1
|
Hasanbeyzade S. Comparison of Topical 20% Azelaic Acid and 7.5% Dapsone in the Treatment of Mild-To-Moderate Papulopustular Rosacea. J Cosmet Dermatol 2025; 24:e70212. [PMID: 40304282 PMCID: PMC12042643 DOI: 10.1111/jocd.70212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/31/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Rosacea is a chronic inflammatory skin disease, commonly affecting the central part of the face, characterized by erythema, flushing, telangiectasias, papules, and pustules. It may also involve sensations of burning, tingling, and occasionally fibrous changes. AIM This study aims to compare the efficacy, side effect profiles, and patient satisfaction of topical 20% azelaic acid and 7.5% dapsone in the treatment of mild-to-moderate papulopustular rosacea (Stage 2). METHODS Ethics approval was obtained. A retrospective analysis was conducted on the medical records of 76 patients, including 44 in the azelaic acid group and 32 in the dapsone group, all diagnosed with mild-to-moderate papulopustular rosacea. These patients were treated with either topical azelaic acid or dapsone at the dermatology outpatient clinic between August 1, 2022 and December 31, 2022. Demographic characteristics, Investigator's Global Assessment scores, lesion counts, erythema scores, side effects, and patient satisfaction data were analyzed in the study. RESULTS No statistically significant differences were found between groups based on pretreatment IGA values, separate IGA scores (2-4), lesion counts, average erythema scores, or separate erythema scores (p > 0.05 for all). Within each group, comparisons of pre- and posttreatment IGA values, lesion counts, and erythema scores revealed statistically significant differences (p < 0.001 for all), indicating that both treatments were effective. When comparing the groups based on posttreatment IGA values, separate IGA scores (0-3), improvement percentages in IGA values, lesion counts, improvement percentages in lesion counts, average erythema scores, separate erythema scores (0-2), and improvement percentages in erythema scores, no significant differences were observed (p > 0.05 for all). CONCLUSION Topical dapsone is as effective as azelaic acid in treating mild-to-moderate papulopustular rosacea and is associated with fewer side effects, making it a safer option.
Collapse
Affiliation(s)
- Sabir Hasanbeyzade
- Faculty of Medicine, Dr. Rıdvan Ege Research and Practice HospitalUfuk UniversityAnkaraTürkiye
- Dermatology and Venerology DepartmentHitit University Erol Olcok Training and Research HospitalCorumTurkey
| |
Collapse
|
2
|
Lesani A, Mashaknejadian Behbahani F, Manavi MA, Mohammad Jafari R, Shafaroodi H, Khosravi S, Dehpour AR. Acute anticonvulsant effects of dapsone on PTZ- and MES-induced seizures in mice: NLRP3 inflammasome inhibition and Nrf2/HO-1 pathway preservation. Pharmacol Rep 2025; 77:450-462. [PMID: 39869286 DOI: 10.1007/s43440-025-00698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Epilepsy, a neurological disorder characterized by recurrent seizures, presents considerable difficulties in treatment, particularly when dealing with drug-resistant cases. Dapsone, recognized for its anti-inflammatory properties, holds promise as a potential therapeutic option. However, its effectiveness in epilepsy requires further investigation. The aim of this study is to explore the effects of dapsone on seizure activity and neuroinflammation, particularly through the nuclear factor erythroid-2-related factor (Nrf2)/ Heme Oxygenase 1 (HO-1) and NOD-like receptor family pyrin domain-containing 3 (NLRP3) pathways, to better understand its therapeutic potential. METHODS To evaluate the effects of dapsone, two seizure models were utilized in mice: pentylenetetrazole (PTZ)-induced clonic seizures and maximal electroshock (MES)-induced generalized tonic-clonic seizures (GTCS) in mice. The impact of dapsone on neuroinflammatory markers and oxidative stress pathways, specifically Nrf2/HO-1 and NLRP3, as well as interleukin-1β (IL-1β), IL-8, and IL-18, was assessed using Western blotting and ELISA techniques. RESULTS In this study, dapsone (2, 5, 10, and 20 mg/kg, ip) showcased a significant increase in clonic seizure threshold following intravenous infusion of PTZ. Notably, doses of 5, 10, and 20 mg/kg exhibited increased latency and decreased the number of seizures. Additionally, dapsone at 10 and 20 mg/kg prevented the incidence of GTCS and subsequent mortality in the MES model. Furthermore, Dapsone demonstrated modulation of Nrf2/ HO-1 and NLRP3 IL-1 β/IL-18 pathways. CONCLUSION This study highlights the therapeutic potential of dapsone in epilepsy, emphasizing the involvement of Nrf2/HO-1 and NLRP3 pathways. These findings provide a foundation for future clinical research aimed at developing dapsone-based therapies for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Ali Lesani
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mashaknejadian Behbahani
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Shafaroodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Khosravi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Krismawati H, Harianja M, Oktavian A, Bøgh C, Ataupah MR, Laiskodat RD, Pongtiku A, Geluk A, Baird JK, Hamers RL, Soebono H, Walker SL, Grijsen ML. Challenges associated with dapsone for leprosy treatment in Indonesia - urgent need for access to alternative antimicrobial drugs. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2025; 34:100555. [PMID: 40084155 PMCID: PMC11905890 DOI: 10.1016/j.lansea.2025.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Leprosy is effectively treated with multi-drug therapy (MDT), a regimen containing three antibiotic drugs, including dapsone - a sulfone drug associated with potentially life-threatening adverse drug reactions. Specifically, dapsone hypersensitivity syndrome (DHS), linked to HLA-B∗13:01 polymorphism, and hemolytic anemia associated with glucose-6-phosphate dehydrogenase deficiency (G6PDd). Both of these pharmacogenetic polymorphisms can be prevented through diagnostic screening before MDT initiation averting potential complications. However, in leprosy-endemic areas like Indonesia, access to these tests often remains inaccessible due to high costs and limited laboratory capacity. Additionally, alternative dapsone-sparing treatment regimens are usually unavailable or unaffordable, restraining individuals onto suboptimal dual-therapy with rifampicin and clofazimine, which has uncertain efficacy. We raise concerns regarding the safety of dapsone-containing MDT without routine pharmacogenetic screening and the unavailability of alternative regimens. We call for action to address persisting global health inequities in care delivery, ensuring all individuals receive the safest and most effective leprosy treatment options.
Collapse
Affiliation(s)
- Hana Krismawati
- Center of Health System and Strategy, Ministry of Health, Jakarta, Indonesia
| | | | - Antonius Oktavian
- Regional Public Health Laboratory of Papua, Ministry of Health, Papua, Indonesia
| | | | | | | | | | - Annemieke Geluk
- Leiden University Center of Infectious Diseases (LUCID), Leiden, the Netherlands
| | - J. Kevin Baird
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | - Raph L. Hamers
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | - Hardyanto Soebono
- Department of Dermatology and Venereology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Stephen L. Walker
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
- Hospital for Tropical Diseases, University College London Hospital NHS Foundation Trust, London, UK
| | - Marlous L. Grijsen
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| |
Collapse
|
4
|
Akbarialiabad H, Schmidt E, Patsatsi A, Lim YL, Mosam A, Tasanen K, Yamagami J, Daneshpazhooh M, De D, Cardones ARG, Joly P, Murrell DF. Bullous pemphigoid. Nat Rev Dis Primers 2025; 11:12. [PMID: 39979318 DOI: 10.1038/s41572-025-00595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/14/2025] [Indexed: 02/22/2025]
Abstract
Bullous pemphigoid is a chronic, subepidermal autoimmune blistering disease characterized by tense blisters on erythematous or normal skin that predominantly affects the older population. The disease arises from autoantibodies targeting hemidesmosomal proteins BP180 and BP230, which are crucial for dermal-epidermal adhesion. The incidence of bullous pemphigoid is increasing, attributed to an ageing population and improved diagnostic recognition. Genetic predisposition, environmental triggers and associations with other autoimmune disorders underline its multifactorial nature. Diagnosis involves clinical presentation, histopathology, direct immunofluorescence and serological tests. Treatment aims to reduce symptoms and prevent new blister formation, using corticosteroids, immunosuppressive agents and biologics such as rituximab and omalizumab. Despite therapeutic advancements, challenges persist in long-term management, especially in older patients with comorbidities. Ongoing research into molecular mechanisms and novel therapeutic targets and clinical trials are crucial for the development of safer and more effective treatments.
Collapse
Affiliation(s)
- Hossein Akbarialiabad
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Australasian Blistering Diseases Foundation (ABDF), Sydney, New South Wales, Australia
| | - Enno Schmidt
- Department of Dermatology and Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Aikaterini Patsatsi
- Center of Expertise on AIBD, 2nd Dermatology Department, Aristotle University School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Yen Loo Lim
- National Skin Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, Singapore, Singapore
- Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Anisa Mosam
- Department of Dermatology, Inkosi Albert Luthuli Central Hospital and Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Kaisa Tasanen
- Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
- Research Unit of Clinical Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Jun Yamagami
- Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Dipankar De
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Adela Rambi G Cardones
- Division of Dermatology, Department of Internal Medicine, University of Kansas Medical Center, Lawrence, KS, USA
| | - Pascal Joly
- Dermatology Department, Rouen University Hospital, INSERM U1234, Normandie University, Rouen, France.
| | - Dedee F Murrell
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
- Australasian Blistering Diseases Foundation (ABDF), Sydney, New South Wales, Australia.
- Department of Dermatology, St George Hospital, Sydney, New South Wales, Australia.
| |
Collapse
|
5
|
Yook G, Nam J, Jo Y, Yoon H, Yang D. Metabolic engineering approaches for the biosynthesis of antibiotics. Microb Cell Fact 2025; 24:35. [PMID: 39891166 PMCID: PMC11786382 DOI: 10.1186/s12934-024-02628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/18/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Antibiotics have been saving countless lives from deadly infectious diseases, which we now often take for granted. However, we are currently witnessing a significant rise in the emergence of multidrug-resistant (MDR) bacteria, making these infections increasingly difficult to treat in hospitals. MAIN TEXT The discovery and development of new antibiotic has slowed, largely due to reduced profitability, as antibiotics often lose effectiveness quickly as pathogenic bacteria evolve into MDR strains. To address this challenge, metabolic engineering has recently become crucial in developing efficient enzymes and cell factories capable of producing both existing antibiotics and a wide range of new derivatives and analogs. In this paper, we review recent tools and strategies in metabolic engineering and synthetic biology for antibiotic discovery and the efficient production of antibiotics, their derivatives, and analogs, along with representative examples. CONCLUSION These metabolic engineering and synthetic biology strategies offer promising potential to revitalize the discovery and development of new antibiotics, providing renewed hope in humanity's fight against MDR pathogenic bacteria.
Collapse
Affiliation(s)
- Geunsoo Yook
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jiwoo Nam
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonseo Jo
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunji Yoon
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dongsoo Yang
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Meghana V, Ravindran D, Pasupathy U. Untangling a case of dapsone-induced acute liver injury. J Family Med Prim Care 2025; 14:498-501. [PMID: 39989583 PMCID: PMC11844990 DOI: 10.4103/jfmpc.jfmpc_885_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 02/25/2025] Open
Abstract
Dapsone hypersensitivity syndrome, although rare, may manifest with fever, rash, and multi-organ failure, mimicking other common diseases. This case study involves a 9-year-old female patient presenting with fever and acute liver injury, in which the intake of dapsone was not revealed until much later. We discuss how the diagnosis was made and the successful outcome following prompt treatment. A high index of suspicion and vigilant history-taking, along with a detailed past treatment history, can provide early clues in reaching a diagnosis. Early intervention with systemic corticosteroids improves the outcome of dapsone hypersensitivity syndrome and can prevent mortality.
Collapse
Affiliation(s)
- V Meghana
- Department of Paediatric Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Divya Ravindran
- Department of Paediatric Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Umapathy Pasupathy
- Department of Paediatric Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Rakočević S, Mališ V, Kozić L, Dubovina A, Drakul M, Bokonjić D, Čolić M, Mihajlović D. Dapsone Alters Phenotypical and Functional Properties of Human Neutrophils In Vitro. Molecules 2024; 30:113. [PMID: 39795170 PMCID: PMC11722540 DOI: 10.3390/molecules30010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
Dapsone is a sulfone used in treating inflammatory skin conditions. Despite its widespread dermatological use, the pharmacological actions of dapsone remain poorly understood. Here, we examined how different aspects of neutrophil functions are affected by dapsone. Peripheral blood neutrophils from healthy donors were stimulated with phorbol-12-myristate-13-acetate (PMA), N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), or calcium ionophore (CaI) or primed with cytokines prior to stimulation, in the presence of different concentrations of dapsone (from 10 to 50 µg/mL), followed by analyses of their survival, phenotype, and functional properties. We found that dapsone at the concentration of 50 μg/mL induced a significant neutrophil apoptotic rate during 6 h and 18 h, while other concentrations were well tolerated compared to control non-treated cells. However, dapsone significantly decreased the induced oxidative burst of neutrophils at all non-cytotoxic concentrations. Additionally, dapsone showed a dose-dependent suppression of NETosis in activated neutrophils. The production of IL-8 by dapsone-treated neutrophils was decreased under both stimulated (fMLP) and primed (TNF-α/fMLP) conditions. Moreover, dapsone inhibited the expression of CD11b/CD18, CD66, and CD89 and reversed or significantly mitigated the downregulation of CD16, CD32, CD181, CD88, and CD62L on neutrophils after priming and fMLP stimulation. In conclusion, our results indicate the complexity of dapsone actions on neutrophil functions, extending previous knowledge on the suppression of oxidative burst and IL-8 production upon neutrophils' activation. Suppressed NETosis and modulation of marker expression associated with different neutrophil functions under inflammatory conditions are new findings, not recognized previously.
Collapse
Affiliation(s)
- Sara Rakočević
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
| | - Vanja Mališ
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
| | - Ljiljana Kozić
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
| | - Anđela Dubovina
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
| | - Marija Drakul
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
| | - Dejan Bokonjić
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
| | - Miodrag Čolić
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
- Serbian Academy of Sciences and Arts, Kneza Mihajla 35, 11000 Belgrade, Serbia
| | - Dušan Mihajlović
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Crnotravska 17, 11040 Belgrade, Serbia
| |
Collapse
|
8
|
Nazari K, Hosseindoost S, Dehpour AR, Kheirandish Y, Shafaroodi H. Evaluating the protective effect of dapsone on experimental osteoarthritis models induced by MIA in male rats. J Pharm Pharmacol 2024; 76:1497-1507. [PMID: 39096531 DOI: 10.1093/jpp/rgae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVES Osteoarthritis, a degenerative condition that results in significant morbidity, is typically managed with treatments aimed at symptom relief rather than addressing the underlying degeneration. Dapsone, recognized for its anti-inflammatory, antioxidant, antiexcitotoxic, and antiapoptotic properties, has demonstrated promising effects in various neurodegenerative diseases. This study explores the potential of dapsone to mitigate articular destruction, inflammation, and pain in rat models of osteoarthritis. METHODS Osteoarthritis was induced in rats by injecting MIA into the right knee joint. Dapsone was then administered intraperitoneally at 5, 10, or 20 mg/kg every 2 days for 2 weeks. Behavioural tests were done on days 0, 7, and 14. On day 14, the articular cartilage was histologically analysed using H&E staining. Serum levels of NF-kB, IL-1β, and TNF-α were evaluated by ELISA. RESULTS Dapsone effectively reduces pain, inflammation, and articular cartilage damage in osteoarthritis. Specifically, it improves mechanical allodynia and thermal hyperalgesia, reduces inflammatory markers (TNF-α, IL-1β, and NF-κB), and protects against cartilage destruction and chondrocyte loss, with the most significant effects at 20 mg/kg. CONCLUSIONS Dapsone effectively prevents pain, inflammation, and cartilage damage in osteoarthritis rats, suggesting its potential as a therapeutic option for managing osteoarthritis.
Collapse
Affiliation(s)
- Kimia Nazari
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Kheirandish
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Valente Duarte de Sousa IC. An update on the pharmacological management of acne vulgaris: the state of the art. Expert Opin Pharmacother 2024; 25:2177-2190. [PMID: 39420562 DOI: 10.1080/14656566.2024.2418986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Acne vulgaris is a chronic inflammatory disease of the pilosebaceous unit that affects approximately 9.4% of the global population. Current treatment strategies aim to target as many pathogenic factors involved in the appearance of acne lesions and are centered on a systematic treatment escalation based on disease severity, extension, and treatment response, starting with topical treatments for mild cases and progressing over to systemic therapies in more severe cases. A literature search, which included clinical guidelines, clinical studies, and review articles on acne treatment and maintenance, was conducted to review the pharmacological approaches currently available to treat this disease. AREAS COVERED Topical therapies such as topical retinoids, benzoyl peroxide, azelaic acid, salicylic acid, topical antibiotics, and clascoterone, as well as systemic treatments such as oral antibiotics and isotretinoin are discussed in detail. Combined oral contraceptives and spironolactone will not be discussed in this article. EXPERT OPINION There is a need for a blockbuster acne drug that simultaneously targets the four main pathogenic factors involved in the appearance of acne lesions while presenting with minimal side effects. Until such a drug exists, combination therapy will remain the standard of treatment for most acne patients.
Collapse
|
10
|
Khan AA, Khuroo T, Mohamed EM, Dharani S, Canberk K, Zhang X, Sangaré LO, Kuttolamadom MA, Rice-Ficht AC, Rahman Z. Development, Pharmacokinetics and Antimalarial Evaluation of Dose Flexible 3D Printlets of Dapsone for Pediatric Patients. AAPS PharmSciTech 2024; 25:217. [PMID: 39289236 DOI: 10.1208/s12249-024-02935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
The focus of current studies was to fabricate dose flexible printlets of dapsone (DDS) for pediatric patients by selective laser sintering (SLS) 3D printing method, and evaluate its physicochemical, patient in-use stability, and pharmacokinetic attributes. Eight formulations were fabricated using Kollicoat® IR, Eudragit® L-100-55 and StarCap®as excipients and evaluated for hardness, disintegration, dissolution, amorphous phase by differential scanning calorimetry and X-ray powder diffraction, in-use stability at 30 oC/75% RH for a month, and pharmacokinetic study in Sprague Dawley rats. The hardness, and disintegration of the printlets varied from 2.6±1.0 (F4) to 7.7±0.9 (F3) N and 2.0±0.4 (F2) to 7.6±0.6 (F3) sec, respectively. The drug was partially present as an amorphous form in the printlets. The drug was completely (>85%) dissolved in 20 min. No change in drug form or dissolution extent was observed after storage at in use condition. Pharmacokinetic profiles of both formulations (tablets and printlets) were almost superimposable with no statistical difference in pharmacokinetic parameters (Tmax, Cmax, and AUC0-¥)between formulations (p>0.05). Values of EC50 (half maximal effective concentration) and EC90 (maximal concentration inducing 90% maximal response) were 0.50±0.15 and 1.32±0.26 mM, 0.41±0.06 and 1.11±0.21, and 0.42±0.13 and 1.36±0.19 mM for DDS, printlet and tablet formulations, respectively, and differences were statistically insignificant (p>0.05). In conclusion, tablet and printlet formulations are expected to be clinical similar, thus clinically interchangeable.
Collapse
Affiliation(s)
- Adnan A Khan
- School of Engineering Medicine, Texas A&M University, Houston, Texas, 77030, USA
| | - Tahir Khuroo
- Texas A&M Health Science Center, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Reynolds Medical Sciences Building, Suite 308, College Station, Texas, 77843, USA
| | - Eman M Mohamed
- Texas A&M Health Science Center, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Reynolds Medical Sciences Building, Suite 308, College Station, Texas, 77843, USA
| | - Sathish Dharani
- Texas A&M Health Science Center, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Reynolds Medical Sciences Building, Suite 308, College Station, Texas, 77843, USA
| | - Kayalar Canberk
- Texas A&M Health Science Center, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Reynolds Medical Sciences Building, Suite 308, College Station, Texas, 77843, USA
- School of Engineering Medicine, Texas A&M University, Houston, Texas, 77030, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Department of Biology, Texas A&M University, College Station, Texas, 77843, USA
- Department of Engineering Technology & Industrial Distribution, College of Engineering, Texas A&M University, College Station, Texas, 77843, USA
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, Texas, 77843, USA
| | - Xiaoyu Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Lamba Omar Sangaré
- Department of Biology, Texas A&M University, College Station, Texas, 77843, USA
| | - Mathew A Kuttolamadom
- Department of Engineering Technology & Industrial Distribution, College of Engineering, Texas A&M University, College Station, Texas, 77843, USA
| | - Allison C Rice-Ficht
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, Texas, 77843, USA
| | - Ziyaur Rahman
- Texas A&M Health Science Center, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Reynolds Medical Sciences Building, Suite 308, College Station, Texas, 77843, USA.
| |
Collapse
|
11
|
Lovell KK, Momin RI, Sangha HS, Feldman SR, Pichardo RO. Dapsone Use in Dermatology. Am J Clin Dermatol 2024; 25:811-822. [PMID: 39078587 PMCID: PMC11358223 DOI: 10.1007/s40257-024-00879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Dapsone, initially synthesized for textile dyeing, gained recognition in the 1930s for its antibacterial properties, leading to its utilization in dermatology for leprosy and dermatitis herpetiformis. Despite US Food and Drug Administration (FDA) approval for these conditions, dapsone's off-label uses have expanded, making it a valuable option in various dermatologic conditions. This review seeks to highlight the common uses of dapsone in its FDA indications and off-label indications. Diseases in which dapsone is considered first-line therapy or adjunctive therapy are reviewed, with highlights from the resources included. An overview of dapsone's pharmacokinetics, pharmacodynamics, indications, dosages, and safety profile are also reviewed. Dapsone's versatility and safety profile make it a cost-effective treatment option in dermatology, particularly for patients with limited access to specialized medications. Ongoing clinical trials are also described exploring dapsone's efficacy in novel dermatologic uses. Dapsone has been a valuable adjunctive therapy across various dermatologic conditions for years and evidence for its use continues to expand.
Collapse
Affiliation(s)
- Katie K Lovell
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1071, USA.
| | - Rushan I Momin
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1071, USA
| | - Harneet Singh Sangha
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1071, USA
| | - Steven R Feldman
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1071, USA
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Rita O Pichardo
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1071, USA
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
12
|
Naik KP, Ganguly S, Shukla AK, Chhabra N, Prabha N, Ahmed G. Dapsone-induced haemolysis among leprosy patients on MDT from an endemic area of central India. J Family Med Prim Care 2024; 13:3887-3891. [PMID: 39464957 PMCID: PMC11504738 DOI: 10.4103/jfmpc.jfmpc_338_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 10/29/2024] Open
Abstract
Background and Aim Haemolysis due to dapsone as a part of MDT in leprosy patients has been long recognized. However, the frequency and severity of this side effect and factors associated with it have not been well documented. We planned to determine the frequency of dapsone-induced haemolysis in leprosy patients on MDT and various risk factors associated with it. Materials and Methods This was a hospital-based retrospective analysis, conducted on 36 treatment completed or partially treated or on treatment leprosy patients in a tertiary care centre in Chhattisgarh. Results Out of 36 patients, 83.3% showed a fall in haemoglobin from the baseline value (pre-treatment values). Dapsone was stopped in 33.3% of patients with a significant fall in haemoglobin. We found that the mean haemoglobin concentration for all patients fell from 13.05(+/-1.8) g/dl to 11.8(+/-1.9) g/dl (P < 0.05) which was statistically significant. A total of 25% of patients were labelled as confirmed cases of dapsone-induced haemolysis as per our definition. Conclusion Our results underline the need to incorporate haematological investigations in leprosy management protocol, especially in primary care settings where the majority of leprosy patients are managed.
Collapse
Affiliation(s)
- Krutika P. Naik
- Department of Dermatology, Venereology and Leprosy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Satyaki Ganguly
- Department of Dermatology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Arvind K. Shukla
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Namrata Chhabra
- Department of Dermatology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Neel Prabha
- Department of Dermatology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Ghazal Ahmed
- Department of Dermatology, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| |
Collapse
|
13
|
Spałek MM, Jałowska M, Welc N, Bowszyc-Dmochowska M, Dmochowski M. Dapsone as a Current Option for the Treatment of Autoimmune Bullous Diseases with Autoimmunity to Non-Enzymes: A Retrospective Study from a Single Central European Referral Center. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1324. [PMID: 39202604 PMCID: PMC11356425 DOI: 10.3390/medicina60081324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Dapsone (DP) is employed in the management of various skin conditions, including autoimmune bullous diseases to non-enzymes (n-eAIBDs). This study aimed to assess the advantages and safety profile of DP treatment in n-eAIBDs patients. The evaluation focused on clinical remission, reduction in glucocorticosteroid (GCS) usage, and adverse incidents during a 12-month observation in a dermatology department at a Central European university. Materials and Methods: Our retrospective study included forty-one patients who met the inclusion criteria, comprising nineteen with pemphigus vulgaris, nine with pemphigus foliaceus, four with bullous pemphigoid, and nine with mucous membrane pemphigoid, including one patient with Brunsting-Perry pemphigoid. Patients received 25-50 mg/day of DP along with oral GCSs for a year, with a subsequent dose reduction where feasible. Results: The mean decreases in prednisone-equivalent dosages across all groups after 2, 6, and 12 months of DP treatment were 45.66%, 65.77%, and 63.03%, respectively. Throughout the 12-month observation period, 21.62% of patients experienced a relapse, while the remaining patients attained either complete or partial remission with minimal therapy. Adverse incidents were observed in 29.27% of patients; these were mild or moderate, and no severe negative effects were observed. Conclusions: DP is an effective and affordable choice to support the treatment of n-eAIBDs, but it may not be sufficient for long-term management in certain patients with severe n-eAIBDs.
Collapse
Affiliation(s)
- Maciej Marek Spałek
- Autoimmune Blistering Dermatoses Section, Department of Dermatology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.M.S.); (M.J.); (N.W.); (M.D.)
| | - Magdalena Jałowska
- Autoimmune Blistering Dermatoses Section, Department of Dermatology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.M.S.); (M.J.); (N.W.); (M.D.)
| | - Natalia Welc
- Autoimmune Blistering Dermatoses Section, Department of Dermatology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.M.S.); (M.J.); (N.W.); (M.D.)
| | - Monika Bowszyc-Dmochowska
- Cutaneous Histopathology and Immunopathology Section, Department of Dermatology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marian Dmochowski
- Autoimmune Blistering Dermatoses Section, Department of Dermatology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.M.S.); (M.J.); (N.W.); (M.D.)
| |
Collapse
|
14
|
Attapong J, Kaset C, Nakkam N, Tassaneeyakul W, Wichukchinda N, Chomean S. Dual approaches in pharmacogenetics: Developing PCR-SSP and RT-PCR methods for HLA-B*13:01 screening to prevent dapsone and Co-trimoxazole SCARs. Heliyon 2024; 10:e34977. [PMID: 39144953 PMCID: PMC11320476 DOI: 10.1016/j.heliyon.2024.e34977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Dapsone and co-trimoxazole are potent antibiotics for treating various infections and inflammations. However, several studies reported the strongly association between severe cutaneous adverse drug reactions (SCARs) to both drugs and the HLA-B*13:01 allele. Rapid and reliable screening for the HLA-B*13:01 allele can mitigate the risk of dapsone-induced SCARs. We developed two methods, multiplex sequence-specific primer PCR (PCR-SSP) and real-time PCR (RT-PCR), tailored for different clinical settings. These methods were optimized to minimize false positives among the Thai population. Clinical validation demonstrated excellent reproducibility, with both methods showing 100 % concordance in repeated tests. PCR-SSP achieved a limit of detection as low as 100 pg of genomic DNA, while RT-PCR reached 1 pg. Overall statistical accuracy was 100.00 % (95 % CI: 98.18 %-100.00 %). Screening for drug-related HLA alleles is crucial for reducing mortality from severe cutaneous adverse drug reactions, especially dapsone hypersensitivity syndrome (DHS) and dapsone-induced hypersensitivity reactions (DIHRs). Our screening approach for dapsone can also be extended to co-trimoxazole, representing a significant advancement in personalized medicine and preemptive pharmacogenetic testing for tailored patient care and safety, albeit further validation in diverse ethnic populations is warranted to ensure universal applicability.
Collapse
Affiliation(s)
- Jirapat Attapong
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Medical Technology and Precision Medicine Innovation, Thailand
| | - Chollanot Kaset
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Medical Technology and Precision Medicine Innovation, Thailand
| | - Nontaya Nakkam
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Sirinart Chomean
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Medical Technology and Precision Medicine Innovation, Thailand
| |
Collapse
|
15
|
Islas-Cortez M, Ríos C, Manzanares J, Díaz-Ruiz A, Pérez-Pastén-Borja R. Isobolographic Analysis of the Cytoprotective Effect of Dapsone and Cannabidiol Alone or Combination upon Oxygen-Glucose Deprivation/Reoxygenation Model in SH-SY5Y Cells. Antioxidants (Basel) 2024; 13:705. [PMID: 38929144 PMCID: PMC11200396 DOI: 10.3390/antiox13060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress and apoptosis cell death are critical secondary damage mechanisms that lead to losing neighboring healthy tissue after cerebral ischemia. This study aims to characterize the type of interaction between dapsone (DDS) and cannabidiol (CBD) and its cytoprotective effect in an in vitro model of oxygen and glucose deprivation for 6 h followed by 24 h of reoxygenation (OGD/R), using the SH-SY5Y cell line. For the combined concentrations, an isobolographic study was designed to determine the optimal concentration-response combinations. Cell viability was evaluated by measuring the lactate dehydrogenase (LDH) release and 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assays. Also, the reactive oxygen species (ROS) and reduced glutathione (GSH) levels were analyzed as oxidative stress markers. Finally, caspase-3 activity was evaluated as a marker cell death by apoptosis. The results showed a decrease in cell viability, an increase in oxidant stress, and the activity of caspase-3 by the effect of OGD/R. Meanwhile, both DDS and CBD demonstrated antioxidant, antiapoptotic, and cytoprotective effects in a concentration-response manner. The isobolographic study indicated that the concentration of 2.5 µM of DDS plus 0.05 µM of CBD presented a synergistic effect so that in treatment, cell death due to OGD/R decreased. The findings indicate that DDS-CBD combined treatment may be a helpful therapy in cerebral ischemia with reperfusion.
Collapse
Affiliation(s)
- Marcela Islas-Cortez
- Laboratorio de Toxicología Molecular, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico
| | - Camilo Ríos
- Laboratorio de Neurofarmacología Molecular, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México 04960, Mexico;
- Dirección de Investigación, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, 03550 San Juan de Alicante, Alicante, Spain;
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Alicante, Spain
| | - Araceli Díaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico
| | - Ricardo Pérez-Pastén-Borja
- Laboratorio de Toxicología Molecular, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
| |
Collapse
|
16
|
Cysewski P, Jeliński T, Przybyłek M. Experimental and Theoretical Insights into the Intermolecular Interactions in Saturated Systems of Dapsone in Conventional and Deep Eutectic Solvents. Molecules 2024; 29:1743. [PMID: 38675562 PMCID: PMC11051893 DOI: 10.3390/molecules29081743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Solubility is not only a crucial physicochemical property for laboratory practice but also provides valuable insight into the mechanism of saturated system organization, as a measure of the interplay between various intermolecular interactions. The importance of these data cannot be overstated, particularly when dealing with active pharmaceutical ingredients (APIs), such as dapsone. It is a commonly used anti-inflammatory and antimicrobial agent. However, its low solubility hampers its efficient applications. In this project, deep eutectic solvents (DESs) were used as solubilizing agents for dapsone as an alternative to traditional solvents. DESs were composed of choline chloride and one of six polyols. Additionally, water-DES mixtures were studied as a type of ternary solvents. The solubility of dapsone in these systems was determined spectrophotometrically. This study also analyzed the intermolecular interactions, not only in the studied eutectic systems, but also in a wide range of systems found in the literature, determined using the COSMO-RS framework. The intermolecular interactions were quantified as affinity values, which correspond to the Gibbs free energy of pair formation of dapsone molecules with constituents of regular solvents and choline chloride-based deep eutectic solvents. The patterns of solute-solute, solute-solvent, and solvent-solvent interactions that affect solubility were recognized using Orange data mining software (version 3.36.2). Finally, the computed affinity values were used to provide useful descriptors for machine learning purposes. The impact of intermolecular interactions on dapsone solubility in neat solvents, binary organic solvent mixtures, and deep eutectic solvents was analyzed and highlighted, underscoring the crucial role of dapsone self-association and providing valuable insights into complex solubility phenomena. Also the importance of solvent-solvent diversity was highlighted as a factor determining dapsone solubility. The Non-Linear Support Vector Regression (NuSVR) model, in conjunction with unique molecular descriptors, revealed exceptional predictive accuracy. Overall, this study underscores the potency of computed molecular characteristics and machine learning models in unraveling complex molecular interactions, thereby advancing our understanding of solubility phenomena within the scientific community.
Collapse
Affiliation(s)
- Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | | | | |
Collapse
|
17
|
Kanatoula DD, Bodner E, Ghoreschi K, Meier K, Solimani F. Non-biologic immunosuppressive drugs for inflammatory and autoimmune skin diseases. J Dtsch Dermatol Ges 2024; 22:400-421. [PMID: 38259085 DOI: 10.1111/ddg.15270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/08/2023] [Indexed: 01/24/2024]
Abstract
Non-biologic immunosuppressive drugs, such as azathioprine, dapsone or methotrexate are fundamental treatment options for a wide range of autoimmune and chronic inflammatory skin diseases. Some of these drugs were initially used for malignancies (e.g., azathioprine or methotrexate) or infectious diseases (e.g., hydroxychloroquine or dapsone) but are nowadays mostly used for their immunosuppressive/immunomodulating action. Although dermatologists have years of clinical experience with these drugs, some of the mechanisms of action are not fully understood and are the subject of research. Although these drugs are commonly used, lack of experience or knowledge regarding their safety profiles and management leads to skepticism among physicians. Here, we summarize the mechanism of action and detailed management of adverse effects of the most commonly used immunosuppressive drugs for skin diseases. Furthermore, we discuss the management of these drugs during pregnancy and breastfeeding, as well as their interaction and handling during vaccination.
Collapse
Affiliation(s)
- Danai Dionysia Kanatoula
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Euna Bodner
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Katharina Meier
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| |
Collapse
|
18
|
Kanatoula DD, Bodner E, Ghoreschi K, Meier K, Solimani F. Nicht-Biologika-Immunsuppressiva bei entzündlichen und autoimmunen Hautkrankheiten: Non-biologic immunosuppressive drugs for inflammatory and autoimmune skin diseases. J Dtsch Dermatol Ges 2024; 22:400-423. [PMID: 38450929 DOI: 10.1111/ddg.15270_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/08/2023] [Indexed: 03/08/2024]
Abstract
ZusammenfassungNicht‐Biologika‐Immunsuppressiva wie Azathioprin, Dapson oder Methotrexat sind grundlegende Behandlungsmöglichkeiten für ein breites Spektrum von Autoimmunerkrankungen und chronisch‐entzündlichen Hauterkrankungen. Einige dieser Medikamente wurden ursprünglich bei malignen Erkrankungen (zum Beispiel Azathioprin oder Methotrexat) oder Infektionskrankheiten (zum Beispiel Hydroxychloroquin oder Dapson) eingesetzt, werden aber heute hauptsächlich wegen ihrer immunsuppressiven/immunmodulierenden Wirkung verwendet. Obwohl Dermatologen über jahrelange klinische Erfahrung mit diesen Arzneimitteln verfügen, sind einige der Wirkmechanismen noch nicht vollständig geklärt und noch Gegenstand der Forschung. Obwohl diese Medikamente häufig eingesetzt werden, führen mangelnde Erfahrung oder fehlendes Wissen über ihre Sicherheitsprofile und ihr Management zu einer skeptischen Haltung bei den Ärzten. Hier fassen wir den Wirkmechanismus und das detaillierte Management der Nebenwirkungen der am häufigsten verwendeten immunsuppressiven Medikamente für Hautkrankheiten zusammen. Darüber hinaus diskutieren wir den Umgang mit diesen Medikamenten während der Schwangerschaft und Stillzeit sowie ihre Wechselwirkung und Handhabung im Zusammenhang mit Impfungen.
Collapse
Affiliation(s)
- Danai Dionysia Kanatoula
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Euna Bodner
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Kamran Ghoreschi
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Katharina Meier
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Farzan Solimani
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
- BIH Biomedical Innovation Academy, Berlin Institute of Health, Charité - Universitätsmedizin Berlin
| |
Collapse
|
19
|
Łyko M, Ryguła A, Kowalski M, Karska J, Jankowska-Konsur A. The Pathophysiology and Treatment of Pyoderma Gangrenosum-Current Options and New Perspectives. Int J Mol Sci 2024; 25:2440. [PMID: 38397117 PMCID: PMC10889749 DOI: 10.3390/ijms25042440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Pyoderma gangrenosum (PG) is an uncommon inflammatory dermatological disorder characterized by painful ulcers that quickly spread peripherally. The pathophysiology of PG is not fully understood; however, it is most commonly considered a disease in the spectrum of neutrophilic dermatoses. The treatment of PG remains challenging due to the lack of generally accepted therapeutic guidelines. Existing therapeutic methods focus on limiting inflammation through the use of immunosuppressive and immunomodulatory therapies. Recently, several reports have indicated the successful use of biologic drugs and small molecules administered for coexisting diseases, resulting in ulcer healing. In this review, we summarize the discoveries regarding the pathophysiology of PG and present treatment options to raise awareness and improve the management of this rare entity.
Collapse
Affiliation(s)
- Magdalena Łyko
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Anna Ryguła
- Student Research Group of Experimental Dermatology, Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.R.); (M.K.); (J.K.)
| | - Michał Kowalski
- Student Research Group of Experimental Dermatology, Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.R.); (M.K.); (J.K.)
| | - Julia Karska
- Student Research Group of Experimental Dermatology, Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.R.); (M.K.); (J.K.)
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Alina Jankowska-Konsur
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
20
|
Fadaei MS, Fadaei MR, Kheirieh AE, Rahmanian-Devin P, Dabbaghi MM, Nazari Tavallaei K, Shafaghi A, Hatami H, Baradaran Rahimi V, Nokhodchi A, Askari VR. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI JOURNAL 2024; 23:212-263. [PMID: 38487088 PMCID: PMC10938253 DOI: 10.17179/excli2023-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024]
Abstract
Niosomes are drug delivery systems with widespread applications in pharmaceutical research and the cosmetic industry. Niosomes are vesicles of one or more bilayers made of non-ionic surfactants, cholesterol, and charge inducers. Because of their bilayer characteristics, similar to liposomes, niosomes can be loaded with lipophilic and hydrophilic cargos. Therefore, they are more stable and cheaper in preparation than liposomes. They can be classified into four categories according to their sizes and structures, namely small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs,), multilamellar vesicles (MLVs), and multivesicular vesicles (MVVs). There are many methods for niosome preparation, such as thin-film hydration, solvent injection, and heating method. The current study focuses on the preparation methods and pharmacological effects of niosomes loaded with natural and chemical anti-inflammatory compounds in kinds of literature during the past decade. We found that most research was carried out to load anti-inflammatory agents like non-steroidal anti-inflammatory drugs (NSAIDs) into niosome vesicles. The studies revealed that niosomes could improve anti-inflammatory agents' physicochemical properties, including solubility, cellular uptake, stability, encapsulation, drug release and liberation, efficiency, and oral bioavailability or topical absorption. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Emad Kheirieh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Abouzar Shafaghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Hatami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, FL 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Gracia J, Perumal D, Dhandapani P, Ragunathan P. Systematic identification and repurposing of FDA-approved drugs as antibacterial agents against Streptococcus pyogenes: In silico and in vitro studies. Int J Biol Macromol 2024; 257:128667. [PMID: 38101681 DOI: 10.1016/j.ijbiomac.2023.128667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Streptococcus pyogenes (Group A Streptococcus - GAS) is a human pathogen causing wide range of infections and toxin-mediated diseases in human beings of all age groups with fatality of 10-30 %. The limited success of antibiotics and the non-availability of vaccines makes GAS a global burden. The multi-subunit RNA polymerase (RNAP) is a validated bacterial therapeutic target as it is involved in transcription and can arrest growth. Of the five subunits of this enzyme complex, the β-subunit (RpoC) has attracted specific attention as a drug target, particularly in the switch region. Here we attempt to repurpose non-antimicrobial drugs to act as RpoC inhibitors against S. pyogenes. In this study, 1826 FDA approved drugs have been identified through high-throughput virtual screening. Free Energy Perturbation (FEP) based binding free energy calculations have been performed at the final step of the virtual screening funnel to ensure high accuracy in silico results. Three compounds identified have been tested for susceptibility of S. pyogenes MTCC 442 strain and two antibiotic-resistant clinical isolates of S. pyogenes using microdilution assay. Among the three, two drugs Amlodipine Besylate (Amd) and Ranitidine hydrochloride (Rnt) have shown inhibition against all the tested strains and its mechanism of interaction with RpoC has been studied. The docked complexes were analyzed to understand the binding mode of the drugs to the target. Classical Molecular Dynamics studies for RpoC-Rnt complex and the two stable conformations of RpoC-Amd complex was carried out. Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration (RoG) and Solvent Accessible Surface Area (SASA) of the complexes were plotted and studied. The thermodynamic parameters of protein-drug were experimentally determined using Isothermal Titration Calorimetry (ITC). Infrared spectroscopic studies and Fluorescence quenching studies provided insights into the secondary structural changes in RpoC on binding to the drugs.
Collapse
Affiliation(s)
- Judith Gracia
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy, India
| | - Damodharan Perumal
- Department of Microbiology, Dr. ALMPG IBMS, University of Madras, Taramani, India
| | - Prabu Dhandapani
- Department of Microbiology, Dr. ALMPG IBMS, University of Madras, Taramani, India
| | - Preethi Ragunathan
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy, India.
| |
Collapse
|
22
|
Gobi T, Elangovan N, Sowrirajan S, Islam MS, Sirajunnisa A. Synthesis, characterization, DFT, vibrational analysis (FT-IR and FT-Raman), topology and molecular docking studies of 3,3′-((1E,1′E)-((sulfonylbis(4,1-phenylene)) bis (azaneylylidene)) bis (methaneylylidene)) diphenol. J Mol Struct 2024; 1296:136805. [DOI: 10.1016/j.molstruc.2023.136805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
|
23
|
Cabral-Pacheco GA, Flores-Morales V, Garza-Veloz I, Damián-Sandoval M, Martínez-Flores RB, Martínez-Vázquez MC, Delgado-Enciso I, Rodriguez-Sanchez IP, Martinez-Fierro ML. Evaluation of dapsone and its synthetic derivative DDS‑13 in cancer in vitro. Exp Ther Med 2024; 27:47. [PMID: 38144918 PMCID: PMC10739155 DOI: 10.3892/etm.2023.12335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/02/2023] [Indexed: 12/26/2023] Open
Abstract
The present study highlighted the repositioning of the drug dapsone (DDS) for cancer therapy. Due to its mechanism of action, DDS has a dual effect as an antibiotic and as an anti-inflammatory/immunomodulator; however, at high doses, it has important adverse effects. The derivative DDS-13 [N,N'-(sulfonyl bis (4,1-phenylene)) dioctanamide] was synthesized through an N-acylation reaction to compare it with DDS. Its cytotoxic effects in cancer cells (DU145 and HeLa) and non-cancer cells (HDFa) were observed at concentrations ranging 0.01-100 µM and its physicochemical/pharmacokinetic properties were analyzed using the SwissADME tool. The objectives of the present study were to evaluate the anticancer activity of both DDS and DDS-13 and to identify the physicochemical and pharmacokinetic properties of DDS-13. The results showed that DDS-13 presented a cytotoxic effect in the DU145 cell line (IC50=19.06 µM), while DDS showed a cytotoxic effect on both the DU145 (IC50=11.11 µM) and HeLa (IC50=13.07 µM) cell lines. DDS-13 appears to be a good cytotoxic candidate for the treatment of prostate cancer, while DDS appears to be a good candidate for both cervical and prostate cancer. Neither candidate showed a cytotoxic effect in non-cancerous cells. The different pharmacokinetic properties of DDS-13 make it a new candidate for evaluation in preclinical models for the treatment of cancer.
Collapse
Affiliation(s)
- Griselda A. Cabral-Pacheco
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Virginia Flores-Morales
- Laboratory of Asymmetric Synthesis and Bio-Chemoinformatics, Chemical Engineering, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Miriam Damián-Sandoval
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Rosa B. Martínez-Flores
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - María C. Martínez-Vázquez
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Iván Delgado-Enciso
- School of Medicine, University of Colima, Colima 28040, Mexico
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico
| | - Iram P. Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Autonomous University of Nuevo Leon, Nuevo León 66455, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| |
Collapse
|
24
|
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Alexiou A, Batiha GES. The Potential Effect of Dapsone on the Inflammatory Reactions in COVID-19: Staggering View. Comb Chem High Throughput Screen 2024; 27:674-678. [PMID: 36999691 DOI: 10.2174/1386207326666230331121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
Severe SARS-CoV-2 infection is linked with an overstated immune response with the succeeding release of pro-inflammatory cytokines and progression of the cytokine storm. In addition, severe SARS-CoV-2 infection is associated with the development of oxidative stress and coagulopathy. Dapsone (DPS) is a bacteriostatic antibiotic that has a potent anti-inflammatory effect. Thus, this mini-review aimed to elucidate the potential role of DPS in mitigating inflammatory disorders in COVID-19 patients. DPS inhibits neutrophil myeloperoxidase, inflammation, and neutrophil chemotaxis. Therefore, DPS could be effective against neutrophilia-induced complications in COVID-19. In addition, DPS could be effective in mitigating inflammatory and oxidative stress disorders by suppressing the expression of inflammatory signaling pathways and the generation of reactive oxygen species (ROS) correspondingly. In conclusion, DPS might be effective in the management of COVID-19 through the attenuation of inflammatory disorders. Therefore, preclinical and clinical studies are reasonable in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Wien, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
25
|
Behmagham F, Abdullah MN, Azimi SB, Ubaid M, Ali ATA, Adhab AH, Sami MH, Soleimani-Amiri S, Vessally E. Reductive coupling of nitro compounds with boronic acid derivatives: an overview. RSC Adv 2023; 13:33390-33402. [PMID: 37964904 PMCID: PMC10642445 DOI: 10.1039/d3ra05100e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
The purpose of this review is to summarize the current literature on reductive C-N coupling of nitro compounds and boronic acids, with special emphasis on the mechanistic features of the reactions. The metal-catalyzed reactions are discussed first. This is followed by electro-synthesis and organophosphorus-catalyzed reactions. Finally, the available examples of catalyst-free reactions will be covered at the end of this review.
Collapse
Affiliation(s)
- Farnaz Behmagham
- Department of Chemistry, Miandoab Branch, Islamic Azad University Miandoab Iran
| | - Media Noori Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil Kurdistan Region Iraq
| | - Seyedeh Bahareh Azimi
- Assessment and Environment Risks Department, Research Center of Envirnment and Sustainable Development (RCESD) Tehran Iran
| | | | - Abbas Talib Abd Ali
- College of Health and Medical Technologies, National University of Science and Technology Dhi Qar Iraq
| | | | | | | | - Esmail Vessally
- Department of Chemistry, Payame Noor University P. O. Box 19395-3697 Tehran Iran
| |
Collapse
|
26
|
Kast RE. The OSR9 Regimen: A New Augmentation Strategy for Osteosarcoma Treatment Using Nine Older Drugs from General Medicine to Inhibit Growth Drive. Int J Mol Sci 2023; 24:15474. [PMID: 37895152 PMCID: PMC10607234 DOI: 10.3390/ijms242015474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
As things stand in 2023, metastatic osteosarcoma commonly results in death. There has been little treatment progress in recent decades. To redress the poor prognosis of metastatic osteosarcoma, the present regimen, OSR9, uses nine already marketed drugs as adjuncts to current treatments. The nine drugs in OSR9 are: (1) the antinausea drug aprepitant, (2) the analgesic drug celecoxib, (3) the anti-malaria drug chloroquine, (4) the antibiotic dapsone, (5) the alcoholism treatment drug disulfiram, (6) the antifungal drug itraconazole, (7) the diabetes treatment drug linagliptin, (8) the hypertension drug propranolol, and (9) the psychiatric drug quetiapine. Although none are traditionally used to treat cancer, all nine have attributes that have been shown to inhibit growth-promoting physiological systems active in osteosarcoma. In their general medicinal uses, all nine drugs in OSR9 have low side-effect risks. The current paper reviews the collected data supporting the role of OSR9.
Collapse
|
27
|
Alkhatib EH, Grundman JB, Adamusiak AM, Bellin MD, Brooks JP, Buckley KS, Janssen EM, Kitcharoensakkul M, McNerney KP, Pfeifer TL, Polk BI, Marks BE. Case Report: Insulin hypersensitivity in youth with type 1 diabetes. Front Endocrinol (Lausanne) 2023; 14:1226231. [PMID: 37929017 PMCID: PMC10624121 DOI: 10.3389/fendo.2023.1226231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Objective Immediate type I, type III, and delayed type IV hypersensitivity reactions to insulin are rare, but potentially serious complications of exogenous insulin administration required for the treatment of type 1 diabetes (T1D). Methods We present four cases of insulin hypersensitivity reactions occurring in youth with T1D and a literature review of this topic. Results Insulin hypersensitivity reactions included types I, III, and IV with presentations ranging from localized urticaria, erythematous nodules, and eczematous plaques to anaphylaxis with respiratory distress. Reactions occurred in youth with newly diagnosed T1D and in those with long-standing T1D who were using both injection and insulin pump therapy. Multidisciplinary care involving pediatric endocrinology and allergy/immunology utilizing trials of many adjunct therapies yielded minimal improvement. Despite the use of various treatments, including antihistamines, topical therapies, immunosuppressant medications, desensitization trials, and intravenous immune globulin, cutaneous reactions, elevated hemoglobin A1c levels, and negative effects on quality of life remain persistent challenges. One patient became one of the youngest pancreas transplant recipients in the world at age 12 years due to uncontrollable symptoms and intolerable adverse effects of attempted therapies. Conclusion Although rare, insulin hypersensitivity reactions negatively affect glycemic control and quality of life. These cases demonstrate the varying severity and presentation of insulin hypersensitivity reactions along with the limited success of various treatment approaches. Given the life-sustaining nature of insulin therapy, further studies are needed to better understand the underlying pathophysiology of insulin hypersensitivity and to develop targeted treatment approaches.
Collapse
Affiliation(s)
- Einas H. Alkhatib
- Department of Pediatric Endocrinology, Children’s National Hospital, Washington, DC, United States
| | - Jody B. Grundman
- Department of Pediatric Endocrinology, Children’s National Hospital, Washington, DC, United States
| | - Anna M. Adamusiak
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Melena D. Bellin
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
- Department of Pediatrics, Division of Endocrinology, University of Minnesota, Minneapolis, MN, United States
| | - Joel P. Brooks
- Department of Allergy and Immunology, Columbia University/New York-Presbyterian, New York, NY, United States
| | - Kevin S. Buckley
- Departments of Hematology/Oncology and Infectious Disease, Atrium Health Levine Children’s Hospital, Concord, NC, United States
| | - Erin M. Janssen
- Department of Rheumatology, Mott Children’s Hospital/University of Michigan, Ann Arbor, MI, United States
| | - Maleewan Kitcharoensakkul
- Departments of Pediatric Allergy and Pulmonary Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Kyle P. McNerney
- Department of Pediatric Endocrinology, Washington University School of Medicine, St. Louis, MO, United States
| | - Thea L. Pfeifer
- Department of Pediatric Endocrinology, Atrium Health Levine Children’s Hospital, Concord, NC, United States
| | - Brooke I. Polk
- Departments of Pediatric Allergy and Pulmonary Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brynn E. Marks
- Department of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
28
|
Cysewski P, Przybyłek M, Jeliński T. Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6336. [PMID: 37763610 PMCID: PMC10532775 DOI: 10.3390/ma16186336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Dapsone is an effective antibacterial drug used to treat a variety of conditions. However, the aqueous solubility of this drug is limited, as is its permeability. This study expands the available solubility data pool for dapsone by measuring its solubility in several pure organic solvents: N-methyl-2-pyrrolidone (CAS: 872-50-4), dimethyl sulfoxide (CAS: 67-68-5), 4-formylmorpholine (CAS: 4394-85-8), tetraethylene pentamine (CAS: 112-57-2), and diethylene glycol bis(3-aminopropyl) ether (CAS: 4246-51-9). Furthermore, the study proposes the use of intermolecular interactions as molecular descriptors to predict the solubility of dapsone in neat solvents and binary mixtures using machine learning models. An ensemble of regressors was used, including support vector machines, random forests, gradient boosting, and neural networks. Affinities of dapsone to solvent molecules were calculated using COSMO-RS and used as input for model training. Due to the polymorphic nature of dapsone, fusion data are not available, which prohibits the direct use of COSMO-RS for solubility calculations. Therefore, a consonance solvent approach was tested, which allows an indirect estimation of the fusion properties. Unfortunately, the resulting accuracy is unsatisfactory. In contrast, the developed regressors showed high predictive potential. This work documents that intermolecular interactions characterized by solute-solvent contacts can be considered valuable molecular descriptors for solubility modeling and that the wealth of encoded information is sufficient for solubility predictions for new systems, including those for which experimental measurements of thermodynamic properties are unavailable.
Collapse
Affiliation(s)
- Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (M.P.); (T.J.)
| | | | | |
Collapse
|
29
|
Horowitz RI, Fallon J, Freeman PR. Comparison of the Efficacy of Longer versus Shorter Pulsed High Dose Dapsone Combination Therapy in the Treatment of Chronic Lyme Disease/Post Treatment Lyme Disease Syndrome with Bartonellosis and Associated Coinfections. Microorganisms 2023; 11:2301. [PMID: 37764145 PMCID: PMC10537894 DOI: 10.3390/microorganisms11092301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Twenty-five patients with relapsing and remitting Borreliosis, Babesiosis, and bartonellosis despite extended anti-infective therapy were prescribed double-dose dapsone combination therapy (DDDCT), followed by one or several courses of High Dose Dapsone Combination Therapy (HDDCT). A retrospective chart review of these 25 patients undergoing DDDCT therapy and HDDCT demonstrated that 100% improved their tick-borne symptoms, and patients completing 6-7 day pulses of HDDCT had superior levels of improvement versus 4-day pulses if Bartonella was present. At the completion of treatment, 7/23 (30.5%) who completed 8 weeks of DDDCT followed by a 5-7 day pulse of HDDCT remained in remission for 3-9 months, and 3/23 patients (13%) who recently finished treatment were 1 ½ months in full remission. In conclusion, DDDCT followed by 6-7 day pulses of HDDCT could represent a novel, effective anti-infective strategy in chronic Lyme disease/Post Treatment Lyme Disease Syndrome (PTLDS) and associated co-infections, including Bartonella, especially in individuals who have failed standard antibiotic protocols.
Collapse
Affiliation(s)
- Richard I. Horowitz
- Lyme and Tick-Borne Diseases Working Group, New York State Department of Health, Albany, NY 12224, USA
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - John Fallon
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - Phyllis R. Freeman
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| |
Collapse
|
30
|
Fontana RJ, Kleiner DE, Chalasani N, Bonkovsky H, Gu J, Barnhart H, Li YJ, Hoofnagle JH. The Impact of Patient Age and Corticosteroids in Patients With Sulfonamide Hepatotoxicity. Am J Gastroenterol 2023; 118:1566-1575. [PMID: 36848311 PMCID: PMC10511659 DOI: 10.14309/ajg.0000000000002232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023]
Abstract
INTRODUCTION Sulfonamides are widely used to treat and prevent various bacterial and opportunistic infections. The aim of this study was to describe the clinical presentation and outcomes of a large cohort of patients with sulfonamide hepatotoxicity. METHODS Between 2004 and 2020, 105 patients with hepatotoxicity attributed to trimethoprim/sulfamethoxazole (TMP-SMZ) (n = 93) or other sulfonamides (n = 12) were enrolled. Available liver biopsies were reviewed by a single hepatopathologist. RESULTS Among the 93 TMP-SMZ cases, 52% were female, 7.5% younger than 20 years, and the median time to drug-induced liver injury (DILI) onset was 22 days (range: 3-157). Younger patients were significantly more likely to have rash, fever, eosinophilia, and a hepatocellular injury pattern at onset that persisted at the peak of liver injury compared with older patients ( P < 0.05). The 18 (19%) TMP-SMZ patients treated with corticosteroids had more severe liver injury and a higher mortality but a trend toward more rapid normalization of their laboratory abnormalities compared with untreated patients. During follow-up, 6.2% of the TMP-SMZ patients died or underwent liver transplantation. Chronic DILI developed in 20% and was associated with cholestatic injury at onset and higher peak total bilirubin levels. DISCUSSION Sulfonamide hepatotoxicity is characterized by a short drug latency with frequent hypersensitivity features at onset. Subject age is an important determinant of the laboratory profile at presentation, and patients with cholestasis and higher total bilirubin levels were at increased risk of developing chronic DILI. Corticosteroids may benefit a subgroup of patients with severe injury, but further studies are needed.
Collapse
Affiliation(s)
- Robert J. Fontana
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI
| | - David E. Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, IN
| | - Herbert Bonkovsky
- Section on Gastroenterology & Hepatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Jiezhun Gu
- Duke Clinical Research Institute, Durham, NC
| | | | - Yi-Ju Li
- Duke Clinical Research Institute, Durham, NC
| | - Jay H. Hoofnagle
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| |
Collapse
|
31
|
Abdelraof M, Fikry M, Hashem AH, El-Naggar ME, Rashdan HRM. Insight into novel anti-mucormycosis therapies: investigation of new anti-mucormycosis laser-induced photodynamic therapy based on a sulphone bis-compound loaded silica nanoemulsion. RSC Adv 2023; 13:20684-20697. [PMID: 37435382 PMCID: PMC10331924 DOI: 10.1039/d3ra02775a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
For drug delivery applications, silica nanoemulsion encapsulated with organic compounds are becoming increasingly more desirable. Therefore, the emphasis of this research was on the synthesis of a new potent antifungal drug-like candidate (1,1'-((sulfonylbis(4,1-phenylene)bis(5-methyl-1H-1,2,3-triazole-1,4-diyl))bis(3-(dimethylamino)prop-2-en-1-one), SBDMP), the chemical structure of which was confirmed on the basis of its spectral and microanalytical data. Then, silica nanoemulsion loaded with SBDMP was prepared using Pluronic F-68 as a potent surfactant. The particle shape, hydrodynamic size, and zeta potential of the produced silica nanoemulsion (with and without drug loading) were assessed. The antitumoral activity of the synthesized molecules showed the superiority of SBDMP and silica nanoemulsion with and without SBDMP loading against Rhizopus microsporous and Syncephalastrum racemosum. Subsequently, the laser-induced photodynamic inactivation (LIPDI) of Mucorales strains was determined using the tested samples. The optical properties of the samples were investigated using UV-vis optical absorption and the photoluminescence. The photosensitivity of the selected samples appeared to enhance the eradication of the tested pathogenic strains when exposed to a red (640 nm) laser light. The optical property results verified that the SBDMP-loaded silica nanoemulsion has a high depth of penetration into biological tissues due to a two-absorption photon (TAP) mechanism. Interestingly, the photosensitizing of the nanoemulsion loaded with a newly synthesized drug-like candidate, SBDMP, opens up a new route to apply new organic compounds as photosensitizers under laser-induced photodynamic therapy (LIPDT).
Collapse
Affiliation(s)
- Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Mohamed Fikry
- Ultrafast Picosecond Laser Lab, Physics Department, Faculty of Science, Cairo University Giza 12613 Egypt
- Egypt Nanotechnology Center (EGNC), Faculty of Nanotechnology for Postgraduate Studies, Cairo University El-Sheikh Zayed 12588 Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University Cairo 11884 Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre 33 El Bohouth St, Dokki Giza 12622 Egypt
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| |
Collapse
|
32
|
Rao MR, Deshpande S, Deshpande P. Dapsone-Loaded Mixed Micellar Gel for Treatment OF Acne Vulgaris. AAPS PharmSciTech 2023; 24:109. [PMID: 37100968 DOI: 10.1208/s12249-023-02564-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Mixed polymeric micelles are potential nanocarriers for topical drug delivery. Dapsone (DAP) is an antibacterial used as anti-acne agent, but challenged by low water solubility and poor skin permeability. In the present study, DAP-loaded mixed micellar gel was developed comprising Pluronics F-68 and F-127. Micelles were prepared by solvent evaporation method and particle size, ex vivo permeation, drug loading, and entrapment efficiency were determined. Central Composite Design was used to optimize formulation. Independent variables were concentration of Pluronics at three levels while micelle size and drug loading capacities were dependent variables. Droplet size ranged from 400 to 500 nm. Transmission electron microscopy revealed spherical morphology of micelles. Optimized micelles were incorporated into gel base using HPMC K100M, Sodium CMC, and Carbopol 980 as gelling agents. Gels were evaluated for pH, drug content, spreadability, rheology, syneresis, ex vivo permeation, and subacute dermal toxicity. Compared with solubility of free DAP (0.24+0.056 µg/ml), solubility in mixed micelles was 18.42±3.4 µg/ml in water at room temperature. Order of spreadability of gels was Na CMC < HPMC < Carbopol 980. Carbopol gels displayed thixotropy with index of 3.17. Syneresis for all gels from day 0 to day 30 was found to be in range of 4.2 to 15.6% w/w. Subacute dermal toxicity studies showed no signs of erythema and edema on rat skin until 21 days. These results suggest that mixed micelles can significantly increase solubility and permeability and sustain release of DAP and are suitable carriers for topical DAP delivery in anti-acne therapies.
Collapse
Affiliation(s)
- Monica Rp Rao
- Department of Pharmaceutics, AISSMS College of Pharmacy, Kennedy Road, Near R.T.O., Maharashtra, 411001, Pune, India.
| | - Sushant Deshpande
- Department of Pharmaceutical Quality Assurance, AISSMS College of Pharmacy, Kennedy Road, Near R.T.O., Pune, 411001, India
| | - Padmanabh Deshpande
- Department of Pharmaceutical Quality Assurance, AISSMS College of Pharmacy, Kennedy Road, Near R.T.O., Pune, 411001, India
| |
Collapse
|
33
|
Ríos C, Aguirre-Aranda I, Avendaño-Estrada A, Ángel Ávila-Rodríguez M, Manjarrez-Marmolejo J, Franco-Pérez J, Islas-Cortez M, Ruiz-Diaz A, Méndez-Armenta M, Diaz-Ruiz A. Characterization of the anticonvulsant effect of dapsone on metabolic activity assessed by [ 18F]FDG -PET after kainic acid-induced status epilepticus in rats. Brain Res 2023; 1803:148227. [PMID: 36592802 DOI: 10.1016/j.brainres.2022.148227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Development of effective drugs for epilepsy are needed, as nearly 30 % of epileptic patients, are resistant to current treatments. This study is aimed to characterize the anticonvulsant effect of dapsone (DDS), in the kainic acid (KA)-induced Status Epilepticus (SE) by recording the brain metabolic activity with an [18F]FDG-PET analysis. METHODS Wistar rats received KA (10 mg/kg, i.p., single dose) to produce sustained seizures. [18F]FDG-PET and electroencephalographic (EEG) studies were then performed. DDS or vehicle were administered 30 min before KA. [18F]FDG uptake and EEG were evaluated at baseline, 2 and 25 h after KA injection. Likewise, caspase-8, 3 hippocampal activities and Fluoro-Jade B neuronal degeneration and Hematoxylin-eosin staining were measured 25 h after KA. RESULTS PET data evaluated at 2 h showed hyper-uptake of [18F]FDG in the control group, which was decreased by DDS. At 25 h, hypo-uptake was observed in the control group and higher values due to DDS effect. EEG spectral power was increased 2 h after KA administration in the control group during the generalized tonic-clonic seizures, which was reversed by DDS, correlated with [18F]FDG-PET uptake changes. The values of caspases-8 activity decreased 48 and 43 % vs control group in the groups treated with DDS (12.5 y 25 mg/kg respectively), likewise; caspase-3 activity diminished by 57 and 53 %. Fewer degenerated neurons were observed due to DDS treatments. CONCLUSIONS This study pinpoints the anticonvulsant therapeutic potential of DDS. Given its safety and effectiveness, DDS may be a viable alternative for patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Camilo Ríos
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez,14269 Ciudad de México, Mexico; Laboratorio de Neurofarmacología Molecular, Universidad Autónoma Metropolitana Xochimilco,04960 Ciudad de México, Mexico
| | - Iñigo Aguirre-Aranda
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez,14269 Ciudad de México, Mexico
| | - Arturo Avendaño-Estrada
- Unidad Radiofarmacia-Ciclotrón, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Miguel Ángel Ávila-Rodríguez
- Unidad Radiofarmacia-Ciclotrón, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Joaquín Manjarrez-Marmolejo
- Laboratorio de Fisiología de la Formación Reticular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269 Ciudad de México. Mexico
| | - Javier Franco-Pérez
- Laboratorio de Fisiología de la Formación Reticular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269 Ciudad de México. Mexico
| | - Marcela Islas-Cortez
- Doctorado en Ciencias Químico Biológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Amairani Ruiz-Diaz
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez,14269 Ciudad de México, Mexico
| | - Marisela Méndez-Armenta
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez,14269 Ciudad de México, Mexico
| | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez,14269 Ciudad de México, Mexico.
| |
Collapse
|
34
|
Chen A, Harview CL, Rand SE, Harms JL. Refractory granuloma faciale successfully treated with adjunct topical JAK inhibitor. JAAD Case Rep 2023; 33:91-94. [PMID: 36895509 PMCID: PMC9989295 DOI: 10.1016/j.jdcr.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Ailynna Chen
- University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Christina L Harview
- Department of Dermatology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Sydney E Rand
- University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Jessica L Harms
- Department of Dermatology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| |
Collapse
|
35
|
Marzolf G, Lipsker D. Dapsone in non-bullous skin lesions of lupus erythematosus: A literature review. J Eur Acad Dermatol Venereol 2023; 37:e189-e190. [PMID: 36177497 DOI: 10.1111/jdv.18620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/23/2022] [Indexed: 01/19/2023]
Affiliation(s)
- Gaelle Marzolf
- Clinique Dermatologique, Hôpitaux Universitaires, Strasbourg, France
| | - Dan Lipsker
- Clinique Dermatologique, Hôpitaux Universitaires, Strasbourg, France.,Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
36
|
da Silva Santos J, da Costa Alves F, José Dos Santos Júnior E, Soares Sobrinho JL, de La Roca Soares MF. Evolution of pediatric pharmaceutical forms for treatment of Hansen's disease (leprosy). Expert Opin Ther Pat 2023; 33:1-15. [PMID: 36755421 DOI: 10.1080/13543776.2023.2178301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Leprosy is a neglected, infectious, granulomatous and chronic disease caused by the pathological agent Mycobacterium leprae. The course of the disease is more aggressive in patients under 15 years of age, but the current treatment offered worldwide consists of solid forms, by the combination of antibiotics such as rifampicin, clofazimine and dapsone. This represents results in lack of adherence in pediatric patients and drug therapy failure, although numerous formulations and technologies have already been developed. AREA COVERED This study aims to analyze the technological evolution of the pharmaceutical treatment of leprosy, aimed at children. A review of patents around the world was conducted to look for technical and clinical aspects of formulations and devices. EXPERT OPINION Innovative formulations for pediatric patients were classified according to the routes of administration as oral, inhalable, injectable and transdermal. The formulations were organized as alternatives for pediatric therapy, taking into account the physicochemical aspects of drugs and the physiological aspects of pediatric patients. Among the difficulties for the patented formulations to reach the market, of special note is the low stability of the physicochemical characteristics of the drugs. Optimization of formulations would favor the pediatric treatment of leprosy, aiming at therapeutic success.
Collapse
Affiliation(s)
- Jocimar da Silva Santos
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - Franciely da Costa Alves
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - Efraim José Dos Santos Júnior
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - José Lamartine Soares Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - Mônica Felts de La Roca Soares
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| |
Collapse
|
37
|
van Delft MAM, Aleyd E, van der Mast R, de Jong N, Boon L, Simons PJ, van Egmond M. Antagonizing FcαR1 (CD89) as treatment in IgA-mediated chronic inflammation and autoimmunity. Front Immunol 2023; 14:1118539. [PMID: 37081893 PMCID: PMC10111428 DOI: 10.3389/fimmu.2023.1118539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/03/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction Immunoglobulin A (IgA) is mostly considered as a non-inflammatory regulator at mucosal areas. However, previous work of our group showed that IgA can also be involved in disease pathology, because it provides a potent stimulus to activate neutrophils after crosslinking of surface CD89 (FcaRI), resulting in chronic inflammation and tissue damage. IgA (auto)antibodies and neutrophils are key players in various diseases, including blistering skin diseases and rheumatoid arthritis. Therefore, we generated an array of anti-CD89 monoclonal antibodies (mAbs) for therapeutic targeting of CD89. The biological activity of newly developed anti-human CD89 mAbs and their potential therapeutic capacity were investigated. Methods Human neutrophils were isolated from heparinized healthy donor blood. The ability of anti-CD89 mAbs to bind human neutrophils was investigated by flow cytometry. Furthermore, the capacity of these anti-CD89 mAbs to inhibit IgA-mediated phagocytosis, neutrophil extracellular trap (NET) release and migration was studied. To this end, neutrophils were pre-incubated with/without anti-CD89 mAbs after which they were stimulated with IgA-coated beads. The amount of phagocytosed beads, NET release and migrated neutrophils were subsequently analysed. In parallel, chemoattractant leukotriene B4 and lactoferrin (as a measure for degranulation) release were determined. Finally, the therapeutic potential of our prototypic anti-CD89 mAb clone 10E7 was in vivo tested in anti-mouse collagen XVII human IgA-treated transgenic CD89 mice, a preclinical model for autoimmune linear IgA bullous disease (LABD). Results Our results show that all generated anti-CD89 mAbs bound surface CD89 on neutrophils. Although these anti-CD89 mAbs bind to different epitopes on EC1 of CD89, they all have the capacity to inhibit IgA-mediated phagocytosis, neutrophil extracellular trap (NET) release and neutrophil migration. Moreover, IgA mediated leukotriene B4 and lactoferrin release are decreased in supernatant from anti-CD89 mAbs-treated neutrophils. Finally, anti-CD89 mAb clone 10E7, that was selected based on its selective binding profile on tissue micro arrays, reduced anti-mouse collagen XVII hIgA-induced neutrophil influx in an in vivo linear IgA bullous disease (LABD) mice model. Conclusion This study clearly indicates that our newly developed anti-CD89 mAbs inhibited IgA-induced neutrophil activation and reduced anti-autoantigen IgA-induced neutrophil influx in vivo, supporting further clinical development for the treatment of LABD.
Collapse
Affiliation(s)
- Myrthe A. M. van Delft
- Molecular Cell Biology and Immunology, Amsterdam University Medical Center (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Inflammatory Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Esil Aleyd
- Research and Development, Polpharma Biologics, Utrecht, Netherlands
| | - Richard van der Mast
- Molecular Cell Biology and Immunology, Amsterdam University Medical Center (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Inflammatory Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Niels de Jong
- Research and Development, Polpharma Biologics, Utrecht, Netherlands
| | - Louis Boon
- Research and Development, Polpharma Biologics, Utrecht, Netherlands
- Research and Development, JJP Biologics, Warsaw, Poland
| | - Peter J. Simons
- Research and Development, Polpharma Biologics, Utrecht, Netherlands
| | - Marjolein van Egmond
- Molecular Cell Biology and Immunology, Amsterdam University Medical Center (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Inflammatory Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Surgery, Amsterdam University Medical Center (UMC) Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Marjolein van Egmond,
| |
Collapse
|
38
|
Kanwar B, Khattak A, Kast RE. Dapsone Lowers Neutrophil to Lymphocyte Ratio and Mortality in COVID-19 Patients Admitted to the ICU. Int J Mol Sci 2022; 23:ijms232415563. [PMID: 36555204 PMCID: PMC9779021 DOI: 10.3390/ijms232415563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Some physicians use dapsone as part of the standard treatment of severe COVID-19 patients entering the ICU, though some do not. To obtain an indication of whether dapsone is helping or not, we undertook a retrospective chart review of 29 consecutive ICU COVID-19 patients receiving dapsone and 30 not receiving dapsone. As we previously reported, of those given dapsone, 9/29 (30%) died, while of those not given dapsone, 18/30 (60%) died. We looked back on that data set to determine if there might be basic laboratory findings in these patients that might give an indication of a mechanism by which dapsone was acting. We found that the neutrophil-to-lymphocyte ratio decreased in 48% of those given dapsone and in 30% of those not given dapsone. We concluded that dapsone might be lowering that ratio. We then reviewed collected data on neutrophil related inflammation pathways on which dapsone might act as presented here. As this was not a controlled study, many variables prevent drawing any conclusions from this work; a formal, randomized controlled study of dapsone in severe COVID-19 is warranted.
Collapse
Affiliation(s)
| | - Asif Khattak
- Department of Neonatal Intensive Care Unit, Hunt Regional Hospital, Greenville, TX 75401, USA
| | - Richard E. Kast
- IIAIGC Study Center, Burlington, VT 05408, USA
- Correspondence:
| |
Collapse
|
39
|
Hu Y, Geere M, Awan M, Leavitt AD, Brown LE, Pearson HJ, Gandelman JS, Kogan SC. Dapsone-induced methemoglobinemia and hemolysis in a woman without G6PD deficiency presenting with idiopathic urticaria. Hematology 2022; 27:1253-1258. [PMID: 36444994 PMCID: PMC9788447 DOI: 10.1080/16078454.2022.2149943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The appearance of bite cells associated with methemoglobinemia can be caused by oxidizing drugs such as dapsone in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency or high drug serum levels. Bite cells are often pathognomonic for oxidant injury in patients with G6PD deficiency and suggest active hemolysis. CASE PRESENTATION We report a case of a woman with no prior history of G6PD deficiency who presented with anemia, methemoglobinemia and bite cells on peripheral blood smear after dapsone therapy for new onset idiopathic urticaria. Laboratory tests for G6PD, blood count and liver function were within normal limits prior to initiation of therapy. During the patient's hospital course, moderate methemoglobinemia and anemia were identified despite mildly increased serum G6PD level. These pathologies were reversed upon stopping dapsone therapy. CONCLUSION This case highlights the potential for therapeutic levels of dapsone to induce side effects in patients without G6PD deficiency and highlights the importance of routine blood monitoring for anemia and hemolysis during the course of drug therapy.
Collapse
Affiliation(s)
- Yang Hu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI. USA
| | - Mimansa Geere
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Maham Awan
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Andrew D. Leavitt
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura E. Brown
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Hadley J. Pearson
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Jocelyn S. Gandelman
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Scott C. Kogan
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
40
|
Khalilzadeh M, Shayan M, Jourian S, Rahimi M, Sheibani M, Dehpour AR. A comprehensive insight into the anti-inflammatory properties of dapsone. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1509-1523. [PMID: 36125533 DOI: 10.1007/s00210-022-02297-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023]
Abstract
The 4,4'-diaminodiphenyl sulfone (DDS), also known as dapsone, is traditionally used as a potent anti-bacterial agent in clinical management of leprosy. For decades, dapsone has been among the first-line medications used in multidrug treatment of leprosy recommended by the World Health Organization (WHO). Shortly after dapsone's discovery as an antibiotic in 1937, the dual function of dapsone (anti-microbial and anti-inflammatory) was elucidated. Dapsone exerts its anti-bacterial effects by inhibiting dihydrofolic acid synthesis, leading to inhibition of bacterial growth, while its anti-inflammatory properties are triggered by inhibiting reactive oxygen species (ROS) production, reducing the effect of eosinophil peroxidase on mast cells and downregulating neutrophil-mediated inflammatory responses. Among the leading mechanisms associated with its anti-microbial/anti-protozoal effects, dapsone clearly has multiple antioxidant, anti-inflammatory, and anti-apoptotic functions. In this regard, it has been described in treating a wide variety of inflammatory and infectious skin conditions. Previous reports have explored different molecular targets for dapsone and provided insight into the anti-inflammatory mechanism of dapsone. This article reviews several basic, experimental, and clinical approaches on anti-inflammatory effect of dapsone.
Collapse
Affiliation(s)
- Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Sina Jourian
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Mohammad Rahimi
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, 14496-14525, Iran.
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran.
| |
Collapse
|
41
|
Jain AK, Jain S, Abourehab MAS, Mehta P, Kesharwani P. An insight on topically applied formulations for management of various skin disorders. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2406-2432. [PMID: 35848901 DOI: 10.1080/09205063.2022.2103625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Various types of skin disorders across each age group and in each part of geographical world are very dreadful. Despite not being fatal each time they are always of social and mental concern for suffering individuals, causing complications in millions of patients every day and require comparatively longer duration of treatment. Off late, various topical/transdermal formulations have been widely explored for the treatment of various skin ailments. The efficiency of topical therapy depends on various physiochemical properties of drugs like particle size, particle size distribution, partition coefficient, viscosity of dosage form, skin permeability, skin condition and the site of application. Therefore, in plenty of examples, long-acting topical formulations have shown to be markedly excellent in comparison to conventional dosage forms. The major advantages of topical formulations accrue from their demonstrated ability: (i) Reduced serious side effects that may occur due to undesirably higher systemic absorption of drug. (ii) Enhancement of drug accumulation at the desired site. (iii) Easy incorporation of enormous range of hydrophilic and hydrophobic drugs and (iv) Reduced risk of dose dumping and comparatively easy termination of drug release. The prospective applications of topically applied formulations and the deposition of pharmaceuticals into the skin are examined.
Collapse
Affiliation(s)
- Amit K Jain
- School of Pharmacy, LNCT University, Bhopal, M.P., India
| | - Sakshi Jain
- Department of Pharmaceutical Sciences, , Bhagyoday Tirth Pharmacy College Sagar, M.P., India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Parul Mehta
- School of Pharmacy, LNCT University, Bhopal, M.P., India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
42
|
Paredes da Rocha N, de Souza A, Nishitani Yukuyama M, Lopes Barreto T, de O Macedo L, Löbenberg R, Lima Barros de Araújo G, Ishida K, Araci Bou-Chacra N. Highly water-soluble dapsone nanocrystals: Towards innovative preparations for an undermined drug. Int J Pharm 2022; 630:122428. [PMID: 36436741 DOI: 10.1016/j.ijpharm.2022.122428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Dapsone (DAP)is a dual-function drug substance; however, its limited water solubility may impair its bioavailability. Drug nanocrystals are an alternative to overcome this limitation. Herein, a DAP nanosuspension was prepared using adesign space approach aiming to investigate the influence of raw material properties and process parameters on the critical quality attributes of the drugnanocrystals. Optimized nanocrystals with 206.3 ± 6.7 nm using povacoat™ as stabilizer were made. The nanoparticles were characterized by dynamic light scattering, laser diffraction, scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and saturation solubility. Compared to the raw material, the nanocrystals were 250-times smaller. Meanwhile, its crystalline state remained basically unchanged even after milling and drying. The nanosuspension successfully maintained its physical stability inlong-termandaccelerated stability studiesover, 4 and 3 months. Furthermore, toxicity studiesshowed low a toxicity at a20 mg/kg. As expected for nanocrystals, the size reduction improvedsaturation solubility3.78 times in water. An attempt to scale up from lab to pilot scale resulted nanocrystals of potential commercial quality. In conclusion, the present study describes the development of dapsone nanocrystals for treating infectious and inflammatory diseases. The nanocrystal formuation can be scaled up for commercial use.
Collapse
Affiliation(s)
| | - Aline de Souza
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Luiza de O Macedo
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
43
|
Hypoxia in A Patient with Anti-p200 Pemphigoid under Combined Dapsone and Pantoprazole Treatment. Biomedicines 2022; 10:biomedicines10112837. [DOI: 10.3390/biomedicines10112837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
A 70-year-old male patient was admitted to our dermatology outpatient clinic with newly developed personality changes and signs of hypoxemia. His anti-p200 Pemphigoid was treated with Dapsone for a few weeks. Due to generalized tonic-clonic seizure with a subsequent Glasgow Coma Scale of 5 points and a peripheral oxygen saturation not exceeding 88% under conditions of high-flow nasal cannula, he was intubated by the emergency team and transferred to the intensive care unit. Comprehensive tests were performed, but Dapsone-induced methemoglobinemia remained the exclusive explanation for the observed scenario, although arterial MetHb analysis showed a peak value of only 6%. The patient recovered shortly after repeated infusions of Methylene blue and Ascorbate, and cessation of Dapsone. We provide an overview of the pathophysiology, diagnostic procedures, and possible explanations for this case of Dapsone-induced methaemoglobinaemia. In conclusion, our case report provides evidence that even mild chronic methemglobinemia can induce severe clinical symptoms.
Collapse
|
44
|
Lor KW, Kransdorf EP, Patel JK, Chang DH, Kobashigawa JA, Kittleson MM. Dapsone-Associated Anemia in Heart Transplant Recipients with Normal Glucose-6-Phosphate Dehydrogenase Activity. J Clin Med 2022; 11:6378. [PMID: 36362606 PMCID: PMC9658039 DOI: 10.3390/jcm11216378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 03/26/2024] Open
Abstract
Dapsone is considered an alternative for pneumocystis jirovecii pneumonia (PJP) prophylaxis in sulfa-allergic or -intolerant transplant patients with normal glucose-6-phosphate dehydrogenase (G6PD) activity. Despite normal G6PD activity, anemia can still occur while on dapsone therapy. We retrospectively reviewed heart transplant patients transplanted at our center between January 2016 and June 2018 and identified those taking dapsone prophylaxis. There were 252 heart transplant recipients at our center between January 2016 and June 2018. 36 patients received dapsone prophylaxis. All had normal G6PD activity assessed prior to dapsone initiation. 8 (22%) patients developed significant anemia attributed to dapsone: 2 were hospitalized for anemia, 1 of whom required blood transfusion. These patients had a median reduction in hemoglobin of 2.1 g/dL from baseline prior to dapsone initiation. Overt evidence of hemolysis was present in six patients. Once dapsone was discontinued, Hgb increased by at least 2 g/dL in a median of 30 days. Anemia from dapsone may occur in a significant proportion of patients despite normal G6PD activity and resulting in significant morbidity. Careful monitoring of transplant recipients on dapsone prophylaxis is warranted, as well as consideration of alternative agents.
Collapse
Affiliation(s)
- Kevin W. Lor
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | | | | | | | | | | |
Collapse
|
45
|
Yoshida T, Nishimura K, Murabe H, Yokota T. Dapsone-induced methaemoglobinaemia in relapsing polychondritis. BMJ Case Rep 2022; 15:e252431. [PMID: 36109093 PMCID: PMC9478832 DOI: 10.1136/bcr-2022-252431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 11/04/2022] Open
Affiliation(s)
- Tomohiro Yoshida
- Department of Endocrinology and Rheumatology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Keisuke Nishimura
- Department of Endocrinology and Rheumatology, Kurashiki Central Hospital, Kurashiki, Japan
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Murabe
- Department of Endocrinology and Rheumatology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Toshihiko Yokota
- Department of Endocrinology and Rheumatology, Kurashiki Central Hospital, Kurashiki, Japan
| |
Collapse
|
46
|
Yoshida M, Nambu R, Yasuda R, Sakaguchi H, Hara T, Iwama I, Mizuochi T. Dapsone for Refractory Gastrointestinal Symptoms in Children With Immunoglobulin A Vasculitis. Pediatrics 2022; 150:188779. [PMID: 35975615 DOI: 10.1542/peds.2021-055884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Immunoglobulin A vasculitis (IgAV) is a systemic small-vessel vasculitis. Although corticosteroids (CS) are the primary treatment for gastrointestinal manifestations associated with IgAV, some patients develop refractory or recurrent symptoms such as vomiting and abdominal pain despite CS treatment. Dapsone, a synthetic sulfone antimicrobial, has been used to treat cutaneous purpura in IgAV, but few authors have reported its use for refractory gastrointestinal symptoms. In this retrospective observational study, we describe results in 7 children with IgAV who were treated with dapsone for abdominal pain resistant to CS. Dapsone rapidly relieved abdominal pain in all 7 patients, who then were tapered off CS without relapse. Side effects of mild methemoglobinemia and hemolysis appeared to be manageable with planned monitoring and dose adjustment; a single patient who discontinued dapsone had fatigue and hypoxia associated with methemoglobinemia. No side effects were life-threatening. Dapsone may be considered as a therapeutic option for gastrointestinal symptoms refractory to CS in children with IgAV.
Collapse
Affiliation(s)
- Masashi Yoshida
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, Saitama, Japan.,These authors contributed equally to this work
| | - Ryusuke Nambu
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, Saitama, Japan.,These authors contributed equally to this work
| | - Ryosuke Yasuda
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Hirotaka Sakaguchi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Tomoko Hara
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, Saitama, Japan
| | - Itaru Iwama
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, Saitama, Japan
| | - Tatsuki Mizuochi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan.,These authors contributed equally to this work
| |
Collapse
|
47
|
Kudsi M, Khalayli N, Allahham A. Behcet's disease: Diagnosed as isolated recurrent oral aphthae; a case report. Ann Med Surg (Lond) 2022; 81:104327. [PMID: 36147150 PMCID: PMC9486576 DOI: 10.1016/j.amsu.2022.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022] Open
Abstract
Background Case report Discussion Conclusion •Background: A case of Behcet syndrome presenting initially with isolated oral aphthous. Case Report: A 32-year-old male with recurrent oral aphthous. A complete resolution of the lesions with no reproduction. Conclusion: A case of Behcet's syndrome affected the oral mucosa and later caused uveitis and the genitalia aphthae. Keywords: Oral aphthae, Behcet's Disease, Dapsone treatment .
Collapse
Affiliation(s)
- Maysoun Kudsi
- Faculty of Medicine, Damascus University, Damascus, Syria
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Naram Khalayli
- Faculty of Medicine, Damascus University, Damascus, Syria
| | - Amr Allahham
- Faculty of Medicine, Syrian Private University, Damascus, Syria
- Corresponding author. Sharqi Rkn Aldeen, Damasus, Syria.
| |
Collapse
|
48
|
Dehpour AR, Khaledi E, Noori T, Mohammadi-Farani A, Delphi L, Sureda A, Sobarzo-Sanchez E, Shirooie S. Dapsone reduced cuprizone-induced demyelination via targeting Nrf2 and IKB in C57BL/6 mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:675-682. [PMID: 35949308 PMCID: PMC9320209 DOI: 10.22038/ijbms.2022.64993.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022]
Abstract
Objectives Multiple Sclerosis (MS) is an inflammatory disorder wherein the myelin of nerve cells in the central nervous system is damaged. In the current study, we assessed the effect of Dapsone (DAP) on the improvement of behavioral dysfunction and preservation of myelin in the cuprizone (CPZ) induced demyelination model via targeting Nrf2 and IKB. Materials and Methods MS was induced in C57BL/6 mice through diet supplementation of CPZ (0.2%) for 6 weeks, and DAP (12.5 mg/kg/day; IP) was administered for the last 2 weeks of treatment. Pole test and rotarod performance test, LFB and H&E staining, and Immunohistochemistry (IHC) staining of p-Nrf2 and p-IKB were performed. Furthermore, superoxide dismutase (SOD) and nitrite were measured. Results DAP treatment prevented body loss induced by CPZ (P<0.001). Pole test showed that CPZ increased latency time to fall (P<0.0001) but the latency to reach the floor in the DAP-CPZ group was significantly shorter (P<0.0001). Rotarod performance test showed the effect of CPZ in reducing fall time in the CPZ group (P<0.0014); however, DAP significantly increased fall time (P=0.0012). In LFB staining, DAP reduced demyelination induced by CPZ. CPZ significantly decreased p-Nrf2 and elevated p-IKB levels compared with the control group (P<0.0001), but in DAP-treated groups markedly modified these changes (P<0.0001). CPZ increased the brain nitrite levels and reduced SOD activity, but in DAP-treated considerably reversed CPZ-induced changes. Conclusion These data support the suggestion that the beneficial properties of DAP on the CPZ-induced demyelination are mediated by targeting Nrf2 and NF-kB pathways.
Collapse
Affiliation(s)
- Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Experimental Medicine Research Center, Tehran University of medical sciences, Tehran, Iran
| | - Ehsan Khaledi
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Mohammadi-Farani
- Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran,Department of Physiology and Pharmacology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ladan Delphi
- Animal Biology Department, Faculty of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran,Corresponding author: Samira Shirooie. Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
49
|
Pyoderma Gangrenosum: An Updated Literature Review on Established and Emerging Pharmacological Treatments. Am J Clin Dermatol 2022; 23:615-634. [PMID: 35606650 PMCID: PMC9464730 DOI: 10.1007/s40257-022-00699-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
Pyoderma gangrenosum is a rare inflammatory skin disease classified within the group of neutrophilic dermatoses and clinically characterized by painful, rapidly evolving cutaneous ulcers with undermined, irregular, erythematous-violaceous edges. Pyoderma gangrenosum pathogenesis is complex and involves a profound dysregulation of components of both innate and adaptive immunity in genetically predisposed individuals, with the follicular unit increasingly recognized as the putative initial target. T helper 17/T helper 1-skewed inflammation and exaggerated inflammasome activation lead to a dysregulated neutrophil-dominant milieu with high levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-1α, IL-8, IL-12, IL-15, IL-17, IL-23, and IL-36. Low-evidence studies and a lack of validated diagnostic and response criteria have hindered the discovery and validation of new effective treatments for pyoderma gangrenosum. We review established and emerging treatments for pyoderma gangrenosum. A therapeutic algorithm based on available evidence is also provided. For emerging treatments, we review target molecules and their role in the pathogenesis of pyoderma gangrenosum.
Collapse
|
50
|
Kast RE, Alfieri A, Assi HI, Burns TC, Elyamany AM, Gonzalez-Cao M, Karpel-Massler G, Marosi C, Salacz ME, Sardi I, Van Vlierberghe P, Zaghloul MS, Halatsch ME. MDACT: A New Principle of Adjunctive Cancer Treatment Using Combinations of Multiple Repurposed Drugs, with an Example Regimen. Cancers (Basel) 2022; 14:2563. [PMID: 35626167 PMCID: PMC9140192 DOI: 10.3390/cancers14102563] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.
Collapse
Affiliation(s)
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| | - Hazem I. Assi
- Naef K. Basile Cancer Center, American University of Beirut, Beirut 1100, Lebanon;
| | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ashraf M. Elyamany
- Oncology Unit, Hemato-Oncology Department, SECI Assiut University Egypt/King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Maria Gonzalez-Cao
- Translational Cancer Research Unit, Dexeus University Hospital, 08028 Barcelona, Spain;
| | | | - Christine Marosi
- Clinical Division of Medical Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael E. Salacz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Iacopo Sardi
- Department of Pediatric Oncology, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Mohamed S. Zaghloul
- Children’s Cancer Hospital & National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| |
Collapse
|