1
|
Salem Y, Sunoqrot S, Hammad A, Rajha HN, Alzaghari LF, Abusulieh S, Maroun RG, Louka N. Oxidation-Driven Assembly of Phenolic Compounds from Grape Seeds Waste into Nanoparticles as Potential Anti-Inflammatory and Wound Healing Therapies. ACS APPLIED BIO MATERIALS 2025; 8:2275-2286. [PMID: 39948441 DOI: 10.1021/acsabm.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Plant polyphenols have recently emerged as green nanoparticle (NP) precursors by oxidation-triggered assembly using oxidizing agents or in alkaline media. This study explored the potential of polyphenolic extracts derived from grape seed waste to serve as natural nanocarriers. Phenolic fractions were extracted from defatted grape seed waste, freeze-dried into powder, and characterized. Grape seed extracts (GSEs) of Obeidi and Asswad Karech, Lebanese autochthonous white and red grape varieties, respectively, had total phenolic contents (TPC) of 370 and 311 mg of gallic acid equivalents (GAE) per gram of dry matter, respectively, along with a high content of catechins, gallic acid, epicatechins, caffeic acid, syringic acid, and protocatechuic acid. GSE NPs were obtained by the oxidation-triggered self-assembly of Obeidi and Asswad Karech polyphenols in the presence of sodium metaperiodate as the oxidizing agent. The NPs exhibited a spherical morphology, hydrodynamic diameters of 109 and 142 nm, and zeta potential values of -20 and -19 mV for Obeidi and Asswad Karech, respectively. Both types of NPs showed high colloidal and chemical stability, even after storage for three months at 4 °C. They also demonstrated high antioxidant capacity, excellent biocompatibility in human dermal fibroblasts, and promising intracellular radical scavenging activity in stimulated RAW 264.7 macrophages. Furthermore, a gel formulation containing 2% Obeidi GSE NPs promoted wound healing with controlled infections and inflammation and faster tissue regeneration in a rat excision wound model. By day 19 of treatment, deep wounds treated with GSE NPs were fully healed with no visible scarring, while the untreated group showed deep scarring and discoloration. Our findings address the valorization of waste generated by wineries and present a promising natural nanocarrier with high stability, antioxidant properties, and anti-inflammatory activity.
Collapse
Affiliation(s)
- Yara Salem
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, P.O. Box 17-5208, Riad El Solh, Beirut 1104 2020, Lebanon
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Alaa Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Hiba N Rajha
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, P.O. Box 17-5208, Riad El Solh, Beirut 1104 2020, Lebanon
| | - Lujain F Alzaghari
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Samah Abusulieh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Richard G Maroun
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, P.O. Box 17-5208, Riad El Solh, Beirut 1104 2020, Lebanon
| | - Nicolas Louka
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, P.O. Box 17-5208, Riad El Solh, Beirut 1104 2020, Lebanon
| |
Collapse
|
2
|
Wang H. Medical Benefits and Polymer Applications of Grapes. Polymers (Basel) 2025; 17:750. [PMID: 40292569 PMCID: PMC11945784 DOI: 10.3390/polym17060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Grapes are a fruit with origins dating back to ancient times. Their first recorded use, as mentioned in the Bible, was in winemaking. The abundance of bioactive compounds in grapes makes them highly valuable. So far, many varieties of cultivated grapes have been developed for table grapes, wine grapes, and raisin production. In addition to these uses, since grapes contain a variety of nutrients, including resveratrol, flavonoids (such as flavonols, anthocyanins, and catechins), melatonin, vitamins, acids, tannins, and other antioxidants, grape extracts have been widely studied for medical applications. This paper reviews the medical effects of these compounds on cancer, cardiovascular disease, brain and neurological disorders, eye diseases, skin disorders, kidney health, diabetes, and gastric diseases, along with the medical applications of grapes in drug delivery, wound dressing, and tissue engineering. In addition, the limitations of the grapes-derived polymers and future research perspectives are discussed. These benefits highlight that the value of grapes extends far beyond their traditional use in wine and raisin production.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
3
|
Sainakham M, Promma B, Ngernthong A, Kiattisin K, Boonpisuttinant K, Wuttikul K, Jantrawut P, Ruksiriwanich W. Preparation and stability investigation of ultrasound-assisted W/O/W multiple nanoemulsions co-loaded with hydrophobic curcumin and hydrophilic arbutin for tyrosinase inhibition. Heliyon 2024; 10:e34665. [PMID: 39130479 PMCID: PMC11315199 DOI: 10.1016/j.heliyon.2024.e34665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
In the present, whitening products are most popular in the cosmetics market, and nanoemulsions are effective drug delivery systems through the skin. The objective of this study was to investigate multiple nanoemulsion formulations for lightning skin effects. The method of this study was the selection of active compounds based on synergistic tyrosinase inhibition activity, formulation preparation by low and high energy methods, physicochemical property determination, stability test, cell toxicity, and anti-melanogenesis in cell culture. From the results, it was found that tyrosinase inhibition with substrate l-tyrosine from the mixture of curcumin and alpha-arbutin gave the highest activity with an IC50 of 63.58 ± 4.99 μM, showed a synergistic effect at a CI value of 0.99, and selected these compounds to develop formulations by the low energy method. However, the most formulations prepared by this method were unstable and phase separated, while the high energy method gave the most formulations with good properties, which were selected for further investigation. The best formulation was 2DS which showed internal droplet morphology in the range of nanometers under a TEM microscope. For 3 months stability test, the formulations had no phase separation and gave the slightly changed values of particle size, polydispersity index (PDI), zeta potentials, and pH values. In addition, multiple nanoemulsions also enhanced the stability of active compounds, with the highest percentage of remaining content of curcumin and arbutin at 94.69 and 90.45 %, respectively at 4 °C for 3 months. In a cell culture test on B16F10, 2DS at 0.05 g/ml gave no cell cytotoxicity and anti-melanogenesis at 57.75 ± 5.74 %, the same potency as kojic acid at a concentration of 20 μg/ml. Therefore, this study will be useful to prepare multiple nanoemulsions for further development into novel health care products.
Collapse
Affiliation(s)
- Mathukorn Sainakham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cluster of Valorization and Bio-Green Transformation for Translational Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bouachompoo Promma
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Arthima Ngernthong
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Korawinwich Boonpisuttinant
- Innovative Natural Products from Thai Wisdoms (INPTW), Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani, 12130, Thailand
| | - Krisada Wuttikul
- Division of Cosmetic Science, School of Pharmaceutical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cluster of Valorization and Bio-Green Transformation for Translational Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cluster of Valorization and Bio-Green Transformation for Translational Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
4
|
Armari M, Zavattaro E, Trejo CF, Galeazzi A, Grossetti A, Veronese F, Savoia P, Azzimonti B. Vitis vinifera L. Leaf Extract, a Microbiota Green Ally against Infectious and Inflammatory Skin and Scalp Diseases: An In-Depth Update. Antibiotics (Basel) 2024; 13:697. [PMID: 39199997 PMCID: PMC11350673 DOI: 10.3390/antibiotics13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The skin microbiota, with its millions of bacteria, fungi, and viruses, plays a key role in balancing the health of the skin and scalp. Its continuous exposure to potentially harmful stressors can lead to abnormalities such as local dysbiosis, altered barrier function, pathobiont overabundance, and infections often sustained by multidrug-resistant bacteria. These factors contribute to skin impairment, deregulation of immune response, and chronic inflammation, with local and systemic consequences. In this scenario, according to the needs of the bio-circular-green economy model, novel harmless strategies, both for regulating the diverse epidermal infectious and inflammatory processes and for preserving or restoring the host skin eubiosis and barrier selectivity, are requested. Vitis vinifera L. leaves and their derived extracts are rich in plant secondary metabolites, such as polyphenols, with antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties that can be further exploited through microbe-driven fermentation processes. On this premise, this literature review aims to provide an informative summary of the most updated evidence on their interactions with skin commensals and pathogens and on their ability to manage inflammatory conditions and restore microbial biodiversity. The emerging research showcases the potential novel beneficial ingredients for addressing various skincare concerns and advancing the cosmeceutics field as well.
Collapse
Affiliation(s)
- Marta Armari
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Elisa Zavattaro
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | | | - Alice Galeazzi
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Alessia Grossetti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Federica Veronese
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Paola Savoia
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| |
Collapse
|
5
|
Ramaraj JA, Narayan S. Anti-aging Strategies and Topical Delivery of Biopolymer-based Nanocarriers for Skin Cancer Treatment. Curr Aging Sci 2024; 17:31-48. [PMID: 36941817 DOI: 10.2174/1874609816666230320122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/07/2023] [Accepted: 01/23/2023] [Indexed: 03/23/2023]
Abstract
Environmental factors like UV radiation and epigenetic changes are significant factors for skin cancer that trigger early aging. This review provides essential information on cancer development concerning aging, the receptors involved, and the therapeutic targets. Biopolymers like polysaccharide, polyphenols, proteins, and nucleic acid plays a vital role in the regulation of normal cell homeostasis. Therefore, it is pertinent to explore the role of biopolymers as antiaging formulations and the possibility of these formulations being used against cancer via topical administrations. As UV radiation is one of the predominant factors in causing skin cancer, the association of receptors between aging and cancer indicated that insulin receptor, melatonin receptor, toll-like receptor, SIRT 1 receptor, tumor-specific T cell receptor and mitochondria-based targeting could be used to direct therapeutics for suppression of cancer and prevent aging. Biopolymer-based nanoformulations have tremendously progressed by entrapment of drugs like curcumin and resveratrol which can prevent cancer and aging simultaneously. Certain protein signaling or calcium and ROS signaling pathways are different for cancer and aging. The involvement of mitochondrial DNA mutation along with telomere shortening with a change in cellular energetics leading to genomic instability in the aging process can also induce mitochondrial dysfunction and epigenetic alterations leading to skin cancer. Therefore, the use of biopolymers as a topical supplement during the aging process can result in the prevention of cancer.
Collapse
Affiliation(s)
- Jino Affrald Ramaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| |
Collapse
|
6
|
Barrea L, Cacciapuoti S, Megna M, Verde L, Marasca C, Vono R, Camajani E, Colao A, Savastano S, Fabbrocini G, Muscogiuri G. The effect of the ketogenic diet on Acne: Could it be a therapeutic tool? Crit Rev Food Sci Nutr 2023; 64:6850-6869. [PMID: 36779329 DOI: 10.1080/10408398.2023.2176813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Acne is a chronic inflammatory disease of the pilosebaceous unit resulting from androgen-induced increased sebum production, altered keratinization, inflammation, and bacterial colonization of the hair follicles of the face, neck, chest and back by Propionibacterium acnes. Overall, inflammation and immune responses are strongly implicated in the pathogenesis of acne. Although early colonization with Propionibacterium acnes and family history may play an important role in the disease, it remains unclear exactly what triggers acne and how treatment affects disease progression. The influence of diet on acne disease is a growing research topic, yet few studies have examined the effects of diet on the development and clinical severity of acne disease, and the results have often been contradictory. Interestingly, very low-calorie ketogenic diet (VLCKD) has been associated with both significant reductions in body weight and inflammatory status through the production of ketone bodies and thus it has been expected to reduce the exacerbation of clinical manifestations or even block the trigger of acne disease. Given the paucity of studies regarding the implementation of VLCKD in the management of acne, this review aims to provide evidence from the available scientific literature to support the speculative use of VLCKD in the treatment of acne.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Napoli, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Sara Cacciapuoti
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
| | - Matteo Megna
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Marasca
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale" Via Mariano Semmola, Napoli, Italy
| | | | - Elisabetta Camajani
- PhD Programme in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
7
|
Venkat R, Verma E, Daimary UD, Kumar A, Girisa S, Dutta U, Ahn KS, Kunnumakkara AB. The Journey of Resveratrol from Vineyards to Clinics. Cancer Invest 2023; 41:183-220. [PMID: 35993769 DOI: 10.1080/07357907.2022.2115057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With rising technological advancements, several factors influence the lifestyle of people and stimulate chronic inflammation that severely affects the human body. Chronic inflammation leads to a broad range of physical and pathophysiological distress. For many years, non-steroidal drugs and corticosteroids were most frequently used in treating inflammation and related ailments. However, long-term usage of these drugs aggravates the conditions of chronic diseases and is presented with morbid side effects, especially in old age. Hence, the quest for safe and less toxic anti-inflammatory compounds of high therapeutic potential with least adverse side effects has shifted researchers' attention to ancient medicinal system. Resveratrol (RSV) - 3,4,5' trihydroxystilbene is one such naturally available polyphenolic stilbene derivative obtained from various plant sources. For over 2000 years, these plants have been used in Asian medicinal system for curing inflammation-associated disorders. There is a wealth of in vitro, in vivo and clinical evidence that shows RSV could induce anti-aging health benefits including, anti-cancer, anti-inflammatory, anti-oxidant, phytoesterogenic, and cardio protective properties. However, the issue of rapid elimination of RSV through the metabolic system and its low bio-availability is of paramount importance which is being studied extensively. Therefore, in this article, we scientifically reviewed the molecular targets, biological activities, beneficial and contradicting effects of RSV as evinced by clinical studies for the prevention and treatment of inflammation-mediated chronic disorders.
Collapse
Affiliation(s)
- Ramya Venkat
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Elika Verma
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uzini Devi Daimary
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Aviral Kumar
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uma Dutta
- Department of Zoology, Cell and Molecular Biology Laboratory, Cotton University, Guwahati, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| |
Collapse
|
8
|
Shaw TK, Paul P, Chatterjee B. Research-based findings on scope of liposome-based cosmeceuticals: an updated review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Cosmeceuticals are cosmetic products with biologically active components that have drug-like benefits. Cosmeceuticals are currently rapidly growing segments encompassing the personal care industry and numerous topical cosmetics-based therapies for treating different skin conditions. The barrier nature of skin causes limitations to topical treatment. The effectiveness of this cosmeceutical product has been enhanced a few folds by using nanotechnological modifications.
Main body
PubMed electronic searches for the literature were performed using combinations of the following terms: “cosmeceutical,” “liposome-based cosmeceuticals,” “acne and liposome,” “photo-aging and liposome,” “hyperpigmentation and liposome,” “wrinkles and liposome,” “fungal infections and liposome,” and “hair damage and liposome” from the earliest publication date available to January 5, 2022. Among the various nanotechnological approaches, liposomes offer numerous advantages such as topical cosmeceutical products, starting from improved moisturization, biodegradability, biocompatibility, enhanced permeation and retention, improved bioavailability of the active ingredients, increased esthetic appeal of cosmeceutical products, slow and extended dermal release. This review outlines various liposome-based cosmeceutical products that has been investigated to treat skin disorders such as photoaging, wrinkles, hyperpigmentation, hair damage and fungal infections.
Conclusion
Liposome-based cosmeceuticals provide a better opportunity to deliver therapeutic moiety for various skin conditions and offer potential promise for future clinical applications.
Graphical Abstract
Collapse
|
9
|
Vuković JS, Filipović VV, Babić Radić MM, Vukomanović M, Milivojevic D, Ilic-Tomic T, Nikodinovic-Runic J, Tomić SL. In Vitro and In Vivo Biocompatible and Controlled Resveratrol Release Performances of HEMA/Alginate and HEMA/Gelatin IPN Hydrogel Scaffolds. Polymers (Basel) 2022; 14:polym14204459. [PMID: 36298041 PMCID: PMC9610835 DOI: 10.3390/polym14204459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 01/19/2023] Open
Abstract
Scaffold hydrogel biomaterials designed to have advantageous biofunctional properties, which can be applied for controlled bioactive agent release, represent an important concept in biomedical tissue engineering. Our goal was to create scaffolding materials that mimic living tissue for biomedical utilization. In this study, two novel series of interpenetrating hydrogel networks (IPNs) based on 2-hydroxyethyl methacrylate/gelatin and 2-hydroxyethyl methacrylate/alginate were crosslinked using N-ethyl-N'-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Characterization included examining the effects of crosslinker type and concentration on structure, morphological and mechanical properties, in vitro swelling, hydrophilicity as well as on the in vitro cell viability (fibroblast cells) and in vivo (Caenorhabditis elegans) interactions of novel biomaterials. The engineered IPN hydrogel scaffolds show an interconnected pore morphology and porosity range of 62.36 to 85.20%, favorable in vitro swelling capacity, full hydrophilicity, and Young's modulus values in the range of 1.40 to 7.50 MPa. In vitro assay on healthy human fibroblast (MRC5 cells) by MTT test and in vivo (Caenorhabditis elegans) survival assays show the advantageous biocompatible properties of novel IPN hydrogel scaffolds. Furthermore, in vitro controlled release study of the therapeutic agent resveratrol showed that these novel scaffolding systems are suitable controlled release platforms. The results revealed that the use of EDC and the combination of EDC/NHS crosslinkers can be applied to prepare and tune the properties of the IPN 2-hydroxyethyl methacrylate/alginate and 2-hydroxyethyl methacrylate/gelatin hydrogel scaffolds series, which have shown great potential for biomedical engineering applications.
Collapse
Affiliation(s)
- Jovana S. Vuković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Vuk V. Filipović
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Marija M. Babić Radić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Marija Vukomanović
- Advanced Materials Department, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Dusan Milivojevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Tatjana Ilic-Tomic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Simonida Lj. Tomić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-3303-630
| |
Collapse
|
10
|
Baroi AM, Popitiu M, Fierascu I, Sărdărescu ID, Fierascu RC. Grapevine Wastes: A Rich Source of Antioxidants and Other Biologically Active Compounds. Antioxidants (Basel) 2022; 11:antiox11020393. [PMID: 35204275 PMCID: PMC8869687 DOI: 10.3390/antiox11020393] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Wine production is one of the most critical agro-industrial sectors worldwide, generating large amounts of waste with negative environmental impacts, but also with high economic value and several potential applications. From wine shoots to grape pomace or seeds, all of the wastes are rich sources of bioactive compounds with beneficial effects for human health, with these compounds being raw materials for other industries such as the pharmaceutical, cosmetic or food industries. Furthermore, these compounds present health benefits such as being antioxidants, supporting the immune system, anti-tumoral, or preventing cardiovascular and neural diseases. The present work aims to be a critical discussion of the extraction methods used for bioactive compounds from grapevine waste and their beneficial effects on human health.
Collapse
Affiliation(s)
- Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (A.M.B.); (R.C.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Mircea Popitiu
- Department of Vascular Surgery and Reconstructive Microsurgery, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Correspondence: (M.P.); (I.F.)
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (A.M.B.); (R.C.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
- Correspondence: (M.P.); (I.F.)
| | - Ionela-Daniela Sărdărescu
- National Research and Development Institute for Biotechnology in Horticulture, 117715 Stefanesti, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (A.M.B.); (R.C.F.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
11
|
Mohd Zaid NA, Sekar M, Bonam SR, Gan SH, Lum PT, Begum MY, Mat Rani NNI, Vaijanathappa J, Wu YS, Subramaniyan V, Fuloria NK, Fuloria S. Promising Natural Products in New Drug Design, Development, and Therapy for Skin Disorders: An Overview of Scientific Evidence and Understanding Their Mechanism of Action. Drug Des Devel Ther 2022; 16:23-66. [PMID: 35027818 PMCID: PMC8749048 DOI: 10.2147/dddt.s326332] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
The skin is the largest organ in the human body, composed of the epidermis and the dermis. It provides protection and acts as a barrier against external menaces like allergens, chemicals, systemic toxicity, and infectious organisms. Skin disorders like cancer, dermatitis, psoriasis, wounds, skin aging, acne, and skin infection occur frequently and can impact human life. According to a growing body of evidence, several studies have reported that natural products have the potential for treating skin disorders. Building on this information, this review provides brief information about the action of the most important in vitro and in vivo research on the use of ten selected natural products in inflammatory, neoplastic, and infectious skin disorders and their mechanisms that have been reported to date. The related studies and articles were searched from several databases, including PubMed, Google, Google Scholar, and ScienceDirect. Ten natural products that have been reported widely on skin disorders were reviewed in this study, with most showing anti-inflammatory, antioxidant, anti-microbial, and anti-cancer effects as the main therapeutic actions. Overall, most of the natural products reported in this review can reduce and suppress inflammatory markers, like tumor necrosis factor-alpha (TNF-α), scavenge reactive oxygen species (ROS), induce cancer cell death through apoptosis, and prevent bacteria, fungal, and virus infections indicating their potentials. This review also highlighted the challenges and opportunities of natural products in transdermal/topical delivery systems and their safety considerations for skin disorders. Our findings indicated that natural products might be a low-cost, well-tolerated, and safe treatment for skin diseases. However, a larger number of clinical trials are required to validate these findings. Natural products in combination with modern drugs, as well as the development of novel delivery mechanisms, represent a very promising area for future drug discovery of these natural leads against skin disorders.
Collapse
Affiliation(s)
- Nurul Amirah Mohd Zaid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, 47500, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Jaishree Vaijanathappa
- Faculty of Life Sciences, JSS Academy of Higher Education and Research Mauritius, Vacoas-Phoenix, Mauritius
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | | | | | | |
Collapse
|
12
|
Stefanov SR, Andonova VY. Lipid Nanoparticulate Drug Delivery Systems: Recent Advances in the Treatment of Skin Disorders. Pharmaceuticals (Basel) 2021; 14:1083. [PMID: 34832865 PMCID: PMC8619682 DOI: 10.3390/ph14111083] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
The multifunctional role of the human skin is well known. It acts as a sensory and immune organ that protects the human body from harmful environmental impacts such as chemical, mechanical, and physical threats, reduces UV radiation effects, prevents moisture loss, and helps thermoregulation. In this regard, skin disorders related to skin integrity require adequate treatment. Lipid nanoparticles (LN) are recognized as promising drug delivery systems (DDS) in treating skin disorders. Solid lipid nanoparticles (SLN) together with nanostructured lipid carriers (NLC) exhibit excellent tolerability as these are produced from physiological and biodegradable lipids. Moreover, LN applied to the skin can improve stability, drug targeting, occlusion, penetration enhancement, and increased skin hydration compared with other drug nanocarriers. Furthermore, the features of LN can be enhanced by inclusion in suitable bases such as creams, ointments, gels (i.e., hydrogel, emulgel, bigel), lotions, etc. This review focuses on recent developments in lipid nanoparticle systems and their application to treating skin diseases. We point out and consider the reasons for their creation, pay attention to their advantages and disadvantages, list the main production techniques for obtaining them, and examine the place assigned to them in solving the problems caused by skin disorders.
Collapse
Affiliation(s)
- Stefan R. Stefanov
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | | |
Collapse
|
13
|
Ferreira MS, Magalhães MC, Oliveira R, Sousa-Lobo JM, Almeida IF. Trends in the Use of Botanicals in Anti-Aging Cosmetics. Molecules 2021; 26:molecules26123584. [PMID: 34208257 PMCID: PMC8230945 DOI: 10.3390/molecules26123584] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Botanical ingredients have been used for thousands of years in skincare for their convenience as well as the diversity and abundance in compounds with biological activity. Among these, polyphenols and especially flavonoids have gained increasing prominence due to their antioxidant and anti-inflammatory properties. In this study, the most used botanical preparations in anti-aging products marketed in 2011 were determined. The analysis was repeated in 2018 for new and reformulated products. The scientific evidence for their application as active ingredients in anti-aging cosmetics and their flavonoid content was also compiled by searching in online scientific databases. Overall, in 2018, there was a noticeable increase in the use of botanical preparations in anti-aging cosmetics. However, the top three botanical species in both years were Vitis vinifera, Butyrospermum parkii, and Glycine soja, which is consistent with the greater amount of scientific evidence supporting their efficacy. Regarding the function of botanical preparations, there is a clear preference for DNA-protecting ingredients. The most prevalent flavonoids were flavan-3-ols, proanthocyanidins, and anthocyanins. This study provided an updated overview of the market trends regarding the use of botanicals in anti-aging products and documented the state of the art of scientific evidence for the most used plants.
Collapse
Affiliation(s)
- Marta Salvador Ferreira
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.S.F.); (M.C.M.); (J.M.S.-L.)
- UCIBIO/REQUIMTE, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria Catarina Magalhães
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.S.F.); (M.C.M.); (J.M.S.-L.)
| | - Rita Oliveira
- Biomedical Research Centre (CEBIMED)/Research Centre of the Fernando Pessoa Energy, Environment and Health Research Unit (FP-ENAS), Faculty of Health Sciences, University of Fernando Pessoa, 4249-004 Porto, Portugal;
| | - José Manuel Sousa-Lobo
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.S.F.); (M.C.M.); (J.M.S.-L.)
- UCIBIO/REQUIMTE, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Isabel Filipa Almeida
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.S.F.); (M.C.M.); (J.M.S.-L.)
- UCIBIO/REQUIMTE, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-220-428-621
| |
Collapse
|
14
|
Abdelshafy AM, Belwal T, Liang Z, Wang L, Li D, Luo Z, Li L. A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. Crit Rev Food Sci Nutr 2021; 62:6204-6224. [PMID: 33729055 DOI: 10.1080/10408398.2021.1898335] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Phenolic compounds are minor metabolites usually present in mushroom species. Because of their potential advantages for human health, such as antioxidant and other biological activities, these bioactive components have been gaining more interest as functional foods, nutraceutical agents for providing better health conditions. This review aims to comprehensively discuss the recent advances in mushroom phenolic compounds, including new sources, structural characteristics, biological activities, potential uses and its industrial applications as well as the future perspectives. Phenolic acids as well as flavonoids are considered the most common phenolics occurring in mushroom species. These are responsible for its bioactivities, including antioxidant, anti-inflammatory, antitumor, antihyperglycaemic, antiosteoporotic, anti-tyrosinase and antimicrobial activities. Several edible mushroom species with good phenolic content and show higher biological activity were highlighted, in a way for its futuristic applications. Trends on mushroom research highlighting new research areas, such as nanoformulation were discussed. Furthermore, the use of phenolic compounds as nutraceutical and cosmeceutical agents as well as the future perspectives and recommendations were made.
Collapse
Affiliation(s)
- Asem Mahmoud Abdelshafy
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut, Egypt
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ze Liang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lei Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Hangzhou, China.,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Hangzhou, China.,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
15
|
Krambeck K, Silva V, Silva R, Fernandes C, Cagide F, Borges F, Santos D, Otero-Espinar F, Lobo JMS, Amaral MH. Design and characterization of Nanostructured lipid carriers (NLC) and Nanostructured lipid carrier-based hydrogels containing Passiflora edulis seeds oil. Int J Pharm 2021; 600:120444. [PMID: 33713760 DOI: 10.1016/j.ijpharm.2021.120444] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022]
Abstract
This study aims to design and characterize Nanostructured lipid carriers (NLC) and Nanostructured lipid carrier-based hydrogels with Passiflora edulis seeds oil, a by-product from Madeira Island food industry. NLC were prepared by the ultrasonication technique, using passion fruit seeds oil as a liquid lipid and glyceryl distearate as a solid lipid. These NLC were then gelled with Poly (acrylic acid). Long-term stability studies were conducted with NLC and NLC-based hydrogels stored for 12 months. The following tests were performed: morphology, encapsulation efficiency, particle size analysis, polydispersity index analysis, zeta potential, pH measurement, color analysis, viscosity studies, texture analysis, in vitro occlusion test, ex vivo skin penetration study, tyrosinase inhibition activity, in vitro skin permeation experiments and in vitro cytotoxicity studies. The developed NLC had spherical shape and narrow particle sizes distribution with mean sizes in the range of 150 nm and PDI below 0.3, Zeta potential values around -30 mV and high Encapsulation efficiency. The tyrosinase inhibitory activity and skin retention of the nanoparticles was superior to that of the non-encapsulated oil. The developed formulations did not show cytotoxicity towards HaCat cells and presented suitable viscosity and texture properties for skin application, proving to be good candidates as depigmenting agent.
Collapse
Affiliation(s)
- Karolline Krambeck
- MedTech, UCIBIO-REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Vera Silva
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carlos Fernandes
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Delfim Santos
- MedTech, UCIBIO-REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Francisco Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Manuel Sousa Lobo
- MedTech, UCIBIO-REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Maria Helena Amaral
- MedTech, UCIBIO-REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Grape ( Vitis vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry. Foods 2020; 9:foods9101360. [PMID: 32992712 PMCID: PMC7599587 DOI: 10.3390/foods9101360] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Wine production is an ancient human activity that generates several by-products, which include some constituents known for their potential in health care and for their role in the food or cosmetic industries. Any variety of grape (Vitis vinifera L.) contains nutrients and bioactive compounds available from their juice or solid parts. Grape seed extract has demonstrated many activities in disease prevention, such as antioxidant effects, which make it a potential source of nutraceuticals. Grape seed is a remarkable winery industry by-product due to the bioactivity of its constituents. Methods for recovery of oil from grape seeds have evolved to improve both the quantity and quality of the yield. Both the lipophilic and hydrophilic chemicals present in the oil of V. vinifera L. make this wine by-product a source of natural nutraceuticals. Food and non-food industries are becoming novel targets of oil obtained from grape seeds given its various properties. This review focuses on the advantages of grape seed oil intake in our diet regarding its chemical composition in industries not related to wine production and the economic and environmental impact of oil production.
Collapse
|
17
|
Lipid nanocarriers containing Passiflora edulis seeds oil intended for skin application. Colloids Surf B Biointerfaces 2020; 193:111057. [DOI: 10.1016/j.colsurfb.2020.111057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 04/12/2020] [Indexed: 01/14/2023]
|
18
|
Changes in the Content and Bioavailability of Onion Quercetin and Grape Resveratrol During In Vitro Human Digestion. Foods 2020; 9:foods9060694. [PMID: 32481545 PMCID: PMC7353652 DOI: 10.3390/foods9060694] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/03/2023] Open
Abstract
We investigated the effects of in vitro human digestion on the content and bioavailability of onion quercetin and grape resveratrol caused by the composition of saliva or gastric, duodenal, or bile juice. We observed the digestibility of extracted onion quercetin and grape resveratrol, respectively, in the small intestine of the in vitro human digestion system. By liquid chromatography–mass spectroscopy, we found that the degradation of quercetin and resveratrol was influenced by small intestine digestion. Before and after in vitro human digestion, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities of homogenized water- and ethanol-extracted grapes were higher than those of onion extracts. DPPH radical scavenging activity in both quercetin and resveratrol was decreased by in vitro digestion. These results will improve our understanding of how human digestion influences the contents and free radical scavenging activities of quercetin and resveratrol.
Collapse
|