1
|
Shamsad A, Gautam T, Singh R, Banerjee M. Genetic and epigenetic alterations associated with gestational diabetes mellitus and adverse neonatal outcomes. World J Clin Pediatr 2025; 14:99231. [DOI: 10.5409/wjcp.v14.i1.99231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 12/20/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder, recognised during 24-28 weeks of pregnancy. GDM is linked with adverse newborn outcomes such as macrosomia, premature delivery, metabolic disorder, cardiovascular, and neurological disorders. Recent investigations have focused on the correlation of genetic factors such as β-cell function and insulin secretary genes (transcription factor 7 like 2, potassium voltage-gated channel subfamily q member 1, adiponectin etc.) on maternal metabolism during gestation leading to GDM. Epigenetic alterations like DNA methylation, histone modification, and miRNA expression can influence gene expression and play a dominant role in feto-maternal metabolic pathways. Interactions between genes and environment, resulting in differential gene expression patterns may lead to GDM. Researchers suggested that GDM women are more susceptible to insulin resistance, which alters intrauterine surroundings, resulting hyperglycemia and hyperinsulinemia. Epigenetic modifications in genes affecting neuroendocrine activities, and metabolism, increase the risk of obesity and type 2 diabetes in offspring. There is currently no treatment or effective preventive method for GDM, since the molecular processes of insulin resistance are not well understood. The present review was undertaken to understand the pathophysiology of GDM and its effects on adverse neonatal outcomes. In addition, the study of genetic and epigenetic alterations will provide lead to researchers in the search for predictive molecular biomarkers.
Collapse
Affiliation(s)
- Amreen Shamsad
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Tanu Gautam
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Renu Singh
- Department of Obstetrics and Gynecology, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
2
|
Zhang M, Li Q, Wang KL, Dong Y, Mu YT, Cao YM, Liu J, Li ZH, Cui HL, Liu HY, Hu AQ, Zheng YJ. Lipolysis and gestational diabetes mellitus onset: a case-cohort genome-wide association study in Chinese. J Transl Med 2023; 21:47. [PMID: 36698149 PMCID: PMC9875546 DOI: 10.1186/s12967-023-03902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Genetic knowledge of gestational diabetes mellitus (GDM) in Chinese women is quite limited. This study aimed to identify the risk factors and mechanism of GDM at the genetic level in a Chinese population. METHODS We conducted a genome-wide association study (GWAS) based on single nucleotide polymorphism (SNP) array genotyping (ASA-CHIA Bead chip, Illumina) and a case-cohort study design. Variants including SNPs, copy number variants (CNVs), and insertions-deletions (InDels) were called from genotyping data. A total of 2232 pregnant women were enrolled in their first/second trimester between February 2018 and December 2020 from Anqing Municipal Hospital in Anhui Province, China. The GWAS included 193 GDM patients and 819 subjects without a diabetes diagnosis, and risk ratios (RRs) and their 95% confidence intervals (CIs) were estimated by a regression-based method conditional on the population structure. The calling and quality control of genotyping data were performed following published guidelines. CNVs were merged into CNV regions (CNVR) to simplify analyses. To interpret the GWAS results, gene mapping and overexpression analyses (ORAs) were further performed to prioritize the candidate genes and related biological mechanisms. RESULTS We identified 14 CNVRs (false discovery rate corrected P values < 0.05) and two suggestively significant SNPs (P value < 0.00001) associated with GDM, and a total of 19 candidate genes were mapped. Ten genes were significantly enriched in gene sets related to lipase (triglyceride lipase and lipoprotein lipase) activity (LIPF, LIPK, LIPN, and LIPJ genes), oxidoreductase activity (TPH1 and TPH2 genes), and cellular components beta-catenin destruction complex (APC and GSK3B genes), Wnt signalosome (APC and GSK3B genes), and lateral element in the Gene Ontology resource (BRCA1 and SYCP2 genes) by two ORA methods (adjusted P values < 0.05). CONCLUSIONS Genes related to lipolysis, redox reaction, and proliferation of islet β-cells are associated with GDM in Chinese women. Energy metabolism, particularly lipolysis, may play an important role in GDM aetiology and pathology, which needs further molecular studies to verify.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Qing Li
- Department of Obstetrics and Gynecology, Anqing Municipal Hospital, Anqing, 246003, China
| | - Kai-Lin Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yao Dong
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yu-Tong Mu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yan-Min Cao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Jin Liu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Zi-Heng Li
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Hui-Lu Cui
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Hai-Yan Liu
- Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, 246003, China.
| | - An-Qun Hu
- Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, 246003, China.
| | - Ying-Jie Zheng
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China.
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Ansari N, Ramachandran V, Mohamad NA, Salim E, Ismail P, Hazmi M, Mat LNI. Association of GCK (rs1799884), GCKR (rs780094), and G6PC2 (rs560887) Gene Polymorphisms with Type 2 Diabetes among Malay Ethnics. Glob Med Genet 2023; 10:12-18. [PMID: 36703777 PMCID: PMC9873477 DOI: 10.1055/s-0042-1760384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder, and the underlying causes remain unknown and have not been fully elucidated. Several candidate genes have been associated with T2DM in various populations with conflicting results. The variations found in glucokinase ( GCK ), glucokinase regulatory protein ( GCKR ), and glucose-6-phosphatase 2 ( G6PC2 ) genes were not well studied, particularly among Asians. Aims The main objective of this study was to determine the candidate genetic polymorphisms of GCK (rs1799884), GCKR (rs780094), and G6PC2 (rs560887) genes in T2DM among Malay ethnics. Methods In this candidate gene association study, a total of 180 T2DM subjects and 180 control subjects were recruited to determine the genotypes using polymerase chain reaction-restriction fragment length polymorphism and Taqman probe assay methods. Genotype and allele frequencies in case and control samples were compared using the chi-squared test to determine a significant difference. Results The body mass index, fasting blood glucose, hemoglobin A1c, systolic and diastolic blood pressure, and total cholesterol were significantly different ( p < 0.05) between T2DM and control subjects. The genotypic and allelic frequencies of GCK (rs1799884), GCKR (rs780094), and G6PC2 (rs560887) gene polymorphisms were significantly different between T2DM and controls ( p < 0.05). Conclusion Hence, rs1799884 of GCK gene and rs780094 of GCKR gene and rs560887 of the G6PC2 gene are possible genetic biomarkers in T2DM development among Malay ethnics in Malaysia.
Collapse
Affiliation(s)
- Neda Ansari
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Vasudevan Ramachandran
- Faculty of Health Sciences, University College MAIWP International, Taman Batu Muda, Kuala Lumpur, Malaysia,Vasudevan Ramachandran Faculty of Health Sciences, University College MAIWP InternationalTaman Batu Muda, 68100 Batu Caves, Kuala LumpurMalaysia
| | - Nur Afiqah Mohamad
- Centre for Foundation Studies, Lincoln University College, Selangor, DE, Malaysia
| | - Elnaz Salim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Patimah Ismail
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohamad Hazmi
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
| | - Liyana Najwa Inchee Mat
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia,Address for correspondence Liyana Najwa Inchee, Mat, MBBCh BAO, PhD Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang 43400, Selangor DEMalaysia
| |
Collapse
|
4
|
She L, Li W, Guo Y, Zhou J, Liu J, Zheng W, Dai A, Chen X, Wang P, He H, Zhang P, Zeng J, Xiang B, Li S, Wang L, Dai Q, Yang M. Association of glucokinase gene and glucokinase regulatory protein gene polymorphisms with gestational diabetes mellitus: A case-control study. Gene X 2022; 824:146378. [PMID: 35276241 DOI: 10.1016/j.gene.2022.146378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the association of glucokinase (GCK) gene, glucokinase regulatory protein (GCKR) gene polymorphisms with the susceptibility to GDM in Chinese population. RESEARCH DESIGN AND METHODS This case-control study included 835 GDM patients and 870 non-diabetic pregnant women who had their prenatal examinations at 24-28 gestational weeks at the Maternal and Child Health Hospital of Hubei Province from January 15, 2018 to March 31, 2019. The nurses were trained to collect clinical information and blood samples. The candidate single nucleotide polymorphism (SNPs, GCK rs1799884, rs4607517, rs10278336, rs2268574, rs730497 and GCKR rs780094, rs1260326) were genotyped on Sequenom Massarray platform. Statistical analysis including independent sample t test, chi-square test, logistic regression and one-way ANOVA were performed to evaluate the differences in allele and genotype distributions and their correlations with the odds of GDM. RESULTS There were statistically significant differences in age, pre-gestational BMI, education level and family history of diabetes between case and control group (P < 0.05). After adjusting for these confounders, GCK rs1799884 was still significantly associated with GDM (P < 0.05), but there were no significant associations between rs4607517, rs10278336 and rs2268574, rs780094 and rs1260326 polymorphisms and GDM odds (P > 0.05). In addition, the pregnant women with rs4607517 TT genotype had the significantly higher fasting blood glucose level than CC genotype (P < 0.05). CONCLUSION GCK rs1799884 mutation is associated with higher GDM odds in Chinese population. Further larger studies are needed to explore the association between GCK and GCKR polymorphisms and GDM susceptibility.
Collapse
Affiliation(s)
- Lu She
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China
| | - Wei Li
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Yan Guo
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Jia Zhou
- Maternal and Child Health Hospital of Chongqing Yubei, No. 71 ShuanghuZhi Road, Chongqing, China
| | - Jianqiong Liu
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Wenpei Zheng
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Anna Dai
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, China
| | - Xiaohong Chen
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Ping Wang
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Hua He
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Pei Zhang
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China
| | - Jing Zeng
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China
| | - Bing Xiang
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China
| | - Shiyu Li
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Liang Wang
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Qiong Dai
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China.
| | - Mei Yang
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China.
| |
Collapse
|
5
|
Wei W, He Y, Wang X, Tan G, Zhou F, Zheng G, Tian D, Ma X, Yu H. Gestational Diabetes Mellitus: The Genetic Susceptibility Behind the Disease. Horm Metab Res 2021; 53:489-498. [PMID: 34384105 DOI: 10.1055/a-1546-1652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gestational diabetes mellitus (GDM), a type of pregnancy-specific glucose intolerance or hyperglycemia, is one of the most common metabolic disorders in pregnant women with 16.9% of the global prevalence of gestational hyperglycemia. Not only are women with GDM likely to develop T2DM, but their children are also at risk for birth complications or metabolic disease in adulthood. Therefore, identifying the potential risk factors for GDM is very important in the prevention and treatment of GDM. Previous studies have shown that genetic predisposition is an essential component in the occurrence of GDM. In this narrative review, we describe the role of polymorphisms in different functional genes associated with increased risk for GDM, and available evidence on genetic factors in the risk of GDM is summarized and discussed.
Collapse
Affiliation(s)
- Wenwen Wei
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, Zunyi, China
| | - Yuejuan He
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, Zunyi, China
| | - Xin Wang
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, Zunyi, China
| | - Guiqin Tan
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, Zunyi, China
| | - Fangyu Zhou
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, Zunyi, China
| | - Guangbing Zheng
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, Zunyi, China
| | - Dan Tian
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, Zunyi, China
| | - Xiaomin Ma
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, Zunyi, China
| | - Hongsong Yu
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, Zunyi, China
| |
Collapse
|
6
|
The association of the glucokinase rs4607517 polymorphism with gestational diabetes mellitus and its interaction with sweets consumption in Chinese women. Public Health Nutr 2020; 24:2563-2569. [PMID: 32482198 DOI: 10.1017/s1368980020000609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To identify the association of the glucokinase gene (GCK) rs4607517 polymorphism with gestational diabetes mellitus (GDM) and determine whether sweets consumption could interact with the polymorphism on GDM in Chinese women. DESIGN We conducted a case-control study at a hospital including 1015 participants (562 GDM cases and 453 controls). We collected the data of pre-pregnancy BMI, sweets consumption and performed genotyping of the GCK rs4607517 polymorphism. Logistic regression was performed to test the association between the rs4607517 polymorphism and GDM, and the stratified analyses by sweets consumption were conducted, using an additive genetic model. SETTING A case-control study of women at a hospital in Beijing, China. PARTICIPANTS One thousand and fifteen Chinese women. RESULTS The GCK rs4607517 A allele was significantly associated with GDM (OR 1·35, 95 % CI 1·03, 1·77; P = 0·028). Furthermore, stratified analyses showed that the A allele increased the risk of GDM only in women who had a habitual consumption of sweet foods (sweets consumption ≥ once per week) (OR 1·61, 95 % CI 1·17, 2·21; P = 0·003). Significant interaction on GDM was found between the rs4607517 A allele and sweets consumption (P = 0·004). CONCLUSIONS This study for the first time reported the interaction between the GCK rs4607517 polymorphism and sweets consumption on GDM. The results provided novel evidence for risk assessment and personalised prevention of GDM.
Collapse
|
7
|
Siddiqui S, Waghdhare S, Gopi S, Bhargava A, Panda M, Radha V, Mohan V, Dubey S, Jha S. GCK Gene Screening and Association of GCK Variants With Gestational Diabetes in North Indian Population. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2018; 11:1179551418806896. [PMID: 30386132 PMCID: PMC6204622 DOI: 10.1177/1179551418806896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/23/2022]
Abstract
Background: GCK gene variants have been reported to be associated with gestational diabetes mellitus (GDM) in the Caucasian population. There are no reports exploring this association in the Indian population. Methods: This cross-sectional study included subjects from Max Super Speciality Hospital, New Delhi, India, over a span of 6 months. Females diagnosed with GDM as per the International Association of the Diabetes and Pregnancy Study Groups (IADPSG) criteria were enrolled. Direct gene sequencing was performed to screen all 10 exons and promoter region of GCK gene. Results: Out of the total 1000 females screened, 154 subjects had any degree of hyperglycemia. GCK gene screening was done and we observed 11 variants in 80.4% (41/51) of the GDM subset and 89.6% (43/48) of the controls. Allele frequencies of observed variants were not different between the control subjects (12.5%) and those diagnosed with GDM (8.4%). Conclusion: To the best of our knowledge, this is the first report from north India exploring association of GCK variants with GDM and we do not observe any association of GCK variants with GDM in our study population. CTRI Registration No: CTRI/2017/07/008964
Collapse
Affiliation(s)
- Samreen Siddiqui
- Institute of Endocrinology, Diabetes & Metabolism, Max Healthcare Institute Ltd., New Delhi, India.,Amity Institute of Virology and Immunology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Swati Waghdhare
- Institute of Endocrinology, Diabetes & Metabolism, Max Healthcare Institute Ltd., New Delhi, India
| | - Sundaramoorthy Gopi
- Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | - Amit Bhargava
- Institute of Endocrinology, Diabetes & Metabolism, Max Healthcare Institute Ltd., New Delhi, India
| | - Manju Panda
- Institute of Endocrinology, Diabetes & Metabolism, Max Healthcare Institute Ltd., New Delhi, India
| | - Venkatesan Radha
- Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai, India.,Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non Communicable Diseases Prevention & Control, IDF Centre of Excellence in Diabetes Care, Chennai, India
| | - Shweta Dubey
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Sujeet Jha
- Institute of Endocrinology, Diabetes & Metabolism, Max Healthcare Institute Ltd., New Delhi, India
| |
Collapse
|
8
|
Molecular Biomarkers for Gestational Diabetes Mellitus. Int J Mol Sci 2018; 19:ijms19102926. [PMID: 30261627 PMCID: PMC6213110 DOI: 10.3390/ijms19102926] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/20/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a growing public health problem worldwide. The condition is associated with perinatal complications and an increased risk for future metabolic disease in both mothers and their offspring. In recent years, molecular biomarkers received considerable interest as screening tools for GDM. The purpose of this review is to provide an overview of the current status of single-nucleotide polymorphisms (SNPs), DNA methylation, and microRNAs as biomarkers for GDM. PubMed, Scopus, and Web of Science were searched for articles published between January 1990 and August 2018. The search terms included “gestational diabetes mellitus”, “blood”, “single-nucleotide polymorphism (SNP)”, “DNA methylation”, and “microRNAs”, including corresponding synonyms and associated terms for each word. This review updates current knowledge of the candidacy of these molecular biomarkers for GDM with recommendations for future research avenues.
Collapse
|
9
|
FTO, GCKR, CDKAL1 and CDKN2A/B gene polymorphisms and the risk of gestational diabetes mellitus: a meta-analysis. Arch Gynecol Obstet 2018; 298:705-715. [PMID: 30074065 DOI: 10.1007/s00404-018-4857-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/28/2018] [Indexed: 01/11/2023]
Abstract
PURPOSE Studies had examined the associations between genetic polymorphisms and the risk of gestational diabetes mellitus (GDM). However, conclusions of these studies were controversial due to the smaller sample size and limited statistical power. We carried out a meta-analysis with the aim of providing a more comprehensive summary of the currently available research to evaluate the relationship between FTO, GCKR, CDKAL1 and CDKN2A/B gene polymorphisms and GDM risk. METHODS Literature search was carried out in the PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure and Wangfang databases up to November 2017. Data were extracted by two independent reviewers and statistical analyses were performed with STATA software. Pooled odds ratios and 95% confidence intervals were calculated by Z test to assess the association between genetic polymorphisms and GDM risk. Stratified analysis was performed based on ethnicity. Heterogeneity and publication bias between studies were evaluated by Cochran's Q test and Egger regression test, respectively. RESULTS 14 eligible studies were included. CDKAL1 rs7754840 and rs7756992 showed significant correlation with GDM risk under the allele, recessive, dominant, homozygote and heterozygote models. GCKR rs780094 and CDKN2A/B rs10811661 also showed the same association under the allele, recessive and heterozygote models. No associations between FTO rs9939609 and rs8050136, GCKR rs1260326 and GDM risk were found. CONCLUSIONS Our meta-analysis showed that two SNPs in particular(rs7754840 and rs7756992 in CDKAL1) were very strongly associated with GDM risk. GCKR rs780094 and CDKN2A/B rs10811661 polymorphisms were moderately associated with GDM risk.
Collapse
|
10
|
Shi D, Xie T, Deng J, Niu P, Wu W. CYP3A4 and GCK genetic polymorphisms are the risk factors of tacrolimus-induced new-onset diabetes after transplantation in renal transplant recipients. Eur J Clin Pharmacol 2018; 74:723-729. [DOI: 10.1007/s00228-018-2442-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 03/08/2018] [Indexed: 12/23/2022]
|
11
|
Effect of gene-lifestyle interaction on gestational diabetes risk. Oncotarget 2017; 8:112024-112035. [PMID: 29340108 PMCID: PMC5762376 DOI: 10.18632/oncotarget.22999] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/27/2017] [Indexed: 11/29/2022] Open
Abstract
We hypothesized that the association of certain lifestyle parameters with gestational diabetes mellitus (GDM) risk would depend on susceptibility loci. In total, 278 Russian women with GDM and 179 controls completed questionnaires about lifestyle habits (food consumption, physical activity and smoking). GDM was diagnosed according to the criteria of the International Association of Diabetes and Pregnancy Study Groups. Maternal blood was sampled for genotyping single-nucleotide polymorphisms (SNPs) in MTNR1B (rs10830963 and rs1387153), GCK (rs1799884), KCNJ11 (rs5219), IGF2BP2 (rs4402960), TCF7L2 (rs7903146 and rs12255372), CDKAL1 (rs7754840), IRS1 (rs1801278) and FTO (rs9939609). Binary logistic regression revealed an interaction effect of sausage intake and the number of risk alleles of two SNPs (rs10830963 in MTNR1B and rs1799884 in GCK) on GDM risk (P < 0.001). Among women without risk alleles of these two SNPs, sausage consumption was positively associated with GDM risk (P trend = 0.045). This difference was not revealed in women carrying 1 or more risk alleles. The risk of GDM increased as the number of risk alles increased in participants with low and moderate sausage consumption (P trend <0.001 and 0.006, respectively), while the risk of GDM in women with high sausage consumption remained relatively high, independent of the number of risk alleles. These findings indicate that the association of sausage consumption with GDM risk can be determined based on the number of risk alleles of rs10830963 in MTNR1B and rs1799884 in GCK.
Collapse
|
12
|
Da Silva MS, Chartrand D, Vohl MC, Barbier O, Rudkowska I. Dairy Product Consumption Interacts with Glucokinase (GCK) Gene Polymorphisms Associated with Insulin Resistance. J Pers Med 2017; 7:jpm7030008. [PMID: 28867816 PMCID: PMC5618154 DOI: 10.3390/jpm7030008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/31/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023] Open
Abstract
Dairy product intake and a person's genetic background have been reported to be associated with the risk of type 2 diabetes (T2D). The objective of this study was to examine the interaction between dairy products and genes related to T2D on glucose-insulin homeostasis parameters. A validated food frequency questionnaire, fasting blood samples, and glucokinase (GCK) genotypes were analyzed in 210 healthy participants. An interaction between rs1799884 in GCK and dairy intake on the homeostasis model assessment of insulin resistance was identified. Secondly, human hepatocellular carcinoma cells (HepG2) were grown in a high-glucose medium and incubated with either 1-dairy proteins: whey, caseins, and a mixture of whey and casein; and 2-four amino acids (AA) or mixtures of AA. The expression of GCK-related genes insulin receptor substrate-1 (IRS-1) and fatty acid synthase (FASN) was increased with whey protein isolate or hydrolysate. Individually, leucine increased IRS-1 expression, whereas isoleucine and valine decreased FASN expression. A branched-chain AA mixture decreased IRS-1 and FASN expression. In conclusion, carriers of the A allele for rs1799884 in the GCK gene may benefit from a higher intake of dairy products to maintain optimal insulin sensitivity. Moreover, the results show that whey proteins affect the expression of genes related to glucose metabolism.
Collapse
Affiliation(s)
- Marine S Da Silva
- Endocrinology and Nephrology, CHU de Québec Research Center and the Department of Kinesiology, Faculty of Medicine, Laval University, Québec, Canada.
| | - Dominic Chartrand
- Endocrinology and Nephrology, CHU de Québec Research Center and the Department of Kinesiology, Faculty of Medicine, Laval University, Québec, Canada.
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), and the School of Nutrition, Faculty of Agriculture, Laval University, Québec, Canada.
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU de Québec Research Centre and the Faculty of Pharmacy, Laval University, Québec, Canada.
| | - Iwona Rudkowska
- Endocrinology and Nephrology, CHU de Québec Research Center and the Department of Kinesiology, Faculty of Medicine, Laval University, Québec, Canada.
| |
Collapse
|
13
|
GCK , GCKR , FADS1 , DGKB/TMEM195 and CDKAL1 Gene Polymorphisms in Women with Gestational Diabetes. Can J Diabetes 2017; 41:372-379. [DOI: 10.1016/j.jcjd.2016.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 11/15/2022]
|
14
|
Transcription Factor 7-Like 2 (TCF7L2) rs7903146 Polymorphism as a Risk Factor for Gestational Diabetes Mellitus: A Meta-Analysis. PLoS One 2016; 11:e0153044. [PMID: 27058589 PMCID: PMC4825985 DOI: 10.1371/journal.pone.0153044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/22/2016] [Indexed: 12/13/2022] Open
Abstract
Background There are racial and ethnic differences in the prevalence of gestational diabetes mellitus (GDM). Prior meta-analyses included small samples and very limited non-Caucasian populations. Studies to determine the relationship between transcription factor 7 like-2 (TCF7L2) rs7903146 polymorphism and risk of GDM in Hispanics/Latinos are recently available. The present meta-analysis was to estimate the impact of allele variants of TCF7L2 rs7903146 polymorphism on GDM susceptibility in overall population and racial/ethnic subgroups. Methods Literature was searched in multiple databases including PubMed, Web of Science, EMBASE (Ovid SP), Airiti Library, Medline Complete, and ProQuest up to July 2015. Allelic frequency for TCF7L2 rs7903146 polymorphism in GDM and control subjects was extracted and statistical analysis was performed using Comprehensive Meta-Analysis (CMA) 2.0 statistical software. The association between TCF7L2 rs7903146 polymorphism and GDM risk was assessed by pooled odd ratios (ORs) using five gene models (dominant, recessive, homozygote, heterozygote, and allele). Stratified analysis based on race/ethnicity was also conducted. The between-study heterogeneity and contribution of each single study to the final result was tested by Cochran Q test and sensitivity analyses, respectively. Publication bias was evaluated using Egger’s linear regression test. Results A total of 16 studies involving 4,853 cases and 10,631 controls were included in this meta-analysis. Significant association between the T-allele of rs7903146 and GDM risk was observed under all genetic models, dominant model (OR = 1.44, 95% CI = 1.19–1.74), recessive model (OR = 1.35, 95% CI = 1.08–1.70), heterozygous model (OR = 1.31, 95% CI = 1.12–1.53), homozygous model (OR = 1.67, 95% CI = 1.31–2.12), and allele model (OR = 1.31, 95% CI = 1.12–1.53). Stratified analysis by race/ethnicity showed a statistically significant association between rs7903146 polymorphism and susceptibility to GDM under homozygous genetic model (TT versus CC) among whites, Hispanics/Latinos and Asians. Sensitivity analysis showed that the overall findings were robust to potentially influential decisions of the 16 studies included. No significant evidence for publication bias was observed in this meta-analysis for overall studies and subgroup studies. Conclusions This meta-analysis showed that the T allele of TCF7L2 rs7903146 polymorphism was associated with susceptibility of GDM in overall population in white, Hispanic/Latino and Asian sub-groups. Asians with homozygous TT allele of rs7903146 polymorphism have highest risk of GDM (OR = 2.08) followed by Hispanics/Latinos (OR = 1.80) and whites (OR = 1.51). The highest and lowest frequency of T allele of rs7903146 was found in Malaysia and South Korea, respectively. Future studies are needed to profile genetic risk for GDM among high risk Asian and Pacific Islander subgroups.
Collapse
|