well-known marker of ESCs, is an indispensable factor for their biological activities during epithelial development. The diversity of p63 isoforms expressed in distinct tissues allows this transcription factor to have a wide array of effects. p63 coordinates the transcription of genes involved in cell survival, stem cell self-renewal, migration, differentiation, and epithelial-to-mesenchymal transition. Through the regulation of these biological processes, p63 contributes to, not only normal epithelial development, but also epithelium-derived cancer pathogenesis. In this review, we provide an overview of the role of p63 in epithelial stemness regulation, including self-renewal, differentiation, proliferation, and senescence. We describe the differential expression of TAp63 and ΔNp63 isoforms and their distinct functional activities in normal epithelial tissues and in epithelium-derived tumors. Furthermore, we summarize the signaling cascades modulating the TAp63 and ΔNp63 isoforms as well as their downstream pathways in stemness regulation.
Collapse
Affiliation(s)
- Yanan Li
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Sara Giovannini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Tingting Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Peishan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai, 200031, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
3
|
Duchatelet S, Russo C, Osterburg C, Mallet S, Bole-Feysot C, Nitschké P, Richard MA, Dötsch V, Missero C, Nassif A, Hovnanian A. A TP63 Mutation Causes Prominent Alopecia with Mild Ectodermal Dysplasia. J Invest Dermatol 2019; 140:1103-1106.e4. [PMID: 31682841 DOI: 10.1016/j.jid.2019.06.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Sabine Duchatelet
- Laboratory of Genetic Skin Diseases, INSERM Imagine Institute, Paris, France; Paris Descartes University, Paris, France
| | - Claudia Russo
- CEINGE Biotecnologie Avanzate and Department of Biology, University of Naples Federico II, Naples, Italy
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Stéphanie Mallet
- Dermatology Department, EA 3279: CEReSS -Health Service Research and Quality of Life Center, Timone Hospital, Assistance Publique Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Christine Bole-Feysot
- Paris Descartes University, Paris, France; Genomic Platform, INSERM Imagine Institute, Paris, France
| | - Patrick Nitschké
- Paris Descartes University, Paris, France; Bioinformatics Platform, INSERM Imagine Institute, Paris, France
| | - Marie-Aleth Richard
- Dermatology Department, EA 3279: CEReSS -Health Service Research and Quality of Life Center, Timone Hospital, Assistance Publique Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate and Department of Biology, University of Naples Federico II, Naples, Italy
| | - Aude Nassif
- Medical Center, Institut Pasteur, Paris, France
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, INSERM Imagine Institute, Paris, France; Paris Descartes University, Paris, France; Department of Genetics, Necker-Enfants Malades Hospital, Assistance Publique des Hôpitaux de Paris, (AP-HP), Paris, France.
| |
Collapse
|
4
|
Elmaadawi IH, Mohamed BM, Ibrahim ZAS, Abdou SM, El Attar YA, Youssef A, Shamloula MM, Taha A, Metwally HG, El Afandy MM, Salem ML. Stem cell therapy as a novel therapeutic intervention for resistant cases of alopecia areata and androgenetic alopecia. J DERMATOL TREAT 2018; 29:431-440. [PMID: 27553744 DOI: 10.1080/09546634.2016.1227419] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Management of alopecia areata (AA) and androgenetic alopecia (AGA) is often challenging as patients may be resistant to currently available modalities of treatment. The use of stem cells may be a novel option for resistant cases. OBJECTIVE To evaluate the safety and efficacy of the use of autologous bone marrow derived mononuclear cells (including stem cells) as compared to follicular stems cells for the management of resistant cases of AA and AGA. METHODS This study included 40 patients (20 AA patients and 20 AGA patients), all patients were treated with a single session of intradermal injection of autologous stem cells (SCs) therapy. They were divided into four groups according to the applied modality [either autologous bone marrow derived mononuclear cells (bone marrow mononuclear cells [BMMCs] or autologous follicular stem cells [FSC]). RESULTS Six months after stem cell therapy (SCT) injection, there was a significant improvement, confirmed by immunostaining and digital dermoscopy. The mean improvement in all groups was "very good". There was no significant difference between both methods in either type of alopecia. No serious adverse events were reported. CONCLUSION Autologous BMMCs and FSC seem to be a safe tolerable and effective treatment for the management of both resistant AA and AGA.
Collapse
Affiliation(s)
- Iman Hamed Elmaadawi
- a Department of Dematology and Venereology , Faculty of Medicine, Tanta University , Tanta , Egypt
| | - Basma Mourad Mohamed
- a Department of Dematology and Venereology , Faculty of Medicine, Tanta University , Tanta , Egypt
| | | | - Said Mohamed Abdou
- b Department of Clinical Pathology , Faculty of Medicine, Tanta University , Tanta , Egypt
| | - Yasmina Ahmed El Attar
- a Department of Dematology and Venereology , Faculty of Medicine, Tanta University , Tanta , Egypt
| | - Amira Youssef
- b Department of Clinical Pathology , Faculty of Medicine, Tanta University , Tanta , Egypt
| | | | - Atef Taha
- d Department of Internal Medicine, Faculty of Medicine , Tanta University , Tanta , Egypt
| | - Hala Gabr Metwally
- e Department Clinical Pathology, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Mohamed M El Afandy
- f Department of Anathesia and Intensive Care, Faculty of Medicine , Tanta University , Tanta , Egypt
| | - Mohamed Labib Salem
- g Department of Zoology, Immunology and Biotechnology Unit, Faculty of Science , Center of Excellence in Cancer Research, Tanta University , Tanta , Egypt
| |
Collapse
|
5
|
Li Z, Li J, Gu L, Zhang D, Wang Y, Sung C. Ginsenosides Rb
1
and Rd Regulate Proliferation of Mature Keratinocytes Through Induction of p63 Expression in Hair Follicles. Phytother Res 2012; 27:1095-101. [DOI: 10.1002/ptr.4828] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/24/2012] [Accepted: 07/30/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Zheng Li
- Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University Daejeon 305‐764 South Korea
| | - Jing‐Jie Li
- Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University Daejeon 305‐764 South Korea
| | - Li‐Juan Gu
- Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University Daejeon 305‐764 South Korea
| | - Dong‐Liang Zhang
- Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University Daejeon 305‐764 South Korea
| | - Yun‐Bo Wang
- Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University Daejeon 305‐764 South Korea
| | - Chang‐Keun Sung
- Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University Daejeon 305‐764 South Korea
| |
Collapse
|
6
|
Rittié L, Stoll SW, Kang S, Voorhees JJ, Fisher GJ. Hedgehog signaling maintains hair follicle stem cell phenotype in young and aged human skin. Aging Cell 2009; 8:738-51. [PMID: 20050020 DOI: 10.1111/j.1474-9726.2009.00526.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skin hair follicles (HF) contain bulge stem cells (SC) that regenerate HFs during hair cycles, and repair skin epithelia following injury. As natural aging is associated with decreased skin repair capacity in humans, we have investigated the impact of age on human scalp HF bulge cell number and function. Here, we isolated human bulge cells, characterized as CD200+/KRT15+/KRT19+ cells of the HF, by dissection-combined CD200 selection in young and aged human skin. Targeted transcriptional profiling indicates that KRT15, KRT19, Dkk3, Dkk4, Tcf3, S100A4, Gas1, EGFR and CTGF/CCN2 are also preferentially expressed by human bulge cells, compared to differentiated HF keratinocytes (KC). Our results demonstrate that aging does not alter expression or localization of these HF SC markers. In addition, we could not detect significant differences in HF density or bulge cell number between young and aged human scalp skin. Interestingly, hedgehog (Hh) signaling is activated in human bulge cells in vivo, and down-regulated in differentiated HF KCs, both in young and aged skin. In addition, activation of Hh signaling by lentivirus-mediated overexpression of transcription factor Gli1 induces transcription of HF SC markers KRT15, KRT19, and Gas1, in cultured KCs. Together with previously reported knock-out mouse results, these data suggest a role for Hh signaling in maintaining bulge cell phenotype in young and aged human skin.
Collapse
Affiliation(s)
- Laure Rittié
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | |
Collapse
|