1
|
Umino Y, Denda M. Effect of red light on epidermal proliferation and mitochondrial activity. Skin Res Technol 2023; 29:e13447. [PMID: 37753678 PMCID: PMC10462800 DOI: 10.1111/srt.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/13/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND/PURPOSE We previously demonstrated that irradiation with red light accelerates recovery of the epidermal water-impermeable barrier, whereas blue light delays it, and white and green light have no effect. Here, we aimed to examine in detail the effects of red and blue light in a human epidermal-equivalent model and in human skin. METHODS We used light-emitting diodes (red light, 630 nm, 6.2 mW/cm2 ; blue light, 463 nm, 6.2 mW/cm2 ) for irradiation of an epidermal-equivalent model and human skin. Cell proliferation was evaluated by means of BrdU and Ki-67 staining, and mitochondrial activity was quantified with an extracellular flux analyzer. RESULTS Irradiation of the epidermal-equivalent model with red light for 2 h (44.64 J/cm2 ) increased both epidermal proliferation in the basal layer and mitochondrial activity. Blue light had no effect on epidermal proliferation. Furthermore, irradiation with red light for 2 h on three consecutive days increased epidermal proliferation in human skin tissue in culture. CONCLUSION These results suggest that red light accelerates epidermal proliferation in both an epidermal-equivalent model and human skin, and may promote epidermal homeostasis.
Collapse
Affiliation(s)
- Yuki Umino
- MIRAI Technology InstituteShiseido Co., LtdYokohamaJapan
| | - Mitsuhiro Denda
- Meiji UniversityInstitute for Advanced Study of Mathematical SciencesTokyoJapan
| |
Collapse
|
2
|
Bianchini IDA, Jofre FM, Queiroz SDS, Lacerda TM, Felipe MDGDA. Relation of xylitol formation and lignocellulose degradation in yeast. Appl Microbiol Biotechnol 2023; 107:3143-3151. [PMID: 37039848 DOI: 10.1007/s00253-023-12495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
One of the critical steps of the biotechnological production of xylitol from lignocellulosic biomass is the deconstruction of the plant cell wall. This step is crucial to the bioprocess once the solubilization of xylose from hemicellulose is allowed, which can be easily converted to xylitol by pentose-assimilating yeasts in a microaerobic environment. However, lignocellulosic toxic compounds formed/released during plant cell wall pretreatment, such as aliphatic acids, furans, and phenolic compounds, inhibit xylitol production during fermentation, reducing the fermentative performance of yeasts and impairing the bioprocess productivity. Although the toxicity of lignocellulosic inhibitors is one of the biggest bottlenecks of the biotechnological production of xylitol, most of the studies focus on how much xylitol production is inhibited but not how and where cells are affected. Understanding this mechanism is important in order to develop strategies to overcome lignocellulosic inhibitor toxicity. In this mini-review, we addressed how these inhibitors affect both yeast physiology and metabolism and consequently xylose-to-xylitol bioconversion. In addition, this work also addresses about cellular adaptation, one of the most relevant strategies to overcome lignocellulosic inhibitors toxicity, once it allows the development of robust and tolerant strains, contributing to the improvement of the microbial performance against hemicellulosic hydrolysates toxicity. KEY POINTS: • Impact of lignocellulosic inhibitors on the xylitol production by yeasts • Physiological and metabolic alterations provoked by lignocellulosic inhibitors • Cell adaptation as an efficient strategy to improve yeast's robustness.
Collapse
Affiliation(s)
- Italo de Andrade Bianchini
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, Lorena, SP, 12602-810, Brazil
| | - Fanny Machado Jofre
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, Lorena, SP, 12602-810, Brazil
| | - Sarah de Souza Queiroz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, Lorena, SP, 12602-810, Brazil
| | - Talita Martins Lacerda
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, Lorena, SP, 12602-810, Brazil
| | - Maria das Graças de Almeida Felipe
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, Lorena, SP, 12602-810, Brazil.
| |
Collapse
|
3
|
Denda M, Nakanishi S. Do epidermal keratinocytes have sensory and information processing systems? Exp Dermatol 2021; 31:459-474. [PMID: 34726302 DOI: 10.1111/exd.14494] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 01/22/2023]
Abstract
It was long considered that the role of epidermal keratinocytes is solely to construct a water-impermeable protective membrane, the stratum corneum, at the uppermost layer of the skin. However, in the last two decades, it has been found that keratinocytes contain multiple sensory systems that detect environmental changes, including mechanical stimuli, sound, visible radiation, electric fields, magnetic fields, temperature and chemical stimuli, and also a variety of receptor molecules associated with olfactory or taste sensation. Moreover, neurotransmitters and their receptors that play crucial roles in the brain are functionally expressed in keratinocytes. Recent studies have demonstrated that excitation of keratinocytes can induce sensory perception in the brain. Here, we review the sensory and information processing capabilities of keratinocytes. We discuss the possibility that epidermal keratinocytes might represent the earliest stage in the development of the brain during the evolution of vertebrates.
Collapse
Affiliation(s)
- Mitsuhiro Denda
- Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano-ku, Tokyo, 164-8525, Japan
| | - Shinobu Nakanishi
- Shiseido Global Innovation Center, Nishi-ku, Yokohama, 220-0011, Japan
| |
Collapse
|
4
|
Umino Y, Ipponjima S, Denda M. Polyoxyethylene/polyoxypropylene dimethyl ether (EPDME) random copolymer improves lipid structural ordering in stratum corneum of an epidermal-equivalent model as seen by two-photon microscopy. Skin Res Technol 2021; 27:632-638. [PMID: 33410546 DOI: 10.1111/srt.12996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/11/2020] [Accepted: 12/05/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND/PURPOSE Topical application of polyoxyethylene/polyoxypropylene dimethyl ether (EPDME) random copolymer improves the barrier function of skin, whereas polyethylene glycol (PEG) and polypropylene glycol (PPG) are ineffective. The aim of this work was to examine the interaction between these polymers and lipid molecules in the stratum corneum in order to establish whether EPDME-specific changes in the structural ordering of lipids might account for the improvement of barrier function. METHODS We used two-photon microscopy to evaluate the effects of EPDME, PEG, and PPG on the structural ordering of lipids in an epidermal-equivalent model in terms of the fluorescence changes of Laurdan, a fluorescent dye that responds to changes of membrane fluidity. The generalized polarization (GP) value, a parameter that reflects lipid ordering, was measured at various depths from the surface of the stratum corneum. RESULTS EPDME increased the GP value to a depth of about 3 µm from the surface, indicating that lipid ordering was increased in this region, while PEG and PPG of the same molecular weight had no effect. Diffusion of Lucifer yellow into the epidermis was reduced after application of EPDME, indicating that the barrier function was improved. CONCLUSION These results support the view that EPDME improves barrier function by increasing the ordering of lipid structures in the stratum corneum. The methodology described here could be useful for screening new compounds that would improve the structural ordering of lipids.
Collapse
Affiliation(s)
- Yuki Umino
- Shiseido Global Innovation Center, Yokohama, Japan
| | - Sari Ipponjima
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
5
|
Denda M, Umino Y, Kumazawa N, Nakata S. Can simple physicochemical studies predict the effects of molecules on epidermal water‐impermeable barrier function? Exp Dermatol 2020; 29:393-399. [DOI: 10.1111/exd.14075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/19/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022]
Affiliation(s)
| | - Yuki Umino
- Shiseido Global Innovation Center Yokohama Japan
| | - Noriyuki Kumazawa
- Department of Biomolecular Functional Engineering College of Engineering Ibaraki University Ibaraki Japan
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| |
Collapse
|
6
|
Ipponjima S, Umino Y, Nagayama M, Denda M. Live imaging of alterations in cellular morphology and organelles during cornification using an epidermal equivalent model. Sci Rep 2020; 10:5515. [PMID: 32218450 PMCID: PMC7099034 DOI: 10.1038/s41598-020-62240-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/09/2020] [Indexed: 11/30/2022] Open
Abstract
The stratum corneum plays a crucial role in epidermal barrier function. Various changes occur in granular cells at the uppermost stratum granulosum during cornification. To understand the temporal details of this process, we visualized the cell shape and organelles of cornifying keratinocytes in a living human epidermal equivalent model. Three-dimensional time-lapse imaging with a two-photon microscope revealed that the granular cells did not simply flatten but first temporarily expanded in thickness just before flattening during cornification. Moreover, before expansion, intracellular vesicles abruptly stopped moving, and mitochondria were depolarized. When mitochondrial morphology and quantity were assessed, granular cells with fewer, mostly punctate mitochondria tended to transition to corneocytes. Several minutes after flattening, DNA leakage from the nucleus was visualized. We also observed extension of the cell-flattening time induced by the suppression of filaggrin expression. Overall, we successfully visualized the time-course of cornification, which describes temporal relationships between alterations in the transition from granular cells to corneocytes.
Collapse
Affiliation(s)
- Sari Ipponjima
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan.
| | - Yuki Umino
- Shiseido Global Innovation Center, Yokohama, Japan
| | - Masaharu Nagayama
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
7
|
Abstract
Dermal and transdermal drug therapy is increasing in importance nowadays in drug development. To completely utilize the potential of this administration route, it is necessary to optimize the drug release and skin penetration measurements. This review covers the most well-known and up-to-date methods for evaluating the cutaneous penetration of drugs in vitro as a supporting tool for pharmaceutical research scientists in the early stage of drug development. The aim of this article is to present various experimental models used in dermal/transdermal research and summarize the novel knowledge about the main in vitro methods available to study skin penetration. These techniques are: Diffusion cell, skin-PAMPA, tape stripping, two-photon microscopy, confocal laser scanning microscopy, and confocal Raman microscopic method.
Collapse
|
8
|
Salli K, Lehtinen MJ, Tiihonen K, Ouwehand AC. Xylitol's Health Benefits beyond Dental Health: A Comprehensive Review. Nutrients 2019; 11:nu11081813. [PMID: 31390800 PMCID: PMC6723878 DOI: 10.3390/nu11081813] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022] Open
Abstract
Xylitol has been widely documented to have dental health benefits, such as reducing the risk for dental caries. Here we report on other health benefits that have been investigated for xylitol. In skin, xylitol has been reported to improve barrier function and suppress the growth of potential skin pathogens. As a non-digestible carbohydrate, xylitol enters the colon where it is fermented by members of the colonic microbiota; species of the genus Anaerostipes have been reported to ferment xylitol and produce butyrate. The most common Lactobacillus and Bifidobacterium species do not appear to be able to grow on xylitol. The non-digestible but fermentable nature of xylitol also contributes to a constipation relieving effect and improved bone mineral density. Xylitol also modulates the immune system, which, together with its antimicrobial activity contribute to a reduced respiratory tract infection, sinusitis, and otitis media risk. As a low caloric sweetener, xylitol may contribute to weight management. It has been suggested that xylitol also increases satiety, but these results are not convincing yet. The benefit of xylitol on metabolic health, in addition to the benefit of the mere replacement of sucrose, remains to be determined in humans. Additional health benefits of xylitol have thus been reported and indicate further opportunities but need to be confirmed in human studies.
Collapse
Affiliation(s)
- Krista Salli
- Global Health & Nutrition Sciences, DuPont Nutrition & Biosciences, 02460 Kantvik, Finland
| | - Markus J Lehtinen
- Global Health & Nutrition Sciences, DuPont Nutrition & Biosciences, 02460 Kantvik, Finland
| | - Kirsti Tiihonen
- Global Health & Nutrition Sciences, DuPont Nutrition & Biosciences, 02460 Kantvik, Finland
| | - Arthur C Ouwehand
- Global Health & Nutrition Sciences, DuPont Nutrition & Biosciences, 02460 Kantvik, Finland.
| |
Collapse
|