1
|
Zhu Q, Zhou H, Xie F. Regulation of ovarian cancer by protein post-translational modifications. Front Oncol 2024; 14:1437953. [PMID: 39678497 PMCID: PMC11638062 DOI: 10.3389/fonc.2024.1437953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Ovarian cancer is one of the predominant gynecologic malignancies worldwide, ranking as the fifth leading cause of cancer-induced mortality among women globally. Post-translational modifications (PTMs) refer to the enzyme-catalyzed attachment of functional groups to proteins, thereby inducing structural and functional alterations. Recent evidence suggests that PTMs play multifaceted roles in the pathogenesis of ovarian cancer, influencing processes such as cell cycle, metabolism reprogramming, chemoresistance, and immune responses against cancer. Accordingly, a comprehensive understanding of the diverse PTMs in ovarian cancer is imperative for decoding the complex molecular mechanisms that drive cancer progression. This review discusses the latest developments in the study of protein PTMs in ovarian cancer and introduces pharmacological approaches that target these modifications as therapeutic strategies.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Huimin Zhou
- Department of Laboratory Medicine, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Feiting Xie
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Wang J, Zheng Q, Zhao Y, Chen S, Chen L. HMGB1 enhances the migratory and invasive abilities of A2780/DDP cells by facilitating epithelial to mesenchymal transition via GSK‑3β. Exp Ther Med 2024; 27:102. [PMID: 38356665 PMCID: PMC10865443 DOI: 10.3892/etm.2024.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/25/2023] [Indexed: 02/16/2024] Open
Abstract
The aim of the present study was to investigate the impact and mechanism of high mobility group box 1 (HMGB1) on the regulation of cell migration and invasion in A2780/DDP cisplatin-resistant ovarian cancer cells. After transfecting small interfering (si)RNA-HMGB1 into A2780/DDP cells, Transwell migration and invasion assays were conducted to assess alterations in the cell migratory and invasive abilities. Additionally, western blotting analyses were performed to examine changes in HMGB1, phosphorylated (p)-GSK-3β, GSK-3β, E-cadherin and vimentin expression levels. The results of the present study demonstrated that the migratory and invasive abilities of A2780/DDP cells were significantly higher compared with those of A2780 cells. Additionally, the expression levels of HMGB1, p-GSK-3β and the mesenchymal phenotype marker, vimentin, in A2780/DDP cells were significantly elevated relative to the levels in A2780 cells. Conversely, the expression level of the epithelial phenotype marker, E-cadherin, was markedly decreased compared with that in A2780 cells. Following transfection of A2780/DDP cells with siRNA-HMGB1, there was a significant reduction in the rate of cell migration and invasion. Simultaneously, the expression levels of HMGB1, p-GSK-3β and vimentin were downregulated while the level of E-cadherin was upregulated. It was therefore concluded that the high expression of HMGB1 in A2780/DDP cells enhanced the cell migration and invasion abilities by facilitating epithelial to mesenchymal transition via GSK-3β.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Qiaomei Zheng
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yanjing Zhao
- Department of Surgery, 92403 Military Hospital, Fuzhou, Fujian 350015, P.R. China
| | - Shaozhan Chen
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Lihong Chen
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
3
|
Schröder L, Rupp ABA, Gihr KME, Kobilay M, Domroese CM, Mallmann MR, Holdenrieder S. Immunogenic Biomarkers HMGB1 and sRAGE Are Potential Diagnostic Tools for Ovarian Malignancies. Cancers (Basel) 2023; 15:5081. [PMID: 37894448 PMCID: PMC10605106 DOI: 10.3390/cancers15205081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1), soluble receptor of advanced glycation end products (sRAGE) and programmed cell death markers PD-1 and PD-L1 are immunogenic serum biomarkers that may serve as novel diagnostic tools for cancer diagnosis. METHODS We investigated the four markers in sera of 231 women, among them 76 with ovarian cancer, 87 with benign diseases and 68 healthy controls, using enzyme immunoassays. Discrimination between groups was calculated using receiver operating characteristic (ROC) curves and sensitivities at fixed 90% and 95% specificities. RESULTS HMGB1 levels were significantly elevated and sRAGE levels were decreased in cancer patients as compared to benign and healthy controls. In consequence, the ratio of HMGB1 and sRAGE discriminated best between diagnostic groups. The areas under the curve (AUCs) of the ROC curves for differentiation of cancer vs. healthy were 0.77 for HMGB1, 0.65 for sRAGE and 0.78 for the HMGB1/sRAGE ratio, and slightly lower for the differentiation of cancer vs. benigns with 0.72 for HMGB1, 0.61 for sRAGE and 0.74 for the ratio of both. The highest sensitivities for cancer detection at 90% specificity versus benign diseases were achieved using HMGB1 with 41.3% and the HMGB1/sRAGE ratio with 39.2%, followed by sRAGE with 18.9%. PD-1 showed only minor and PD-L1 no power for discrimination between ovarian cancer and benign diseases. CONCLUSION HMGB1 and sRAGE have differential diagnostic potential for ovarian cancer detection and warrant inclusion in further validation studies.
Collapse
Affiliation(s)
- Lars Schröder
- Department of Obstetrics and Gynecology, University Hospital Cologne, 50931 Cologne, Germany
- Department of Obstetrics and Gynecology, Ketteler Hospital, 63071 Offenbach, Germany
| | - Alexander B. A. Rupp
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre, Technical University Munich, 80636 Munich, Germany
| | - Kathrin M. E. Gihr
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Makbule Kobilay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christian M. Domroese
- Department of Obstetrics and Gynecology, University Hospital Cologne, 50931 Cologne, Germany
| | - Michael R. Mallmann
- Department of Obstetrics and Gynecology, University Hospital Cologne, 50931 Cologne, Germany
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre, Technical University Munich, 80636 Munich, Germany
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| |
Collapse
|
4
|
Żurek M, Rzepakowska A, Kotuła I, Demkow U, Niemczyk K. Serum expression of Vascular Endothelial-Cadherin, CD44, Human High mobility group B1, Kallikrein 6 proteins in different stages of laryngeal intraepithelial lesions and early glottis cancer. PeerJ 2022; 10:e13104. [PMID: 35462765 PMCID: PMC9029362 DOI: 10.7717/peerj.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Background The study was designed to evaluate the potential validity and utility of selected molecular markers in serum samples from patients with specific stages of laryngeal intraepithelial lesions that could serve as diagnostic tools in differentiation of benign and dysplastic lesions from invasive pathologies. Methods Prospective study included 80 consecutive patients with vocal fold lesions treated at the single otorhinolaryngology centre. All participants had surgical resection of the lesion. Blood samples were collected from each patient before the surgery. Final diagnosis was confirmed on histopathological examination and included 39 (48.75%) non-dysplastic lesions, eight (10%) low-grade dysplasia, six (7.5%) high-grade dysplasia and 27 (33.75%) invasive cancers. The ELISA procedures were performed according to the manufacturer's instruction. Individual serum concentration of selected proteins was reported in ng/ml: Vascular Endothelial-Cadherin Complex (VE-cad), CD44, Human High mobility group protein B1(HMGB1), Kallikrein 6. Results The highest mean levels of HMGB1, KLK6 and VE-cad were detected in sera of patients with low-grade dysplasia (81.14, 24.33, 14.17 respectively). Soluble CD44 was the most elevated in patients with non-dysplastic lesions (2.49). The HMGB1, KLK6 and VE-cad serum levels were increasing from non-dysplastic to low-grade dysplasia and followed by the decrease for high-grade dysplasia and invasive cancer, however the differences were not significant (p-values 0.897, 0.354, 0.1 respectively). Patients' serum had the highest CD44 concentration in non-dysplastic and low-grade dysplasia with the following decrease through high-grade dysplasia and invasive cancer. GERD symptomatic patients had higher levels of KLK6 and CD44 than other patients (p-value 0.06 and 0.084 respectively). There were no significant differences of biomarkers levels related to patients' gender (p-value from 0.243 to 1) or smoking status (p-value from 0.22 to 0.706). Conclusions VE-cad, HMGB1, CD44 and KLK6 did not prove to be reliable biomarkers implicating malignant potential within vocal fold hypertrophic intraepithelial lesions.
Collapse
Affiliation(s)
- Michał Żurek
- Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland,Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Anna Rzepakowska
- Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Kotuła
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Kazimierz Niemczyk
- Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Barreiro-Alonso A, Lamas-Maceiras M, Lorenzo-Catoira L, Pardo M, Yu L, Choudhary JS, Cerdán ME. HMGB1 Protein Interactions in Prostate and Ovary Cancer Models Reveal Links to RNA Processing and Ribosome Biogenesis through NuRD, THOC and Septin Complexes. Cancers (Basel) 2021; 13:cancers13184686. [PMID: 34572914 PMCID: PMC8466577 DOI: 10.3390/cancers13184686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary HMGB1 over-expression is associated to prostate and ovary cancers: in this work, using a proteomic approach, we aimed to discover new protein interactions that might contribute to understand the oncogenic function of HMGB1 in cancers models. Our findings show that HMGB1 interacts with components of the NuRD, THOC and septin complexes, revealing new connections of HMGB1 functions to RNA processing and ribosome biogenesis. Results might contribute to consider the components of these interactomes as targets for diagnosis and therapy in future studies. Abstract This study reports the HMGB1 interactomes in prostate and ovary cancer cells lines. Affinity purification coupled to mass spectrometry confirmed that the HMGB1 nuclear interactome is involved in HMGB1 known functions such as maintenance of chromatin stability and regulation of transcription, and also in not as yet reported processes such as mRNA and rRNA processing. We have identified an interaction between HMGB1 and the NuRD complex and validated this by yeast-two-hybrid, confirming that the RBBP7 subunit directly interacts with HMGB1. In addition, we describe for the first time an interaction between two HMGB1 interacting complexes, the septin and THOC complexes, as well as an interaction of these two complexes with Rab11. Analysis of Pan-Cancer Atlas public data indicated that several genes encoding HMGB1-interacting proteins identified in this study are dysregulated in tumours from patients diagnosed with ovary and prostate carcinomas. In PC-3 cells, silencing of HMGB1 leads to downregulation of the expression of key regulators of ribosome biogenesis and RNA processing, namely BOP1, RSS1, UBF1, KRR1 and LYAR. Upregulation of these genes in prostate adenocarcinomas is correlated with worse prognosis, reinforcing their functional significance in cancer progression.
Collapse
Affiliation(s)
- Aida Barreiro-Alonso
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
- Correspondence: (A.B.-A.); (M.E.C.)
| | - Mónica Lamas-Maceiras
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
| | - Mercedes Pardo
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
| | - Lu Yu
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
| | - Jyoti S. Choudhary
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
| | - M. Esperanza Cerdán
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
- Correspondence: (A.B.-A.); (M.E.C.)
| |
Collapse
|
6
|
The HMGB1-2 Ovarian Cancer Interactome. The Role of HMGB Proteins and Their Interacting Partners MIEN1 and NOP53 in Ovary Cancer and Drug-Response. Cancers (Basel) 2020; 12:cancers12092435. [PMID: 32867128 PMCID: PMC7564582 DOI: 10.3390/cancers12092435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
High mobility group box B (HMGB) proteins are overexpressed in different types of cancers such as epithelial ovarian cancers (EOC). We have determined the first interactome of HMGB1 and HMGB2 in epithelial ovarian cancer (the EOC-HMGB interactome). Libraries from the SKOV-3 cell line and a primary transitional cell carcinoma (TCC) ovarian tumor were tested by the Yeast Two Hybrid (Y2H) approach. The interactome reveals proteins that are related to cancer hallmarks and their expression is altered in EOC. Moreover, some of these proteins have been associated to survival and prognosis of patients. The interaction of MIEN1 and NOP53 with HMGB2 has been validated by co-immunoprecipitation in SKOV-3 and PEO1 cell lines. SKOV-3 cells were treated with different anti-tumoral drugs to evaluate changes in HMGB1, HMGB2, MIEN1 and NOP53 gene expression. Results show that combined treatment of paclitaxel and carboplatin induces a stronger down-regulation of these genes in comparison to individual treatments. Individual treatment with paclitaxel or olaparib up-regulates NOP53, which is expressed at lower levels in EOC than in non-cancerous cells. On the other hand, bevacizumab diminishes the expression of HMGB2 and NOP53. This study also shows that silencing of these genes affects cell-viability after drug exposure. HMGB1 silencing causes loss of response to paclitaxel, whereas silencing of HMGB2 slightly increases sensitivity to olaparib. Silencing of either HMGB1 or HMGB2 increases sensitivity to carboplatin. Lastly, a moderate loss of response to bevacizumab is observed when NOP53 is silenced.
Collapse
|
7
|
Cámara-Quílez M, Barreiro-Alonso A, Rodríguez-Bemonte E, Quindós-Varela M, Cerdán ME, Lamas-Maceiras M. Differential Characteristics of HMGB2 Versus HMGB1 and their Perspectives in Ovary and Prostate Cancer. Curr Med Chem 2020; 27:3271-3289. [PMID: 30674244 DOI: 10.2174/0929867326666190123120338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/28/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
We have summarized common and differential functions of HMGB1 and HMGB2 proteins with reference to pathological processes, with a special focus on cancer. Currently, several "omic" approaches help us compare the relative expression of these 2 proteins in healthy and cancerous human specimens, as well as in a wide range of cancer-derived cell lines, or in fetal versus adult cells. Molecules that interfere with HMGB1 functions, though through different mechanisms, have been extensively tested as therapeutic agents in animal models in recent years, and their effects are summarized. The review concludes with a discussion on the perspectives of HMGB molecules as targets in prostate and ovarian cancers.
Collapse
Affiliation(s)
- María Cámara-Quílez
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Aida Barreiro-Alonso
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Esther Rodríguez-Bemonte
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - María Quindós-Varela
- Translational Cancer Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Carretera del Pasaje s/n, 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Mónica Lamas-Maceiras
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| |
Collapse
|
8
|
Association between the HMGB1/TLR4 signaling pathway and the clinicopathological features of ovarian cancer. Mol Med Rep 2018; 18:3093-3098. [PMID: 30015957 DOI: 10.3892/mmr.2018.9271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/18/2018] [Indexed: 11/05/2022] Open
Abstract
In the present study, the expression levels of high‑mobility group protein B1 (HMGB1), Toll‑like receptor 4 (TLR4), nuclear factor (NF)‑κB and tumor necrosis factor (TNF)‑α in malignant epithelial ovarian cancer (MEOC) were investigated in regards to several clinicopathological characteristics. A total of 20 patients with MEOC who underwent surgery were recruited in the present study. The mRNA and protein expression of HMGB1, TLR4, NF‑κB and TNF‑α was determined in patients with MEOC and compared with expression levels in 20 patients diagnosed with benign ovarian cysts (BOC). It was demonstrated that the mRNA and protein expression of HMGB1, TLR4, NF‑κB and TNF‑α in MEOC was significantly increased, compared with the BOC group (P<0.01). The gene and protein expression of HMGB1, TLR4, NF‑κB and TNF‑α was significantly increased in the advanced tumor stage and poorly differentiated group (P<0.01). The present study suggested that the HMGB1/TLR4 signaling pathway was overactive in MEOC, and was associated with MEOC tumor cell proliferation, invasion and metastasis. Furthermore, this may have been mediated via NF‑κB signaling.
Collapse
|
9
|
Machado LR, Moseley PM, Moss R, Deen S, Nolan C, Spendlove I, Ramage JM, Chan SY, Durrant LG. High mobility group protein B1 is a predictor of poor survival in ovarian cancer. Oncotarget 2017; 8:101215-101223. [PMID: 29254158 PMCID: PMC5731868 DOI: 10.18632/oncotarget.20538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/07/2017] [Indexed: 01/16/2023] Open
Abstract
High-mobility group protein B1 (HMGB1) has been implicated in numerous tumour types where expression regulates tumour cell growth and survival. We hypothesised that high HMGB1 expression in ovarian tumours would predict poor patient survival. Using tissue microarrays of primary ovarian cancers combined with a comprehensive database of clinicopathological variables, the expression of HMGB1 was assessed by immunohistochemistry in two independent cohorts (n=194 and n=360) using a monoclonal antibody specific for HMGB1. Kaplan-Meier analysis showed an association of HMGB1 expression with progression free survival in the primary cohort (p=0.023). In the validation cohort, expression was associated with overall survival (p=0.002). Low expression of HMGB1 was protective and in a multivariate model HMGB1 expression was shown to be an independent predictor of poor survival in ovarian cancer (p=0.006). The role of HMGB1 in cancer is complex. As high levels of HMGB1 expression are likely to render ovarian cancer cells resistant to chemotherapy, therapies targeting the HMGB1 axis may be appropriate in the treatment of ovarian cancer patients.
Collapse
Affiliation(s)
- Lee R Machado
- Faculty of Health and Society, University of Northampton, Boughton Green Road, Northampton, NN2 7AL, United Kingdom.,Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK.,Faculty of Science, Technology, Engineering & Mathematics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Paul M Moseley
- Clinical Oncology Department, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Robert Moss
- Academic Department of Clinical Oncology, Division of Cancer and Stem cells, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| | - Suha Deen
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Queen's Medical Centre Campus Division of Clinical Pathology Division of Clinical Oncology, School of Molecular Medical Sciences, University of Nottingham, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Christopher Nolan
- Academic Department of Clinical Oncology, Division of Cancer and Stem cells, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| | - Ian Spendlove
- Academic Department of Clinical Oncology, Division of Cancer and Stem cells, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| | - Judith M Ramage
- Academic Department of Clinical Oncology, Division of Cancer and Stem cells, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| | - Stephen Yt Chan
- Clinical Oncology Department, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Lindy G Durrant
- Academic Department of Clinical Oncology, Division of Cancer and Stem cells, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| |
Collapse
|
10
|
Serum HMGB1 as a Potential Biomarker for Patients with Asbestos-Related Diseases. DISEASE MARKERS 2017; 2017:5756102. [PMID: 28348451 PMCID: PMC5350493 DOI: 10.1155/2017/5756102] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 01/23/2023]
Abstract
High-mobility group box 1 (HMGB1) functions as a proinflammatory cytokine and is one of the most intriguing molecules in inflammatory disorders and cancers. Notably, HMGB1 is a potential therapeutic target and novel biomarker in related diseases. However, the diagnostic value of HMGB1 for benign and malignant asbestos-related diseases (ARDs) remains unclear. In this work, we detected preoperative serum HMGB1 levels in Chinese asbestos-exposed (AE) and ARDs populations and further evaluated the diagnostic value of HMGB1 in patients with certain types of ARDs, including those with pleural plaques, asbestosis, or malignant mesothelioma (MM). The experimental data presented that the serum level of HMGB1 was significantly elevated in AE and ARDs subjects. Our findings indicated that serum HMGB1 is a sensitive and specific biomarker for discriminating asbestosis- and MM-affected individuals from healthy or AE individuals. In addition, serum matrix metalloproteinases 2 and 9 are not correlated with HMGB1 in ARDs. Thus, our study provides supporting evidence for HMGB1 as a potential biomarker either for the clinical diagnosis of high-risk AE cohorts or for evaluating ARDs.
Collapse
|
11
|
Huo J, Hu J, Liu G, Cui Y, Ju Y. Elevated serum interleukin-37 level is a predictive biomarker of poor prognosis in epithelial ovarian cancer patients. Arch Gynecol Obstet 2016; 295:459-465. [PMID: 27975129 DOI: 10.1007/s00404-016-4258-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/25/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Interleukin-37 (IL-37) has been identified as a novel anti-inflammatory cytokine which is involved in tumor development. This study aimed to evaluate the expression of IL-37 in serum and determine its clinical significance in human epithelial ovarian cancer (EOC). METHODS Enzyme-linked immunosorbent assay (ELISA) was performed to examine the serum IL-37 levels in 76 patients with EOC and 76 healthy controls. The association of IL-37 levels with clinical factors and prognosis of EOC patients was analyzed. The diagnostic accuracy of serum IL-37 was performed by receiver operator characteristic (ROC) curve analysis. RESULTS Serum IL-37 levels in patients with EOC (187.3 ± 75.57 pg/ml) were significantly higher than those in healthy controls (84.89 ± 28.92 pg/ml, P < 0.001). High serum IL-37 levels were significantly associated with FIGO stage (P < 0.001), tumor size (P = 0.002), lymph node metastasis (P = 0.021), positive recurrence (P = 0.047) and residual tumor size (P < 0.001). The Kaplan-Meier survival analysis demonstrated that high serum IL-37 levels were significantly associated with poor overall survival and the progression-free survival (log-rank, P = 0.026, and P = 0.039, respectively). Univariate and multivariate analysis indicated that serum IL-37 levels (HR = 3.007, 95% CI 2.125-4.842, P = 0.008) were an independent prognostic factor for EOC patients. ROC curve analyses revealed an AUC (the areas under the ROC curve) of 0.881 (95% CI 0.829-0.945; P < 0.001). CONCLUSIONS High serum IL-37 levels are associated with an unfavorable prognosis of EOC patients. IL-37 may serve as a promising and useful prognostic biomarker for EOC.
Collapse
Affiliation(s)
- Junwei Huo
- Department of Gynaecology and Obstetrics, The First Hospital of Yulin, Yulin, Shaanxi, 718000, China
| | - Jing Hu
- Department of Gynaecology and Obstetrics, Xi'an Central Hospital, Xi'an, Shaanxi, 710003, China
| | - Gaowei Liu
- Department of Gynaecology and Obstetrics, The First Hospital of Yulin, Yulin, Shaanxi, 718000, China
| | - Yajie Cui
- Department of Gynaecology and Obstetrics, Xi'an No 1. Hospital, Xi'an, Shaanxi, 710003, China
| | - Ying Ju
- Department of Gynaecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, No 1, Xinsi Road, Baqiao District, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
12
|
PPAR Ligands Function as Suppressors That Target Biological Actions of HMGB1. PPAR Res 2016; 2016:2612743. [PMID: 27563308 PMCID: PMC4985574 DOI: 10.1155/2016/2612743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/12/2023] Open
Abstract
High mobility group box 1 (HMGB1), which has become one of the most intriguing molecules in inflammatory disorders and cancers and with which ligand-activated peroxisome proliferator-activated receptors (PPARs) are highly associated, is considered as a therapeutic target. Of particular interest is the fact that certain PPAR ligands have demonstrated their potent anti-inflammatory activities and potential anticancer effects. In this review article we summarize recent experimental evidence that PPAR ligands function as suppressors that target biological actions of HMGB1, including intracellular expression, receptor signaling cascades, and extracellular secretion of HMGB1 in cell lines and/or animal models. We also propose the possible mechanisms underlying PPAR involvement in inflammatory disorders and discuss the future therapeutic value of PPAR ligands targeting HMGB1 molecule for cancer prevention and treatment.
Collapse
|
13
|
Wu T, Zhang W, Yang G, Li H, Chen Q, Song R, Zhao L. HMGB1 overexpression as a prognostic factor for survival in cancer: a meta-analysis and systematic review. Oncotarget 2016; 7:50417-50427. [PMID: 27391431 PMCID: PMC5226592 DOI: 10.18632/oncotarget.10413] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 06/12/2016] [Indexed: 12/16/2022] Open
Abstract
As there are millions of cancer deaths every year, it is of great value to identify applicable prognostic biomarkers. As an important alarm, the prognostic role of high mobility group box 1 (HMGB1) in cancer remains controversial. We aim to assess the association of HMGB1 expression with prognosis in cancer patients. Systematic literature searches of PubMed, Embase and Web of Science databases were performed for eligible studies of HMGB1 as prognostic factor in cancer. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to evaluate the influence of HMGB1 expression on overall survival (OS) and progression-free survival (PFS) in cancer patients. 18 studies involving 11 different tumor types were included in meta-analysis. HMGB1 overexpression was significantly associated with poorer OS (HR: 1.99; 95% CI, 1.71-2.31) and PFS (HR: 2.26; 95% CI, 1.65-3.10) irrespective of cancer types including gastric cancer, colorectal cancer, hepatocellular carcinoma, pancreatic cancer, nasopharyngeal carcinoma, head and neck squamous-cell carcinoma, esophageal cancer, malignant pleural mesothelioma, bladder cancer, prostate cancer, and cervical carcinoma. Subgroup analyses indicated geographical area and size of studies did not affect the prognostic effects of HMGB1 for OS. Morever, HMGB1 overexpression had a consistent correlation with poorer OS when detected by immunohistochemistry in tissues and enzyme-linked immunosorbent assay in serum, whereas the correlation did not exist by quantitative real-time reverse-transcription polymerase chain reaction in tissues. HMGB1 overexpression is associated with poorer prognosis in patients with various types of cancer, suggesting that it is a prognostic factor and potential biomarker for survival in cancer.
Collapse
Affiliation(s)
- Tengyun Wu
- Air Force General Hospital of Chinese People's Liberation Army, Beijing 100142, China
| | - Wei Zhang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Geliang Yang
- Department of Integrated Oncology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Huijun Li
- The Wright Center, Scranton, Pennsylvania 18510, USA
| | - Qi Chen
- Department of Health Statistics, Faculty of Health Service, Second Military Medical University, Shanghai 200433, China
| | - Ruixiang Song
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Lin Zhao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
14
|
Wang H, Li Z, Sun Y, Xu Z, Han J, Song B, Song W, Qin C, Yin L. Relationship between high-mobility group box 1 overexpression in ovarian cancer tissue and serum: a meta-analysis. Onco Targets Ther 2015; 8:3523-31. [PMID: 26664135 PMCID: PMC4669932 DOI: 10.2147/ott.s93357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To implement a meta-analysis to investigate the relationship between high-mobility group box 1 (HMGB1) overexpression in the tissue and serum of ovarian cancer patients, and to evaluate its prognostic significance. METHODS Searches were made of China National Knowledge Infrastructure, EMBASE, WanFang, PubMed, MEDLINE, and Web of Science databases up to August 2015, with no language or style restrictions. Reference lists of related studies were also carefully reviewed to identify additional articles. RESULTS The literature search identified a total of 12 relevant studies on HMGB1 expression for inclusion in the meta-analysis: seven in ovarian tumor tissue, four in ovarian tumor patient serum, and one in both tissue and serum. HMGB1 protein levels in ovarian cancer tissues were notably higher than those in normal ovarian tissues with no evidence of heterogeneity between studies (RD=0.64, 95% confidence interval (CI): 0.57-0.70, Z=18.70, P<0.00001, I (2)=15%), and also higher than those in benign tumor tissues with no evidence of heterogeneity between studies (RD=0.52, 95% CI: 0.43-0.61, Z=11.14, P<0.00001, I (2)=0). Serum HMGB1 levels were similarly significantly higher in ovarian cancer patients than those with benign tumors or normal ovaries. Pooled mean differences of HMGB1 in ovarian cancer patients compared with patients with benign tumors or normal ovaries were 99.32 with 95% CI: 67.82-130.81, Z=6.18, P<0.00001, and 95.34 with 95% CI: 62.11-128.57, Z=5.62, P<0.0001. The pooled relative risk of ovarian cancer with high vs low HMGB1 expression levels was 1.40 with 95% CI: 1.09-1.79, Z=2.66, P=0.008, heterogeneity I (2)=50%. CONCLUSION This meta-analysis suggested that HMGB1 levels in both tissue and serum of ovarian cancer patients were significantly higher than those of benign tumor and normal ovarian samples. High serum or tissue HMGB1 expression may therefore be an effective molecular marker for ovarian benign or malignant tumor diagnosis and patient prognosis.
Collapse
Affiliation(s)
- Haipeng Wang
- Department of Surgery, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China ; Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Zengjun Li
- Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Yanlai Sun
- Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Zhongfa Xu
- Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Jianjun Han
- Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Bao Song
- Cancer Research Center, Shandong Provincial Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Wentao Song
- Department of Surgery, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China ; Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Chen Qin
- Department of Surgery, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China ; Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Lei Yin
- Department of Surgery, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China ; Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, People's Republic of China
| |
Collapse
|