1
|
Zheng Q, Bao P, Wu X, Zhang X, Huang C, Wang T, Ma C, Zhang M, Chu M, Guo X, Liang C, Pan H, Yan P. Integration of bulk and single-cell RNA sequencing reveals dynamic changes in epidermal cells. Int J Biol Macromol 2025; 309:142601. [PMID: 40158578 DOI: 10.1016/j.ijbiomac.2025.142601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
The epidermis and its appendages serve as key systems in stem cell biology. However, despite extensive research, the dynamic changes in these structures and the regulatory mechanisms governing cell behavior during the hair follicle cycle remain incompletely understood. In this study, we employed bulk and single-cell RNA sequencing to investigate the molecular regulation of yak epidermal cell populations across the anagen, catagen, and telogen phases. Through bulk transcriptomics screening, the hub genes potentially involved in the hair follicle cycle of yaks were identified. Single-cell RNA sequencing further revealed the temporal and spatial dynamics of 14 different cell populations in the hair follicle cycle, and reconstructed the trajectory of epidermal cell differentiation. We also found a large overlap of gene modules in the hair follicle microenvironment. Differential gene enrichment analysis of different branches further revealed that the function of hair follicle stem cells is closely related to their spatial location in tissues and their ability to adhere to the basement membrane. Our study not only provides valuable resources for understanding the molecular pathways of the time axis and spatial axis of the hair follicle cycle but is also highly important for future yak breeding.
Collapse
Affiliation(s)
- Qingbo Zheng
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaolan Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chun Huang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tong Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chaofan Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Minghao Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Heping Pan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China.
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
2
|
Tu Y, An R, Gu H, Li N, Yan H, Liu HY, He L. The water extracts from the oil cakes of Prinsepia utilis repair the epidermal barrier via up-regulating Corneocyte Envelope-proteins, lipid synthases, and tight junction proteins. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118194. [PMID: 38641077 DOI: 10.1016/j.jep.2024.118194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prinsepia utilis Royle, native to the Himalayan region, has a long history of use in traditional medicine for its heat-clearing, detoxification, anti-inflammatory, and analgesic properties. Oils extracted from P. utilis seeds are also used in cooking and cosmetics. With the increasing market demand, this extraction process generates substantial industrial biowastes. Recent studies have found many health benefits with using aqueous extracts of these biowastes, which are also rich in polysaccharides. However, there is limited research related to the reparative effects of the water extracts of P. utilis oil cakes (WEPUOC) on disruptions of the skin barrier function. AIM OF THE STUDY This study aimed to evaluate the reparative efficacy of WEPUOC in both acute and chronic epidermal permeability barrier disruptions. Furthermore, the study sought to explore the underlying mechanisms involved in repairing the epidermal permeability barrier. MATERIALS AND METHODS Mouse models with induced epidermal disruptions, employing tape-stripping (TS) and acetone wiping (AC) methods, were used. The subsequent application of WEPUOC (100 mg/mL) was evaluated through various assessments, with a focus on the upregulation of mRNA and protein expression of Corneocyte Envelope (CE) related proteins, lipid synthase-associated proteins, and tight junction proteins. RESULTS The polysaccharide was the major phytochemicals of WEPUOC and its content was determined as 32.2% by the anthranone-sulfuric acid colorimetric method. WEPUOC significantly reduced transepidermal water loss (TEWL) and improved the damaged epidermal barrier in the model group. Mechanistically, these effects were associated with heightened expression levels of key proteins such as FLG (filaggrin), INV (involucrin), LOR (loricrin), SPT, FASN, HMGCR, Claudins-1, Claudins-5, and ZO-1. CONCLUSIONS WEPUOC, obtained from the oil cakes of P. utilis, is rich in polysaccharides and exhibits pronounced efficacy in repairing disrupted epidermal barriers through increased expression of critical proteins involved in barrier integrity. Our findings underscore the potential of P. utilis wastes in developing natural cosmetic prototypes for the treatment of diseases characterized by damaged skin barriers, including atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Ran An
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Hua Gu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Na Li
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Huan Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, China
| | - Hai-Yang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, China.
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
3
|
SOX9 in Keratinocytes Regulates Claudin 2 Transcription during Skin Aging. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6884308. [PMID: 35965621 PMCID: PMC9357741 DOI: 10.1155/2022/6884308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
Abstract
In order to prove that SOX9 in keratinocytes regulates claudin 2 transcription during skin aging, the skin of 8-week-old and 24-month-old mice is sequenced to obtain a differentially expressed gene SOX9. The gene is mainly expressed in keratinocytes, and it increases first and then decreases from newborn to aging. Six core sequences of SOX9 and claudin 2 are predicted from Jaspar. The double Luciferase Report shows that overexpression of SOX9 induces the full-length promoter of claudin 2 significantly and has no effect on the mutation and cleavage plasmid without SOX9 response. Claudin 2 is consistent with SOX9 in the skin of mice of different ages, and SOX9 is strongly positively correlated with claudin 2. Finally, overexpression of SOX9 and claudin 2 will delay PM2.5-induced keratinocyte senescence. The silencing of claudin 2 leads to the loss of SOX9 function. It is clearly evident that SOX9 can affect the transcription of claudin 2, which increases first and then decreases in the process of mice from newborn to aging. SOX9 inhibits proinflammatory mediators, increases antioxidant capacity, and restores keratin differentiation. It can effectively prevent melanin deposition and delay aging.
Collapse
|
4
|
Wang J, Xiao B, Kimura E, Mongan M, Xia Y. The combined effects of Map3k1 mutation and dioxin on differentiation of keratinocytes derived from mouse embryonic stem cells. Sci Rep 2022; 12:11482. [PMID: 35798792 PMCID: PMC9263165 DOI: 10.1038/s41598-022-15760-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022] Open
Abstract
Epithelial development starts with stem cell commitment to ectoderm followed by differentiation to the basal keratinocytes. The basal keratinocytes, first committed in embryogenesis, constitute the basal layer of the epidermis. They have robust proliferation and differentiation potential and are responsible for epidermal expansion, maintenance and regeneration. We generated basal epithelial cells in vitro through differentiation of mouse embryonic stem cells (mESCs). Early on in differentiation, the expression of stem cell markers, Oct4 and Nanog, decreased sharply along with increased ectoderm marker keratin (Krt) 18. Later on, Krt 18 expression was subdued when cells displayed basal keratinocyte characteristics, including regular polygonal shape, adherent and tight junctions and Krt 14 expression. These cells additionally expressed abundant Sca-1, Krt15 and p63, suggesting epidermal progenitor characteristics. Using Map3k1 mutant mESCs and environmental dioxin, we examined the gene and environment effects on differentiation. Neither Map3k1 mutation nor dioxin altered mESC differentiation to ectoderm and basal keratinocytes, but they, individually and in combination, potentiated Krt 1 expression and basal to spinous differentiation. Similar gene-environment effects were observed in vivo where dioxin exposure increased Krt 1 more substantially in the epithelium of Map3k1+/- than wild type embryos. Thus, the in vitro model of epithelial differentiation can be used to investigate the effects of genetic and environmental factors on epidermal development.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0056, USA
| | - Bo Xiao
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0056, USA
| | - Eiki Kimura
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0056, USA
| | - Maureen Mongan
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0056, USA
| | - Ying Xia
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0056, USA.
| |
Collapse
|
5
|
Fang H, Wang Y, Xu L, Zhou S, Bai J, Wu Y, Qiao J, Jiang X, Zhu D, Ding Y. EGFR inhibitor gefitinib regulates barrier function in human epidermal keratinocytes via the modulation of the expression of claudins. Int J Mol Med 2019; 43:1522-1530. [PMID: 30628660 DOI: 10.3892/ijmm.2018.4046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 11/06/2022] Open
Abstract
Gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, has been frequently used in targeted therapy for lung cancer. However, the widespread use of gefitinib in targeted therapy for patients with lung cancer is hampered by its common skin toxicities. The present study aimed to investigate the mechanisms underlying the skin toxicities of gefitinib. Normal human epidermal keratinocytes (NHEKs) treated with gefitinib were used for a series of in vitro assays, including MTT, reverse transcription‑quantitative polymerase chain reaction, western blot analysis, immunohistochemistry and transepithelial electrical resistance and paracellular permeability detection. In the present study, it was determined that the skin toxicities of gefitinib may be due to claudin (CLDN)1 and CLDN4 downregulation and CLDN2 upregulation in NHEKs. Additionally, Src and signal transducer and activator of transcription 3 pathways were involved in gefitinib‑induced barrier function disruption in NHEKs. In conclusion, the present study may provide novel insights for improving skin toxicity of gefitinib in patients with lung cancer.
Collapse
Affiliation(s)
- Hong Fang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yina Wang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lina Xu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Sha Zhou
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Juan Bai
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yinhua Wu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaoling Jiang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Dingxian Zhu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yingguo Ding
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
6
|
Transcription Factor CTIP1/ BCL11A Regulates Epidermal Differentiation and Lipid Metabolism During Skin Development. Sci Rep 2017; 7:13427. [PMID: 29044125 PMCID: PMC5647389 DOI: 10.1038/s41598-017-13347-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
The epidermal permeability barrier (EPB) prevents organisms from dehydration and infection. The transcriptional regulation of EPB development is poorly understood. We demonstrate here that transcription factor COUP-TF-interacting protein 1 (CTIP1/BCL11A; hereafter CTIP1) is highly expressed in the developing murine epidermis. Germline deletion of Ctip1 (Ctip1−/−) results in EPB defects accompanied by compromised epidermal differentiation, drastic reduction in profilaggrin processing, reduced lamellar bodies in granular layers and significantly altered lipid composition. Transcriptional profiling of Ctip1−/− embryonic skin identified altered expression of genes encoding lipid-metabolism enzymes, skin barrier-associated transcription factors and junctional proteins. CTIP1 was observed to interact with genomic elements within the regulatory region of the gene encoding the differentiation-associated gene, Fos-related antigen2 (Fosl2) and lipid-metabolism-related gene, Fatty acid elongase 4 (Elvol4), and the expression of both was altered in Ctip1−/− mice. CTIP1 appears to play a role in EPB establishment of via direct or indirect regulation of a subset of genes encoding proteins involved in epidermal differentiation and lipid metabolism. These results identify potential, CTIP1-regulated avenues for treatment of skin disorders involving EBP defects.
Collapse
|
7
|
Tessema EN, Gebre-Mariam T, Neubert RHH, Wohlrab J. Potential Applications of Phyto-Derived Ceramides in Improving Epidermal Barrier Function. Skin Pharmacol Physiol 2017; 30:115-138. [PMID: 28407621 DOI: 10.1159/000464337] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/17/2017] [Indexed: 12/31/2022]
Abstract
The outer most layer of the skin, the stratum corneum, consists of corneocytes which are coated by a cornified envelope and embedded in a lipid matrix of ordered lamellar structure. It is responsible for the skin barrier function. Ceramides (CERs) are the backbone of the intercellular lipid membranes. Skin diseases such as atopic dermatitis and psoriasis and aged skin are characterized by dysfunctional skin barrier and dryness which are associated with reduced levels of CERs. Previously, the effectiveness of supplementation of synthetic and animal-based CERs in replenishing the depleted natural skin CERs and restoring the skin barrier function have been investigated. Recently, however, the barrier function improving effect of plant-derived CERs has attracted much attention. Phyto-derived CERs (phytoCERs) are preferable due to their assumed higher safety as they are mostly isolated from dietary sources. The beneficial effects of phytoCER-based oral dietary supplements for skin hydration and skin barrier reinforcement have been indicated in several studies involving animal models as well as human subjects. Ingestible dietary supplements containing phytoCERs are also widely available on the market. Nonetheless, little effort has been made to investigate the potential cosmetic applications of topically administered phytoCERs. Therefore, summarizing the foregoing investigations and identifying the gap in the scientific data on plant-derived CERs intended for skin-health benefits are of paramount importance. In this review, an attempt is made to synthesize the information available in the literature regarding the effects of phytoCER-based oral dietary supplements on skin hydration and barrier function with the underlying mechanisms.
Collapse
Affiliation(s)
- Efrem N Tessema
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | |
Collapse
|
8
|
Nagasawa Y, Ishida-Yamamoto A. Reversed cellular polarity in primary cutaneous mucinous carcinoma: A study on tight junction protein expression in sweat gland tumors. J Dermatol 2016; 44:444-448. [PMID: 27649644 DOI: 10.1111/1346-8138.13611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/11/2016] [Indexed: 11/27/2022]
Abstract
Primary cutaneous mucinous carcinoma (PCMC) is a rare sweat gland tumor characterized by the presence of abundant mucin around the tumor islands, but the molecular mechanisms for this structure are not well elucidated. Because mucin is epithelial in nature, it is likely to be produced by epithelial tumor cells, not by surrounding stromal cells. We hypothesized that the abundant mucin is a result of reversed cellular polarity of the tumor. To test this hypothesis, we conducted an immunohistological study to investigate expression of tight junction (TJ) proteins occludin and ZO-1 in PCMC, as well as in normal sweat glands and other sweat gland tumors. Dot-like or linear expression of TJ proteins was observed at ductal structures of sweat glands, and ductal or cystic structures of related tumors. In PCMC, however, TJ protein expression was clearly visible at the edges of tumor cell islands. This study provides evidence to show that the characteristic histological structure of PCMC is caused by inverse polarization of the tumor cells, and that TJ proteins are useful markers of ductal differentiation in sweat gland tumors.
Collapse
Affiliation(s)
- Yusuke Nagasawa
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | | |
Collapse
|
9
|
Kacem M, Agili F, Tounsi H, Zribi H, Zaraa I, Mokni M, Boubaker S. Immunohistological study of tight junction protein expression in mal de Meleda. Ultrastruct Pathol 2016; 40:176-80. [PMID: 26986447 DOI: 10.3109/01913123.2016.1154913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mal de Meleda (MdM, MIM: 248300) is a rare autosomal recessive skin disorder characterized by diffuse palmoplantar keratoderma and transgressive keratosis with onset in early infancy. The gene responsible for MdM, ARS, encodes for Secreted Lys6/Plaur domain-containing protein 1 which is essential for epidermal homeostasis. Tight junctions have been proposed to have two mutually exclusive functions: a fence function which prevents the mixing of membrane proteins between the apical and basolateral membranes; and a gate function which controls the paracellular passage of ions and solutes between cells. In this study we report immunohistochemical investigations of tight junction proteins claudin-1 and occludin in MdM Tunisian families. Nine skin biopsies from patients with MdM were analyzed. The control group was formed by skin biopsies belonging to healthy individuals. Immunohistochemical study was performed on fixed sections from biopsies of four microns with the following polyclonal antibodies: anti-claudin-1 and anti-occludin. In control skin, claudin-1 exhibited membrane expression throughout the epidermis with increasing and upward intensity, whereas occludin was detected in the cell membrane of keratinocytes of the stratum granulosum. In MdM skin, claudin-1 was expressed throughout the thickness of the spinous layers with membrane staining, and occludin had cytoplasmic staining in the granular layer. The immunohistochemical expression of TJ proteins in MdM patients harbors premature expression of occludin and decreased expression of claudin-1, highlighting further evidence for disorders in epidermal homeostasis.
Collapse
Affiliation(s)
- Monia Kacem
- a Pathology Department , Pasteur Institute of Tunis , Tunis , Tunisia.,b "Study of Hereditary Keratinization Disorders" Research Unit, La Rabta Hospital , Tunis , Tunisia
| | - Faouzia Agili
- a Pathology Department , Pasteur Institute of Tunis , Tunis , Tunisia
| | - Haifa Tounsi
- a Pathology Department , Pasteur Institute of Tunis , Tunis , Tunisia
| | - Hela Zribi
- b "Study of Hereditary Keratinization Disorders" Research Unit, La Rabta Hospital , Tunis , Tunisia.,c Department of Dermatology , La Rabta Hospital , Tunis , Tunisia
| | - Ines Zaraa
- b "Study of Hereditary Keratinization Disorders" Research Unit, La Rabta Hospital , Tunis , Tunisia.,c Department of Dermatology , La Rabta Hospital , Tunis , Tunisia
| | - Mourad Mokni
- b "Study of Hereditary Keratinization Disorders" Research Unit, La Rabta Hospital , Tunis , Tunisia.,c Department of Dermatology , La Rabta Hospital , Tunis , Tunisia
| | - Samir Boubaker
- a Pathology Department , Pasteur Institute of Tunis , Tunis , Tunisia
| |
Collapse
|
10
|
Hereditary barrier-related diseases involving the tight junction: lessons from skin and intestine. Cell Tissue Res 2015; 360:723-48. [DOI: 10.1007/s00441-014-2096-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
|
11
|
DiTommaso T, Cottle DL, Pearson HB, Schlüter H, Kaur P, Humbert PO, Smyth IM. Keratin 76 is required for tight junction function and maintenance of the skin barrier. PLoS Genet 2014; 10:e1004706. [PMID: 25340345 PMCID: PMC4207637 DOI: 10.1371/journal.pgen.1004706] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022] Open
Abstract
Keratins are cytoskeletal intermediate filament proteins that are increasingly being recognised for their diverse cellular functions. Here we report the consequences of germ line inactivation of Keratin 76 (Krt76) in mice. Homozygous disruption of this epidermally expressed gene causes neonatal skin flaking, hyperpigmentation, inflammation, impaired wound healing, and death prior to 12 weeks of age. We show that this phenotype is associated with functionally defective tight junctions that are characterised by mislocalization of the integral protein CLDN1. We further demonstrate that KRT76 interacts with CLDN1 and propose that this interaction is necessary to correctly position CLDN1 in tight junctions. The mislocalization of CLDN1 has been associated in various dermopathies, including the inflammatory disease, psoriasis. These observations establish a previously unknown connection between the intermediate filament cytoskeleton network and tight junctions and showcase Krt76 null mice as a possible model to study aberrant tight junction driven skin diseases.
Collapse
Affiliation(s)
- Tia DiTommaso
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Denny L. Cottle
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Helen B. Pearson
- Research Division, The Sir Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Holger Schlüter
- Research Division, The Sir Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Pritinder Kaur
- Research Division, The Sir Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Anatomy & Neuroscience, University of Melbourne, Melbourne, Australia
| | - Patrick O. Humbert
- Research Division, The Sir Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
- Department of Pathology, University of Melbourne, Melbourne, Australia
| | - Ian M. Smyth
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
12
|
McKelvey K, Jackson CJ, Xue M. Activated protein C: A regulator of human skin epidermal keratinocyte function. World J Biol Chem 2014; 5:169-179. [PMID: 24921007 PMCID: PMC4050111 DOI: 10.4331/wjbc.v5.i2.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/03/2014] [Indexed: 02/05/2023] Open
Abstract
Activated protein C (APC) is a physiological anticoagulant, derived from its precursor protein C (PC). Independent of its anticoagulation, APC possesses strong anti-inflammatory, anti-apoptotic and barrier protective properties which appear to be protective in a number of disorders including chronic wound healing. The epidermis is the outermost skin layer and provides the first line of defence against the external environment. Keratinocytes are the most predominant cells in the epidermis and play a critical role in maintaining epidermal barrier function. PC/APC and its receptor, endothelial protein C receptor (EPCR), once thought to be restricted to the endothelium, are abundantly expressed by skin epidermal keratinocytes. These cells respond to APC by upregulating proliferation, migration and matrix metalloproteinase-2 activity and inhibiting apoptosis/inflammation leading to a wound healing phenotype. APC also increases barrier function of keratinocyte monolayers by promoting the expression of tight junction proteins and re-distributing them to cell-cell contacts. These cytoprotective properties of APC are mediated through EPCR, protease-activated receptors, epidermal growth factor receptor or Tie2. Future preventive and therapeutic uses of APC in skin disorders associated with disruption of barrier function and inflammation look promising. This review will focus on APC’s function in skin epidermis/keratinocytes and its therapeutical potential in skin inflammatory conditions.
Collapse
|
13
|
Saaber D, Wollenhaupt S, Baumann K, Reichl S. Recent progress in tight junction modulation for improving bioavailability. Expert Opin Drug Discov 2014; 9:367-81. [PMID: 24558958 DOI: 10.1517/17460441.2014.892070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Currently, there are many novel drugs that belong to class III or IV of the Biopharmaceutics Classification System, showing low bioavailability. Tight junction (TJ) modulation offers an approach to increase bioavailability of pharmaceutical compounds. Furthermore, some diseases are accompanied by disturbed barrier function or TJ dysregulation and thus represent a second application for TJ modulators. AREAS COVERED This review contains a summary of three different TJ modulators: AT1002, PN159 and labradimil. Within this summary, the authors provide a description of their effects on TJs, their adverse effects and their success in clinical trials. Furthermore, the authors present the current understanding of TJ regulation and highlight opportunities to develop new TJ modulators; they also review the problems that might occur. EXPERT OPINION The development of new mechanism-based (MB) TJ modulators is a very promising field of research. MB approaches are expected to have the best future prospects. Further elucidation of signaling pathways and TJ regulation will be necessary for advancing MB TJ modulator research.
Collapse
Affiliation(s)
- Daniel Saaber
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie , Mendelssohnstr. 1, Braunschweig 38106 , Germany
| | | | | | | |
Collapse
|
14
|
Haslam IS, Roubos EW, Mangoni ML, Yoshizato K, Vaudry H, Kloepper JE, Pattwell DM, Maderson PFA, Paus R. From frog integument to human skin: dermatological perspectives from frog skin biology. Biol Rev Camb Philos Soc 2013; 89:618-55. [DOI: 10.1111/brv.12072] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 10/03/2013] [Accepted: 10/22/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Iain S. Haslam
- The Dermatology Centre, Salford Royal NHS Foundation Trust, Institute of Inflammation and Repair; University of Manchester; Oxford Road Manchester M13 9PT U.K
| | - Eric W. Roubos
- Department of Anatomy; Radboud University Medical Centre; Geert Grooteplein Noord 2, 6525 EZ, Nijmegen P.O. Box 9101, 6500 HB Nijmegen The Netherlands
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti; La Sapienza University of Rome, Piazzale Aldo Moro, 5-00185; Rome Italy
| | - Katsutoshi Yoshizato
- Academic Advisors Office, Synthetic Biology Research Center; Osaka City University Graduate School of Medicine; Osaka Japan
- Phoenixbio Co. Ltd; 3-4-1, Kagamiyama; Higashihiroshima Hiroshima 739-0046 Japan
| | - Hubert Vaudry
- European Institute for Peptide Research; University of Rouen; Mont-Saint-Aignan Place Emile Blondel 76821 France
- INSERM U-982, CNRS; University of Rouen; Mont-Saint-Aignan Place Emile Blondel 76821 France
| | - Jennifer E. Kloepper
- Klinik für Dermatologie, Allergologie und Venerologie; Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160; 23538 Lübeck Germany
| | - David M. Pattwell
- Leahurst Campus, Institute of Learning & Teaching; School of Veterinary Science, University of Liverpool; Neston CH64 7TE U.K
| | | | - Ralf Paus
- The Dermatology Centre, Salford Royal NHS Foundation Trust, Institute of Inflammation and Repair; University of Manchester; Oxford Road Manchester M13 9PT U.K
- Klinik für Dermatologie, Allergologie und Venerologie; Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160; 23538 Lübeck Germany
| |
Collapse
|
15
|
Yuan C, Wang XM, Yang LJ, Wu PL. Tranexamic acid accelerates skin barrier recovery and upregulates occludin in damaged skin. Int J Dermatol 2013; 53:959-65. [PMID: 23967870 DOI: 10.1111/ijd.12099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chao Yuan
- Department of Skin & Cosmetic Research; Shanghai Skin Disease Hospital; Shanghai China
| | - Xue-Min Wang
- Department of Skin & Cosmetic Research; Shanghai Skin Disease Hospital; Shanghai China
| | - Li-Jie Yang
- Department of Skin & Cosmetic Research; Shanghai Skin Disease Hospital; Shanghai China
| | - Pei-Lan Wu
- Department of Skin & Cosmetic Research; Shanghai Skin Disease Hospital; Shanghai China
| |
Collapse
|
16
|
Contribution of tight junction proteins to ion, macromolecule, and water barrier in keratinocytes. J Invest Dermatol 2013; 133:1161-9. [PMID: 23407391 DOI: 10.1038/jid.2012.507] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tight junctions (TJs) form a selective barrier for ions, water, and macromolecules in simple epithelia. In keratinocytes and epidermis, TJs were shown to be involved in individual barrier functions. The absence of the TJ protein claudin-1 (Cldn1) in mice results in a skin-barrier defect characterized by lethal water loss. However, detailed molecular analyses of the various TJ barriers in keratinocytes and the contribution of distinct TJ proteins are missing. Herein, we discriminate TJ-dependent paracellular resistance from transcellular resistance in cultured keratinocytes using the two-path impedance spectroscopy. We demonstrate that keratinocyte TJs form a barrier for Na(+), Cl(-), and Ca(2+), and contribute to barrier function for water and larger molecules of different size. In addition, knockdown of Cldn1, Cldn4, occludin, and zonula occludens-1 increased paracellular permeabilities for ions and larger molecules, demonstrating that all of these TJ proteins contribute to barrier formation. Remarkably, Cldn1 and Cldn4 are not critical for TJ barrier function for water in submerged keratinocyte cultures. However, Cldn1 influences stratum corneum (SC) proteins important for SC water barrier function, and is crucial for TJ barrier formation for allergen-sized macromolecules.
Collapse
|
17
|
|
18
|
Lee SE, Choi Y, Kim SE, Noh EB, Kim SC. Differential effects of topical corticosteroid and calcineurin inhibitor on the epidermal tight junction. Exp Dermatol 2012; 22:59-61. [DOI: 10.1111/exd.12055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Sang E. Lee
- Department of Dermatology; CHA Bundang Medical Center; CHA University; Seongnam; Korea
| | - Yuri Choi
- Department of Dermatology and Cutaneous Biology Research Institute; Yonsei University College of Medicine; Seoul; Korea
| | | | - Eun B. Noh
- Department of Dermatology and Cutaneous Biology Research Institute; Yonsei University College of Medicine; Seoul; Korea
| | | |
Collapse
|
19
|
Kirschner N, Brandner JM. Barriers and more: functions of tight junction proteins in the skin. Ann N Y Acad Sci 2012; 1257:158-66. [PMID: 22671602 DOI: 10.1111/j.1749-6632.2012.06554.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although the existence of tight junction (TJ) structures (or a secondary epidermal barrier) was postulated for a long time, the first description of TJ proteins in the epidermis (occludin, ZO-1, and ZO-2) was only fairly recent. Since then, a wealth of new insights concerning TJs and TJ proteins, including their functional role in the skin, have been gathered. Of special interest is that the epidermis as a multilayered epithelium exhibits a very complex localization pattern of TJ proteins, which results in different compositions of TJ protein complexes in different layers. In this review, we summarize our current knowledge about the role of TJ proteins in the epidermis in barrier function, cell polarity, vesicle trafficking, differentiation, and proliferation. We hypothesize that TJ proteins fulfill TJ structure-dependent and structure-independent functions and that the specific function of a TJ protein may depend on the epidermal layer where it is expressed.
Collapse
Affiliation(s)
- Nina Kirschner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Germany
| | | |
Collapse
|
20
|
Kirschner N, Rosenthal R, Günzel D, Moll I, Brandner JM. Tight junctions and differentiation--a chicken or the egg question? Exp Dermatol 2012; 21:171-5. [PMID: 22379962 DOI: 10.1111/j.1600-0625.2011.01431.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Skin barrier function is indispensable to prevent the uncontrolled loss of water and solutes and to protect the body from external assaults. To fulfil this function, keratinocytes undergo a complex pathway of differentiation that terminates in the formation of the stratum corneum. Additionally, tight junctions (TJs), which are cell-cell junctions localized in the stratum granulosum, are involved in the barrier function of the skin. Important biological and clinical roles of TJs are strongly suggested by altered TJ protein levels and distribution in skin diseases like psoriasis, ichthyosis and atopic dermatitis. Because these skin diseases show alterations in differentiation and TJs, it was suggested that changes in TJs might simply be a consequence of altered differentiation. However, in this viewpoint, we like to argue that the situation is not as simple and depends on the specific microenvironment. We discuss three hypotheses regarding the interplay between TJs/TJ proteins and differentiation: (1) TJs/TJ proteins are influenced by differentiation, (2) differentiation is influenced by TJs/TJ proteins, and (3) TJs/TJ proteins and differentiation are independent of each other. In addition, the concept is introduced that both processes are going on at the same time, which means that while one specific TJ protein/barrier component might be influenced by differentiation, the other may influence differentiation.
Collapse
Affiliation(s)
- Nina Kirschner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Germany Institute of Clinical Physiology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | |
Collapse
|
21
|
Franke WW, Pape UF. Diverse types of junctions containing tight junction proteins in stratified mammalian epithelia. Ann N Y Acad Sci 2012; 1257:152-7. [DOI: 10.1111/j.1749-6632.2012.06504.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Rickelt S, Kuhn C, Winter-Simanowski S, Zimbelmann R, Frey N, Franke WW. Protein myozap--a late addition to the molecular ensembles of various kinds of adherens junctions. Cell Tissue Res 2011; 346:347-59. [PMID: 22160502 DOI: 10.1007/s00441-011-1281-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/08/2011] [Indexed: 11/28/2022]
Abstract
The protein myozap, a polypeptide of 54 kDa, has recently been identified as a component of the cytoplasmic plaques of the composite junctions (areae compositae) in the myocardiac intercalated disks and of the adherens junctions (AJs) in vascular endothelia. Now we report that using very sensitive new antibodies and drastic localization methods, we have also identified this protein as a component of the AJ plaques in simple and complex epithelia, in the adluminal cell layer of the transitional epithelium of the urinary tract and in certain cell layers of diverse stratified epithelia, including gingiva, tongue, pharynx and esophagus, cervix, vagina and epidermis. Myozap has not been identified in desmosomal and tight junction plaques. We have also detected protein myozap in AJ structures of carcinomas. The discovery of a novel major protein in AJ plaques now calls for re-examinations of molecular interactions in AJ formation and maintenance and also offers a new marker for diagnostic immunocytochemistry. We also discuss the need for progressive unravelling, extractive treatments and buffer rinses of sections and cultured cells to reveal obscured or masked antigens, before definitive negative conclusions in immunohistochemistry can be made.
Collapse
Affiliation(s)
- Steffen Rickelt
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Xu R, Feng X, Xie X, Zhang J, Wu D, Xu L. HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Res 2011; 1436:13-9. [PMID: 22197032 DOI: 10.1016/j.brainres.2011.11.052] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 02/01/2023]
Abstract
Brain homeostasis is maintained by the blood-brain barrier (BBB), which prevents the entrance of circulating molecules and immune cells into the central nervous system. The BBB is formed by specialized brain endothelial cells that are connected by tight junctions (TJ). Previous studies have proven that the Tat protein of human immunodeficiency virus type 1 (HIV-1) alters TJ protein expression. However, the mechanisms by which the alterations occur have not been characterized in detail. In this study, primary human brain microvascular endothelial cells (HBMEC) were exposed to recombinant HIV-1 Tat protein, and the effects on occludin were observed. Tat treatment decreased occludin mRNA and protein levels. This effect was partially abrogated by addition of the RhoA inhibitor C3 exoenzyme and the p160-Rho-associated coiled kinase (ROCK) inhibitor Y-27632. Meanwhile, Tat also induced MMP-9 expression. RNA interference targeting MMP-9 reduced both the paracellular permeability of Tat-treated HBMEC and the concentration of soluble occludin in supernatants from the cells. Taken together, these results show that the HIV-1 Tat protein disrupts BBB integrity, at least in part by decreasing the production of occludin.
Collapse
Affiliation(s)
- Ruifen Xu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
24
|
Fehrenschild D, Galli U, Breiden B, Bloch W, Schettina P, Brodesser S, Michels C, Günschmann C, Sandhoff K, Niessen CM, Niemann C. TCF/Lef1-mediated control of lipid metabolism regulates skin barrier function. J Invest Dermatol 2011; 132:337-45. [PMID: 21938009 DOI: 10.1038/jid.2011.301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Defects in the function of the skin barrier are associated with a wide variety of skin diseases, many of which are not well characterized at the molecular level. Using Lef1 (lymphoid enhancer-binding factor 1) dominant-negative mutant mice, we demonstrate here that altered epidermal TCF (T cell factor)/Lef1 signaling results in severe impairment of the stratum corneum skin barrier and early postnatal death. Barrier defects were accompanied by major changes in lipid composition and ultrastructural abnormalities in assembly and extrusion of lipid lamellae of the interfollicular epidermis, as well as abnormal processing of profilaggrin. In contrast, tight-junction formation and stratified organization of the interfollicular epidermis was not obviously disturbed in Lef1 mutant mice. Molecular analysis revealed that TCF/Lef1 signaling regulates expression of lipid-modifying enzymes, such as Elovl3 and stearoyl coenzyme A desaturase 1 (SCD1), which are key regulators of barrier function. Promoter analysis and chromatin immunoprecipitation experiments indeed showed that SCD1 is a direct target of Lef1. Together, our data demonstrate that functional TCF/Lef1 signaling governs important aspects of epidermal differentiation and lipid metabolism, thereby regulating skin barrier function.
Collapse
Affiliation(s)
- Dagmar Fehrenschild
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stumpff F, Georgi MI, Mundhenk L, Rabbani I, Fromm M, Martens H, Günzel D. Sheep rumen and omasum primary cultures and source epithelia: barrier function aligns with expression of tight junction proteins. J Exp Biol 2011; 214:2871-82. [DOI: 10.1242/jeb.055582] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SUMMARY
The forestomachs of cows and sheep have historically served as important models for the study of epithelial transport. Thus, the ruminal epithelium was among the first tissues in which absorption of chloride against an electrochemical gradient was observed, requiring a tight paracellular barrier to prevent back-leakage. However, little is known about ruminal barrier function, despite the considerable implications for ruminant health. The tight junction proteins of the omasum have never been investigated, and no cell culture model exists. We present a new method for the isolation of cells from forestomach epithelia. Protein expression of cells and source tissues of sheep were studied using western blot, PCR and confocal laser scanning microscopy. Cultured cells were characterized by transepithelial resistance (TER) measurements and patch clamping. Cells developed TER values of 729±134 Ω cm2 (rumen) and 1522±126 Ω cm2 (omasum). Both primary cells and source epithelia of rumen and omasum expressed cytokeratin, occludin and claudins 1, 4 and 7 (but not claudins 2, 3, 5, 8 and 10), consistent with the observed paracellular sealing properties. Staining for claudin-1 reached the stratum basale. The full mRNA coding sequence of claudins 1, 4 and 7 (sheep) was obtained. Patch-clamp analyses of isolated cells proved expression of an anion conductance with a permeability sequence of gluconate<acetate<chloride. This is in accordance with a model that ruminal and omasal transport of anions such as chloride and acetate has to occur via a transcellular route and involves channel-mediated basolateral efflux, driven by Na+/K+-ATPase.
Collapse
Affiliation(s)
- Friederike Stumpff
- Department of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Maria-Ifigenia Georgi
- Department of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Imtiaz Rabbani
- Department of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Michael Fromm
- Institute of Clinical Physiology, Charité Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Holger Martens
- Department of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology, Charité Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| |
Collapse
|
26
|
Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 2011; 12:565-80. [PMID: 21860392 DOI: 10.1038/nrm3175] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To provide a stable environmental barrier, the epidermis requires an integrated network of cytoskeletal elements and cellular junctions. Nevertheless, the epidermis ranks among the body's most dynamic tissues, continually regenerating itself and responding to cutaneous insults. As keratinocytes journey from the basal compartment towards the cornified layers, they completely reorganize their adhesive junctions and cytoskeleton. These architectural components are more than just rivets and scaffolds - they are active participants in epidermal morphogenesis that regulate epidermal polarization, signalling and barrier formation.
Collapse
|
27
|
Orally administered glucosylceramide improves the skin barrier function by upregulating genes associated with the tight junction and cornified envelope formation. Biosci Biotechnol Biochem 2011; 75:1516-23. [PMID: 21821935 DOI: 10.1271/bbb.110215] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dietary glucosylceramide improves the skin barrier function. We used a microarray system to analyze the mRNA expression in SDS-treated dorsal skin of the hairless mouse to elucidate the molecular mechanisms involved. The transepidermal water loss of mouse skin was increased by the SDS treatment, this increase being significantly reduced by a prior oral administration of glucosylceramides. The microarray-evaluated mRNA expression ratio showed a statistically significant increase in the expression of genes related to the cornified envelope and tight junction formation when compared with all genes in the glucosylceramide-fed/SDS-treated mouse skin. We then examined the contribution of glucosylceramide metabolites to the tight junction formation of cultured keratinocytes. The SDS treatment of cultured keratinocytes significantly decreased the transepidermal electrical resistance, this decrease being significantly ameliorated in the presence of sphingosine or phytosphingosine, the major metabolites of glucosylceramide. These results suggest that an oral administration of glucosylceramide improved the skin barrier function by up-regulating genes associated with both the cornified envelope and tight junction formation.
Collapse
|
28
|
Haftek M, Callejon S, Sandjeu Y, Padois K, Falson F, Pirot F, Portes P, Demarne F, Jannin V. Compartmentalization of the human stratum corneum by persistent tight junction-like structures. Exp Dermatol 2011; 20:617-21. [DOI: 10.1111/j.1600-0625.2011.01315.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
|
30
|
Takai T, Ikeda S. Barrier dysfunction caused by environmental proteases in the pathogenesis of allergic diseases. Allergol Int 2011; 60:25-35. [PMID: 21173566 DOI: 10.2332/allergolint.10-rai-0273] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Indexed: 12/13/2022] Open
Abstract
Skin barrier dysfunction has emerged as a critical driving force in the initiation and exacerbation of atopic dermatitis and the "atopic march" in allergic diseases. The genetically determined barrier deficiency and barrier disruption by environmental and endogenous proteases in skin and epithelium are considered to increase the risk of sensitization to allergens and contribute to the exacerbation of allergic diseases. Sources of allergens such as mites, cockroaches, fungi, and pollen, produce or contain proteases, which are frequently themselves allergens. Staphylococcus aureus, which heavily colonizes the lesions of atopic dermatitis patients and is known to trigger a worsening of the disease, also produces extracellular proteases. Environmental proteases can cause barrier breakdown in the skin, not only in the epithelium, and stimulate various types of cells through IgE-independent mechanisms. Endogenous protease inhibitors control the functions of environmental and endogenous proteases. In this review, we focus on the barrier dysfunction caused by environmental proteases and roles of endogenous protease inhibitors in the pathogenesis of allergic diseases. Additionally, we examine the subsequent innate response to Th2-skewed adaptive immune reactions.
Collapse
Affiliation(s)
- Toshiro Takai
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan. t−
| | | |
Collapse
|