1
|
Rousel J, Mergen C, Bergmans ME, Bruijnincx LJ, de Kam ML, Klarenbeek NB, Niemeyer-van der Kolk T, van Doorn MBA, Bouwstra JA, Rissmann R. Guselkumab treatment normalizes the stratum corneum ceramide profile and alleviates barrier dysfunction in psoriasis: results of a randomized controlled trial. J Lipid Res 2024; 65:100591. [PMID: 38992724 PMCID: PMC11342092 DOI: 10.1016/j.jlr.2024.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
The epidermal inflammation associated with psoriasis drives skin barrier perturbations. The skin barrier is primarily located in stratum corneum (SC). Its function depends on the SC lipid matrix of which ceramides constitute important components. Changes in the ceramide profile directly correlate to barrier function. In this study, we characterized the dynamics of the barrier function and ceramide profile of psoriatic skin during anti-Interleukin-23 therapy with guselkumab. We conducted a double-blind, randomized controlled trial in which 26 mild-to-severe plaque psoriasis patients were randomization 3:1-100 mg guselkumab or placebo for 16 weeks and barrier dynamics monitored throughout. Barrier function was measured by trans-epidermal water loss measurements. Untargeted ceramide profiling was performed using liquid chromatography-mass spectrometry after SC was harvested using tape-stripping. The barrier function and ceramide profile of lesional skin normalized to that of controls during treatment with guselkumab, but not placebo. This resulted in significant differences compared to placebo at the end of the treatment. Changes in the lesional ceramide profile during treatment correlated with barrier function and target lesion severity. Nonlesional skin remained similar throughout treatment. Guselkumab therapy restored the skin barrier in psoriasis. Concomitant correlations between skin barrier function, the ceramide profile, and disease severity demonstrate their interdependency.
Collapse
Affiliation(s)
- Jannik Rousel
- Centre for Human Drug Research, Leiden, The Netherlands; Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Catherine Mergen
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Menthe E Bergmans
- Centre for Human Drug Research, Leiden, The Netherlands; Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | - Martijn B A van Doorn
- Centre for Human Drug Research, Leiden, The Netherlands; Department of Dermatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, The Netherlands; Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
3
|
Duan Q, Ye Z, Zhou K, Wang F, Lian C, Shang Y, Liu H. An Investigation into the Transdermal Behavior of Active Ingredients by Combination of Experiments and Multiscale Simulations. J Phys Chem B 2024; 128:6327-6337. [PMID: 38913878 DOI: 10.1021/acs.jpcb.4c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Transdermal behavior is a critical aspect of studying delivery systems and evaluating the efficacy of cosmetics. However, existing methods face challenges such as lengthy experiments, high cost, and limited model accuracy. Therefore, developing accurate transdermal models is essential for formulation development and effectiveness assessment. In this study, we developed a multiscale model to describe the transdermal behavior of active ingredients in the stratum corneum. Molecular dynamics simulations were used to construct lipid bilayers and determine the diffusion coefficients of active ingredients in different regions of these bilayers. These diffusion coefficients were integrated into a multilayer lipid pathway model using finite element simulations. The simulation results were in close agreement with our experimental results for three active ingredients (mandelic acid (MAN), nicotinamide (NIC), and pyruvic acid (PYR)), demonstrating the effectiveness of our multiscale model. This research provides valuable insights for advancing transdermal delivery methods.
Collapse
Affiliation(s)
- Qi Duan
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kangfu Zhou
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Feifei Wang
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China
| | - Cheng Lian
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Fluhr JW, Moore DJ, Lane ME, Lachmann N, Rawlings AV. Epidermal barrier function in dry, flaky and sensitive skin: A narrative review. J Eur Acad Dermatol Venereol 2024; 38:812-820. [PMID: 38140732 DOI: 10.1111/jdv.19745] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023]
Abstract
The stratum corneum (SC)-the outermost layer of the epidermis-is the principal permeability and protective barrier of the skin. Different components of the SC, including corneocytes, natural moisturizing factor, a variety of enzymes and their inhibitors, antimicrobial peptides and lipids, work interactively to maintain barrier function. The main barrier properties of the SC are the limitation of water loss and the prevention of infection and contact with potentially harmful exogenous factors. Although the SC functions consistently as a protective barrier throughout the body, variations in functions and morphology occur across body sites with age and skin type. Healthy SC function also depends on the interplay between the chemosensory barrier, the skin's microbiome and the innate immune system. Dysregulation of SC barrier function can lead to the development of skin disorders, such as dry, flaky or sensitive skin, but the complete underlying pathophysiology of these are not fully understood. This review provides insight into the current literature and emerging themes related to epidermal barrier changes that occur in the context of dry, flaky and sensitive skin. Additional studies are needed to further elucidate the underlying aetiology of dry, flaky and sensitive skin and to provide tailored treatment.
Collapse
Affiliation(s)
- Joachim W Fluhr
- Institute of Allergology IFA Charité Universitätsmedizin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | | | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
| | | | - Anthony V Rawlings
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
- AVR Consulting Ltd., Northwich, UK
| |
Collapse
|
5
|
Kondo A, Takenaka Y, Fujiwara A, Takahashi S, Kitade-Miyayama M, Morifuji M, Kawashima M, Ishiguro N. Changes in the composition of molecular species of covalently bound and free ceramides [EOS], and their correlation with disease severity in atopic dermatitis. Exp Dermatol 2024; 33:e15025. [PMID: 38450766 DOI: 10.1111/exd.15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 03/08/2024]
Abstract
Ceramides are major constituents of stratum corneum (SC) intercellular lipids involved in skin barrier function. The ratio of molecular species of ceramides and their correlation with disease severity was examined in patients with atopic dermatitis (AD). Thirty-eight patients with AD and 32 healthy controls (HCs) were assessed for transepidermal water loss, SC collection and clinical assessment. The ceramide content of different molecular species in the samples was quantified using high-performance liquid chromatography coupled with tandem mass spectrometry. Unsaturated acyl chains of both covalently bound and free ceramides [EOS] were higher in AD lesional skin than those in AD non-lesional or normal HC skin. The proportion of unsaturated acyl chains (C30:1, C32:1 and C34:1) was higher than other ceramide molecular species among covalently bound and free ceramides [EOS] in patients with AD. The proportion of unsaturated acyl chains in covalently bound ceramides was positively correlated with transepidermal water loss (r = 0.600) when considering the total number of non-lesional and lesional skin. Additionally, thymus and activation-regulated chemokine (TARC) showed a positive correlation with unsaturated acyl chains proportion in AD non-lesional (r = 0.676) and lesional (r = 0.503) skin. Our study is the first to show the increase in unsaturated acyl chains of both covalently bound and free ceramides [EOS] in lesional and non-lesional skin in AD for each molecular species. This increase is associated with dryness and impaired barrier function, which correlates with TARC levels, a marker for the degree of type 2 inflammation. We speculate that type 2 inflammation exacerbation leads to abnormal epidermal lipid metabolism in the skin of patients with AD.
Collapse
Affiliation(s)
- A Kondo
- Department of Dermatology, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Y Takenaka
- Department of Dermatology, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - A Fujiwara
- Food Microbiology and Function Research Labs, Meiji Co., Ltd., Hachioji-city, Japan
| | - S Takahashi
- Food Microbiology and Function Research Labs, Meiji Co., Ltd., Hachioji-city, Japan
| | - M Kitade-Miyayama
- Food Microbiology and Function Research Labs, Meiji Co., Ltd., Hachioji-city, Japan
| | - M Morifuji
- Food Microbiology and Function Research Labs, Meiji Co., Ltd., Hachioji-city, Japan
| | - M Kawashima
- Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - N Ishiguro
- Department of Dermatology, Tokyo Women's Medical University, Shinjuku-ku, Japan
| |
Collapse
|
6
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Role of Omega-Hydroxy Ceramides in Epidermis: Biosynthesis, Barrier Integrity and Analyzing Method. Int J Mol Sci 2023; 24:ijms24055035. [PMID: 36902463 PMCID: PMC10003399 DOI: 10.3390/ijms24055035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Attached to the outer surface of the corneocyte lipid envelope (CLE), omega-hydroxy ceramides (ω-OH-Cer) link to involucrin and function as lipid components of the stratum corneum (SC). The integrity of the skin barrier is highly dependent on the lipid components of SC, especially on ω-OH-Cer. Synthetic ω-OH-Cer supplementation has been utilized in clinical practice for epidermal barrier injury and related surgeries. However, the mechanism discussion and analyzing methods are not keeping pace with its clinical application. Though mass spectrometry (MS) is the primary choice for biomolecular analysis, method modifications for ω-OH-Cer identification are lacking in progress. Therefore, finding conclusions on ω-OH-Cer biological function, as well as on its identification, means it is vital to remind further researchers of how the following work should be done. This review summarizes the important role of ω-OH-Cer in epidermal barrier functions and the forming mechanism of ω-OH-Cer. Recent identification methods for ω-OH-Cer are also discussed, which could provide new inspirations for study on both ω-OH-Cer and skin care development.
Collapse
|
8
|
Voegeli R, Rawlings AV. Moisturizing at a molecular level - The basis of Corneocare. Int J Cosmet Sci 2022; 45:133-154. [PMID: 36453857 DOI: 10.1111/ics.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND This review covers the last 20 years of research we and our collaborators have conducted on ethnic differences in facial skin moisturization placed in historical context with previous research. METHODS We have focussed particularly on the biochemical and cellular gradients of the stratum corneum (SC) with the aim of discovering new skin moisturization and SC maturation mechanisms, identifying new technologies and/or providing conceptual innovations for ingredients that will improve our understanding and treatment of dry skin. Specifically, we discuss gradients for corneodesmosomes and proteases, corneocyte phenotype-inducing enzymes, filaggrin and natural moisturizing factor (NMF), and barrier lipids. These gradients are interdependent and influence greatly corneocyte maturation. RESULTS The interrelationship between corneodesmolysis and the covalent attachment of ω-hydroxy ceramides and ω-hydroxy fatty acids to the corneocyte protein envelope forming the corneocyte lipid envelope is especially relevant in our new understanding of mechanisms leading to dry skin. This process is initiated by a linoleoyl-ω-acyl ceramide transforming enzyme cascade including 12R lipoxygenase (12R-LOX), epidermal lipoxygenase-3 (eLOX3), epoxide hydrolase 3 (EPHX3), short-chain dehydrogenase/reductase family 9C member 7 (SDR9C7), ceramidase and transglutaminase 1. CONCLUSION Our research has opened the opportunity of using novel treatment systems for dry skin based on lipids, humectants, niacinamide and inhibitors of the plasminogen system. It is clear that skin moisturization is a more complex mechanism than simple skin hydration.
Collapse
|
9
|
Rawlings AV, Schoop R, Klose C, Monneuse J, Summers B, Voegeli R. Changes in levels of omega-O-acylceramides and related processing enzymes of sun-exposed and sun-protected facial stratum corneum in differently pigmented ethnic groups. Int J Cosmet Sci 2022; 44:166-176. [PMID: 35141910 PMCID: PMC9313807 DOI: 10.1111/ics.12765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 12/04/2022]
Abstract
INTRODUCTION We report on the differences in ceramide composition and levels of omega-O-acylceramide processing enzymes of sun-exposed and sun-protected facialstratum corneum (SC) among Albino African, Black African and Caucasian women living in South Africa. METHODS Tape strippings were taken from the sun-exposed cheek and the sunprotected postauricular site (PA). In two subsets proteomic (n = 18) and lipidomic (n = 24) analysis were performed using mass-spectrometry-based shotgun platforms. RESULTS No significant differences in total ceramide levels or ceramide subtypes were found between the Black African and Caucasian women in either the cheek or PA samples. Compared to the other two groups the levels of total ceramide as well as selected omega-O-acylceramide species were increased in Albino Africans. On the cheek, ceramide (CER) EOS, EOH along with CER AS were increased relative to the Caucasian women, while CER EOP and EOdS were elevated relative to the Black African women. Moreover, on the PA site CER EOP and EOdS were elevated compared with the Black African women and CER EOdS in Caucasians. Decreasesin masslevels of 12R-LOX and eLOX3 were observed on cheeks compared with the PA sites in all ethnic groups. On the PA sites 12R-LOX was particularly lower in the Albino Africans compared with the Black African and Caucasian women. On the cheeks mass levels of SDR9C7 was also lower in the Albino Africans. CONCLUSION The mass levels of the ceramides were similar between Black African and Caucasian women. However, elevated total ceramides and excessively elevated selected omega-O-acylceramides were apparent in the Albino African women. The findings in the Albino African women were unexpected as these participants suffer from impaired skin barrier function. However, the elevated levels omega-O-acylceramides can contribute to barrier insufficiency by directly impacting SC lipid phase behaviour and/or secondly elevated omegaO-acylceramide levels may indicate a reduced attachment of ceramides to the corneocyte lipid envelope and reduced corneocyte maturation that can also impair the barrier. Indeed, differences in the mass levels of omega-O-acylceramide processing enzymes were observed for 12R-LOX and SDR9C7 for the Albino Africans. This indicates a corneocyte lipid scaffold disorder in this population.
Collapse
|
10
|
Dolečková I, Čápová A, Machková L, Moravčíková S, Marešová M, Velebný V. Seasonal variations in the skin parameters of Caucasian women from Central Europe. Skin Res Technol 2020; 27:358-369. [PMID: 33084174 DOI: 10.1111/srt.12951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND The human skin is greatly affected by external factors such as UV radiation (UVR), ambient temperature (T), and air humidity. These factors oscillate during the year giving rise to the seasonal variations in the skin properties. The aim of this study was to evaluate the effect of seasons, environmental T, relative and absolute humidity on the skin parameters of Caucasian women, perform a literature review and discuss the possible factors lying behind the found changes. MATERIALS AND METHODS We measured stratum corneum (SC) hydration, transepidermal water loss (TEWL), sebum level, erythema index, and elasticity parameters R2 and R7 on the forehead and the cheek of Caucasian women from the Czech Republic throughout the year. We also performed a non-systematic literature review focused on the seasonal variations in these skin parameters. RESULTS We confirmed a well-documented low SC hydration and sebum production in winter. In spring, we found the lowest TEWL (on the forehead) and the highest SC hydration but also the highest erythema index and the lowest elasticity presumably indicating skin photodamage. For most of the skin parameters, the seasonal variations probably arise due to a complex action of different factors as we extensively discussed. CONCLUSION The data about the seasonal variations in the skin parameters are still highly inconsistent and further studies are needed for better understanding of the normal skin changes throughout the year.
Collapse
|
11
|
Dietary ceramide 2-aminoethylphosphonate, a marine sphingophosphonolipid, improves skin barrier function in hairless mice. Sci Rep 2020; 10:13891. [PMID: 32807849 PMCID: PMC7431532 DOI: 10.1038/s41598-020-70888-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/03/2020] [Indexed: 12/02/2022] Open
Abstract
Sphingolipids are one of the major components of cell membranes and are ubiquitous in eukaryotic organisms. Ceramide 2-aminoethylphosphonate (CAEP) of marine origin is a unique and abundant sphingophosphonolipid with a C-P bond. Although molluscs such as squids and bivalves, containing CAEP, are consumed globally, the dietary efficacy of CAEP is not understood. We investigated the efficacy of marine sphingophosphonolipids by studying the effect of dietary CAEP on the improvement of the skin barrier function in hairless mice fed a diet that induces severely dry-skin condition. The disrupted skin barrier functions such as an increase in the transepidermal water loss (TEWL), a decrease in the skin hydration index, and epidermal hyperplasia were restored by CEAP dietary supplementation. Correspondingly, dietary CAEP significantly increased the content of covalently bound ω-hydroxyceramide, and the expression of its biosynthesis-related genes in the skin. These effects of dietary CAEP mimic those of dietary plant glucosylceramide. The novel observations from this study show an enhancement in the skin barrier function by dietary CAEP and the effects could be contributed by the upregulation of covalently bound ω-hydroxyceramide synthesis in the skin.
Collapse
|
12
|
Kawana M, Miyamoto M, Ohno Y, Kihara A. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS. J Lipid Res 2020; 61:884-895. [PMID: 32265320 PMCID: PMC7269764 DOI: 10.1194/jlr.ra120000671] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Ceramides are the predominant lipids in the stratum corneum (SC) and are crucial components for normal skin barrier function. Although the composition of various ceramide classes in the human SC has been reported, that in mice is still unknown, despite mice being widely used as animal models of skin barrier function. Here, we performed LC/MS/MS analyses using recently available ceramide class standards to measure 25 classes of free ceramides and 5 classes of protein-bound ceramides from human and mouse SC. Phytosphingosine- and 6-hydroxy sphingosine-type ceramides, which both contain an additional hydroxyl group, were abundant in the human SC (35% and 45% of total ceramides, respectively). In contrast, in mice, phytosph-ingosine- and 6-hydroxy sphingosine-type ceramides were present at ∼1% and undetectable levels, respectively, and sphingosine-type ceramides accounted for ∼90%. In humans, ceramides containing α-hydroxy FA were abundant, whereas ceramides containing β-hydroxy or ω-hydroxy FA were abundant in mice. The hydroxylated β-carbon in β-hydroxy ceramides was in the (R) configuration. Genetic knockout of β-hydroxy acyl-CoA dehydratases in HAP1 cells increased β-hydroxy ceramide levels, suggesting that β-hydroxy acyl-CoA, an FA-elongation cycle intermediate in the ER, is a substrate for β-hydroxy ceramide synthesis. We anticipate that our methods and findings will help to elucidate the role of each ceramide class in skin barrier formation and in the pathogenesis of skin disorders.
Collapse
Affiliation(s)
- Momoko Kawana
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masatoshi Miyamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Li Q, Fang H, Dang E, Wang G. The role of ceramides in skin homeostasis and inflammatory skin diseases. J Dermatol Sci 2019; 97:2-8. [PMID: 31866207 DOI: 10.1016/j.jdermsci.2019.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
Ceramides, members of sphingolipid family, are not only the building blocks of epidermal barrier structure, but also bioactive metabolites involved in epidermal self-renewal and immune regulation. Hence, abnormal ceramide expression profile is recognized to defect extracellular lipid organization, disturb epidermal self-renewal, exacerbate skin immune response and actively participate in progression of several inflammatory dermatoses, exemplifying by psoriasis and atopic dermatitis. Here, we discuss recent advances in understanding skin ceramides and their regulatory roles in skin homeostasis and pathogenic roles of altered ceramide metabolism in inflammatory skin diseases. These insights provide new opportunities for therapeutic intervention in inflammatory dermatoses.
Collapse
Affiliation(s)
- Qingyang Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
14
|
Guneri D, Voegeli R, Munday MR, Lane ME, Rawlings AV. 12R-lipoxygenase activity is reduced in photodamaged facial stratum corneum. A novel activity assay indicates a key function in corneocyte maturation. Int J Cosmet Sci 2019; 41:274-280. [PMID: 30993698 PMCID: PMC6852689 DOI: 10.1111/ics.12532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
Background During the late stage of keratinocyte differentiation, corneocytes gain a strong protein–lipid structure: the corneocyte envelopes (CE), composed of the inner corneocyte protein envelope (CPE) and the outer corneocyte lipid envelope (CLE). The hydrophobicity of CEs depends on the covalent attachment of linoleoyl‐acyl‐ceramides by transglutaminases (TG). These ceramides are processed by a range of other enzymes, including 12R‐lipoxygenase (12R‐LOX), before the covalent attachment of the free ω‐hydroxyceramides to the CPE surface to form the CLE. The mechanical strength of CE is obtained with the formation of isodipeptide bonds by TG. The increase in hydrophobicity and rigidity leads to CE maturation which supports the integrity and mechanical resistance of the stratum corneum (SC). Objectives The aim of this work was to develop and validate a novel enzyme activity assay for 12R‐LOX in tape strippings of photo‐exposed (PE) cheek and photo‐protected (PP) post‐auricular SC of healthy Chinese volunteers (n = 12; age 25 ± 3 years). Results A fluorescence‐based assay was developed with ethyl linoleic acid as the substrate and a polyclonal antibody against 12R‐LOX as an inhibitor. The specificity was shown by the lack of effect by a LOX inhibitor (ML351) and an epidermal‐type lipoxygenase 3 (eLOX3) antibody on the acquired 12R‐LOX activity. Reduced 12R‐LOX activity was observed in the outer compared to the inner SC layers. Moreover, dramatically lower activity was shown in the PE vs. PP samples. Furthermore, the enzyme activity has a positive correlation (r = 0.94 ± 0.03) with CE maturity, in particular hydrophobicity, and a negative correlation (r = −0.96 ± 0.01) with transepidermal water loss (TEWL). Conclusion This novel enzyme assay revealed a lower 12R‐LOX activity in tape strippings from PE cheek for the first time. This finding is in line with less mature CEs and higher TEWL compared to PP post‐auricular samples. This study indicates a strong link between 12R‐LOX activity and CE maturation and SC integrity.
Collapse
Affiliation(s)
- D Guneri
- UCL School of Pharmacy, London, UK
| | - R Voegeli
- DSM Nutritional Products Ltd, Kaiseraugust, Switzerland
| | | | - M E Lane
- UCL School of Pharmacy, London, UK
| | - A V Rawlings
- UCL School of Pharmacy, London, UK.,AVR Consulting Ltd, Northwich, UK
| |
Collapse
|