1
|
Goudarzi ST, Vousooghi N, Verdi J, Mehdizadeh A, Aslanian-Kalkhoran L, Yousefi M. Autophagy genes and signaling pathways in endometrial decidualization and pregnancy complications. J Reprod Immunol 2024; 163:104223. [PMID: 38489930 DOI: 10.1016/j.jri.2024.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Autophagy is a process that occurs in almost all eukaryotic cells and this process is controlled by several molecular processes. Its biological roles include the provision of energy, the maintenance of cell homeostasis, and the promotion of aberrant cell death. The importance of autophagy in pregnancy is gradually becoming recognized. In literature, it has been indicated that autophagy has three different effects on the onset and maintenance of pregnancy: embryo (embryonic development), feto-maternal immune crosstalk, and maternal (decidualization). In humans, proper decidualization is a major predictor of pregnancy accomplishment and it can be influenced by different factors. This review highlights the genes, pathways, regulation, and function of autophagy in endometrial decidualization and other involved factors in this process.
Collapse
Affiliation(s)
- Saeedeh Torabi Goudarzi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lida Aslanian-Kalkhoran
- Department of Immunology, school of medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Lämmerhirt L, Kappelmann-Fenzl M, Fischer S, Meier P, Staebler S, Kuphal S, Bosserhoff AK. Loss of miR-101-3p in melanoma stabilizes genomic integrity, leading to cell death prevention. Cell Mol Biol Lett 2024; 29:29. [PMID: 38431560 PMCID: PMC10909299 DOI: 10.1186/s11658-024-00552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Malignant melanoma remains the most lethal form of skin cancer, exhibiting poor prognosis after forming distant metastasis. Owing to their potential tumor-suppressive properties by regulating oncogenes and tumor suppressor genes, microRNAs are important player in melanoma development and progression. We defined the loss of miR-101-3p expression in melanoma cells compared with melanocytes and melanoblast-related cells as an early event in tumor development and aimed to understand the tumor suppressive role of miR-101-3p and its regulation of important cellular processes. Reexpression of miR-101-3p resulted in inhibition of proliferation, increase in DNA damage, and induction of apoptosis. We further determined the nuclear structure protein Lamin B1, which influences nuclear processes and heterochromatin structure, ATRX, CASP3, and PARP as an important direct target of miR-101-3p. RNA sequencing and differential gene expression analysis after miR-101-3p reexpression supported our findings and the importance of loss of mir-101-3p for melanoma progression. The validated functional effects are related to genomic instability, as recent studies suggest miRNAs plays a key role in mediating this cellular process. Therefore, we concluded that miR-101-3p reexpression increases the genomic instability, leading to irreversible DNA damage, which leads to apoptosis induction. Our findings suggest that the loss of miR-101-3p in melanoma serves as an early event in melanoma progression by influencing the genomic integrity to maintain the increased bioenergetic demand.
Collapse
Affiliation(s)
- Lisa Lämmerhirt
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Melanie Kappelmann-Fenzl
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Stefan Fischer
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Paula Meier
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
- Julius-Maximilians-University Würzburg (JMU), Sanderring 2, 97070, Würzburg, Germany
| | - Sebastian Staebler
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany.
| |
Collapse
|
3
|
Mobinikhaledi M, Faridzadeh A, Farkhondeh T, Pourhanifeh MH, Samarghandian S. The Roles of Autophagy-related miRNAs in Gynecologic Tumors: A Review of Current Knowledge for Possible Targeted Therapy. Curr Mol Med 2024; 24:1269-1281. [PMID: 39300715 DOI: 10.2174/0115665240263059231002093454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2024]
Abstract
Gynecological cancers are the leading cause of malignancy-related death and disability in the world. These cancers are diagnosed at end stages, and unfortunately, the standard therapeutic strategies available for the treatment of affected women [including chemotherapy, radiotherapy and surgery] are not safe and effective enough. Moreover, the unwanted side-effects lowering the patients' life quality is another problem for these therapies. Therefore, researchers should search for better alternative/complementary treatments. The involvement of autophagy in the pathogenesis of various cancers has been demonstrated. Recently, a novel crosstalk between microRNAs, small non-coding RNAs with important regulatory functions, and autophagy machinery has been highlighted. In this review, we indicate the importance of this interaction for targeted therapy in the treatment of cancers including gynecological cancers, with a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Mahya Mobinikhaledi
- Department of Pediatrics, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
4
|
Lin T, Guo X, Du Q, Liu W, Zhong X, Wang S, Cao L. MicroRNA let-7c-5p Alleviates in Hepatocellular Carcinoma by Targeting Enhancer of Zeste Homolog 2: A Study Intersecting Bioinformatic Analysis and Validated Experiments. Crit Rev Immunol 2024; 44:23-39. [PMID: 38505919 DOI: 10.1615/critrevimmunol.2024051519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Enhancer of zeste homolog 2 (EZH2)gene has a prognostic role in hepatocellular carcinoma (HCC). This study aimed to identify the role of microRNAs (miRNAs) let-7c-5p by targeting EZH2 in HCC. We downloaded gene and miRNA RNA-seq data from The Cancer Genome Atlas (TCGA) database. Differences in EZH2 expression between different groups were analyzed and the association of EZH2 expression with HCC prognosis was detected using Cox regression analysis. The miRNA-EZH2-pathway network was constructed. Dual-luciferase reporter assay was performed to detect the hsa-let-7c-5p-EZH2. Cell proliferation, migration, invasion, and apoptosis were detected by CCK-8, Wound healing, Transwell, and Flow cytometry, respectively. RT-qPCR and Western blot were used to detect the expression of let-7c-5p and EZH2. EZH2 was upregulated in HCC tumors (P < 0.0001). Cox regression analysis showed that TCGA HCC patients with high EZH2 expression levels showed a short survival time [hazard ratio (HR) = 1.677, 95% confidence interval (CI) 1.316-2.137; P < 0.0001]. Seven miRNAs were negatively correlated with EZH2 expression and were significantly downregulated in HCC tumor samples (P < 0.0001), in which hsa-let-7c-5p was associated with prognosis in HCC (HR = 0.849 95% CI 0.739-0.975; P = 0.021). We identified 14 immune cells that showed significant differences in EZH2 high- and low-expression groups. Additionally, let-7c-5p inhibited HCC cell proliferation, migration, and invasion and reversed the promoted effects of EZH2 on HCC cell malignant characteristics. hsa-let-7c-5p-EZH2 significantly suppressed HCC malignant characteristics, which can be used for HCC prognosis.
Collapse
Affiliation(s)
- Tianyu Lin
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Xinli Guo
- Department of Operating Room, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Qian Du
- Department of General Surgery, The 903rd Hospital of PLA, Hangzhou 310000, China
| | - Wei Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Xin Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Suihan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
5
|
Swolin-Eide D, Forsander G, Pundziute Lyckå A, Novak D, Grillari J, Diendorfer AB, Hackl M, Magnusson P. Circulating microRNAs in young individuals with long-duration type 1 diabetes in comparison with healthy controls. Sci Rep 2023; 13:11634. [PMID: 37468555 DOI: 10.1038/s41598-023-38615-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that are involved in post-transcriptional control of gene expression and might be used as biomarkers for diabetes-related complications. The aim of this case-control study was to explore potential differences in circulating miRNAs in young individuals with long-duration type 1 diabetes (T1D) compared to healthy controls, and how identified miRNAs are expressed across different tissues. Twelve adolescents, age 15.0-17.9 years, with T1D duration of more than 8 years (mean 11.1 years), were enrolled from the Swedish diabetes quality registry. An age-matched control group was recruited. Circulating miRNAs (n = 187) were analyzed by quantitative PCR. We observed that 27 miRNAs were upregulated and one was downregulated in T1D. Six of these miRNAs were tissue-enriched (blood cells, gastrointestinal, nerve, and thyroid tissues). Six miRNAs with the largest difference in plasma, five up-regulated (hsa-miR-101-3p, hsa-miR-135a-5p, hsa-miR-143-3p, hsa-miR-223-3p and hsa-miR-410-3p (novel for T1D)) and one down-regulated (hsa-miR-495-3p), with P-values below 0.01, were selected for further in-silico analyses. AKT1, VEGFA and IGF-1 were identified as common targets. In conclusion, 28 of the investigated miRNAs were differently regulated in long-duration T1D in comparison with controls. Several associations with cancer were found for the six miRNAs with the largest difference in plasma.
Collapse
Affiliation(s)
- Diana Swolin-Eide
- Department of Pediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Gun Forsander
- Department of Pediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Auste Pundziute Lyckå
- Department of Pediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Daniel Novak
- Department of Pediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, the Research Center in Cooperation With AUVA, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | | | - Per Magnusson
- Department of Clinical Chemistry, and Department of Biomedical and Clinical Sciences, Linköping University, 581 85, Linköping, Sweden.
| |
Collapse
|
6
|
Cai Y, Liu Z, Zhang G, Yang Y, Zhang Y, Wang F, Deng M. miR-101-5p overexpression suppresses the proliferation of goat spermatogonial stem cells by targeting EZH2. Anim Reprod Sci 2023; 255:107281. [PMID: 37352705 DOI: 10.1016/j.anireprosci.2023.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
MicroRNAs (miRNAs), as post-transcriptional gene mediators, regulate the biological characteristics of spermatogonial stem cells (SSCs), including proliferation, differentiation and apoptosis. However, the potential roles and mechanisms by which miR-101-5p affected the biological characters of goat SSCs have not been fully elucidated. Herein, we reported that miR-101-5p overexpression decreased cell viability (P < 0.01), arrested cell cycle in the G1 phase (P < 0.05), and aggravated apoptosis of goat SSCs (P < 0.01) compared with negative control (NC), as determined by CCK-8 assay and flow cytometry analysis. Additionally, PCNA protein expression was attenuated by miR-101-5p overexpression (P < 0.05). Notably, the expression of SSCs specific genes Oct4 (P < 0.05), PLZF (P < 0.01) and DAZL (P < 0.01) were decreased in miR-101-5p overexpressed SSCs. Furthermore, the dual luciferase reporter assay showed that, when co-transfected with miR-101-5p mimics, the relative luciferase activity of EZH2 wide-type (WT) was inhibited (P < 0.05) compared with the transfection of EZH2 mutant (MUT). EZH2 expression was negatively correlated with miR-101-5p expression in goat SSCs. Collectively, our data implicates that miR-101-5p overexpression aggravates cell apoptosis, and suppresses cell proliferation of goat SSCs via targeting EZH2, which may impair spermatogenesis.
Collapse
Affiliation(s)
- Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Guomin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Zeng D, Shi Y, Li S, Xu F, Zhu W, Li H, He S, Yuan Q. miR-124 Exacerbates depressive-like behavior by targeting Ezh2 to induce autophagy. Behav Pharmacol 2023; 34:131-140. [PMID: 36752339 DOI: 10.1097/fbp.0000000000000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
On the basis of our previous research, miR-124 and autophagy have been shown to be associated with depression and antidepressant treatment, respectively. However, whether miR-124 is involved in depressive-like behavior and antidepressant efficacy through regulating autophagy remains poorly understood. The chronic unpredictable mild stress (CUMS) depression model in mice was established, and then intraperitoneal fluoxetine injections (10 mg/kg) were administered for a duration of 4 weeks. The behavioral changes induced by CUMS were evaluated by the tail suspension test, open field test, sucrose preference test, and elevated plus maze test. Quantitative real-time PCR was used to detect expression levels of miR-124 and its three precursor genes in hippocampus of mice. Western blotting was used to detect the expressions of Ezh2 and autophagy proteins (P62, Atg3, Atg7, LC3-I, and LC3- II) in hippocampus of mice. Depression-like behaviors were successfully induced in CUMS models and reversed by SSRI treatments. The expression levels of miR-124 and its precursor gene ( miR-124-3 ) were significantly increased in the hippocampus of CUMS mice, while the expression levels were significantly decreased after 4 weeks of fluoxetine treatment. The mRNA and protein expressions of Ezh2, a validated target of miR-124, were decreased in the hippocampus of CUMS mice, and the fluoxetine treatment could reverse the expressions. A correlation analysis suggested that miR-124 had a significant negative correlation with Ezh2 mRNA expression. The protein levels of LC3-II/I, P62, and Atg7, which were found to be regulated by Ezh2, were increased in the hippocampus of CUMS mice and decreased after fluoxetine treatment. We speculated that autophagy was enhanced in the CUMS model of depression and might be mediated by miR-124 targeting Ezh2.
Collapse
Affiliation(s)
- Duan Zeng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Yue Shi
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Siyuan Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Feikang Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Weimin Zhu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Huafang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Shen He
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Qianfa Yuan
- Mental Health Research Office, Xiamen Xianyue Hospital, Xiamen, Fujian, China
| |
Collapse
|
8
|
Li Z, Lang Z, Wang T, Qu G, Sui W, Liu J. LncRNA SNHG22 promotes gastric cancer progression by regulating the miR-101-3p/e2f2 axis. Cell Cycle 2023; 22:347-360. [PMID: 36281526 PMCID: PMC9851253 DOI: 10.1080/15384101.2022.2119515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 04/04/2022] [Accepted: 08/26/2022] [Indexed: 01/22/2023] Open
Abstract
Gastric cancer (GC) still poses a significant threat to human life. Hence, there is an urgent need to understand the mechanism of GC progression and develop novel therapeutics approach to treating GC. This study was conducted to evaluate the role of the lncRNA SNHG22 in the progression of GC. First, GC data from TCGA were analyzed using GEPIA. After the starbase database was used to predict SNHG22 target miRNA and miR-101-3p target mRNA. The predictions were validated using a dual-luciferase reporter assay, biotinylated RNA pull-down assay, and RIP-qRT-PCR. The relative expression of SNHG22, miR-101-3p, and E2F2 was measured by qRT-PCR and western blot (WB) analysis, while the mechanism of GC cell proliferation was elucidated through the colony formation and CCK-8 assay. Our result showed that SNHG22 was upregulated significantly in GC tissue samples from TCGA database, GC cell lines, and clinical tissue samples, and its expression was related to low survival rate of gastric cancer patients. Bioinformatics prediction predicted miR-101-3p as the potential target of SNHG22 and E2F2 genes as miR-101-3p target mRNA. We found that E2F2 expression was negatively associated with overall survival of GC patients. Functional study showed that silencing SNHG22 markedly inhibited the proliferation, migration, and invasion of GC cells as well as in vivo tumor growth. This was reversed after inhibiting miR-101-3p or overexpressing E2F2. The lncRNA SNHG22 promotes the proliferation, migration, and invasion of GC cells via the miR-101-3p/E2F2 axis. SNHG22 might be a potential prognostic indicator in gastric cancer.
Collapse
Affiliation(s)
- Zhen Li
- Department of General & Pediatric surgery, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Zhiqiang Lang
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Ting Wang
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Guimei Qu
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Wu Sui
- Department of General & Pediatric surgery, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Jing Liu
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| |
Collapse
|
9
|
Thakur L, Thakur S. The interplay of sex steroid hormones and microRNAs in endometrial cancer: current understanding and future directions. Front Endocrinol (Lausanne) 2023; 14:1166948. [PMID: 37152960 PMCID: PMC10161733 DOI: 10.3389/fendo.2023.1166948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Endometrial cancer is a hormone-dependent malignancy, and sex steroid hormones play a crucial role in its pathogenesis. Recent studies have demonstrated that microRNAs (miRNAs) can regulate the expression of sex steroid hormone receptors and modulate hormone signaling pathways. Our aim is to provide an overview of the current understanding of the role of miRNAs in endometrial cancer regulated by sex steroid hormone pathways. Methods A thorough literature search was carried out in the PubMed database. The articles published from 2018 to the present were included. Keywords related to miRNAs, endometrial cancer, and sex steroid hormones were used in the search. Results Dysregulation of miRNAs has been linked to abnormal sex steroid hormone signaling and the development of endometrial cancer. Various miRNAs have been identified as modulators of estrogen and progesterone receptor expression, and the miRNA expression profile has been shown to be a predictor of response to hormone therapy. Additionally, specific miRNAs have been implicated in the regulation of genes involved in hormone-related signaling pathways, such as the PI3K/Akt/mTOR and MAPK/ERK pathways. Conclusion The regulation of sex steroid hormones by miRNAs is a promising area of research in endometrial cancer. Future studies should focus on elucidating the functional roles of specific miRNAs in sex steroid hormone signaling and identifying novel miRNA targets for hormone therapy in endometrial cancer management.
Collapse
Affiliation(s)
- Lovlesh Thakur
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sunil Thakur
- Origin LIFE Healthcare Solutions and Research Center, Chandigarh, India
- *Correspondence: Sunil Thakur,
| |
Collapse
|
10
|
Saklani N, Chauhan V, Akhtar J, Upadhyay SK, Sirdeshmukh R, Gautam P. In silico analysis to identify novel ceRNA regulatory axes associated with gallbladder cancer. Front Genet 2023; 14:1107614. [PMID: 36873948 PMCID: PMC9978489 DOI: 10.3389/fgene.2023.1107614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Competitive endogenous RNA (ceRNA) networks are reported to play a crucial role in regulating cancer-associated genes. Identification of novel ceRNA networks in gallbladder cancer (GBC) may improve the understanding of its pathogenesis and might yield useful leads on potential therapeutic targets for GBC. For this, a literature survey was done to identify differentially expressed lncRNAs (DELs), miRNAs (DEMs), mRNAs (DEGs) and proteins (DEPs) in GBC. Ingenuity pathway analysis (IPA) using DEMs, DEGs and DEPs in GBC identified 242 experimentally observed miRNA-mRNA interactions with 183 miRNA targets, of these 9 (CDX2, MTDH, TAGLN, TOP2A, TSPAN8, EZH2, TAGLN2, LMNB1, and PTMA) were reported at both mRNA and protein levels. Pathway analysis of 183 targets revealed p53 signaling among the top pathway. Protein-protein interaction (PPI) analysis of 183 targets using the STRING database and cytoHubba plug-in of Cytoscape software revealed 5 hub molecules, of which 3 of them (TP53, CCND1 and CTNNB1) were associated with the p53 signaling pathway. Further, using Diana tools and Cytoscape software, novel lncRNA-miRNA-mRNA networks regulating the expression of TP53, CCND1, CTNNB1, CDX2, MTDH, TOP2A, TSPAN8, EZH2, TAGLN2, LMNB1, and PTMA were constructed. These regulatory networks may be experimentally validated in GBC and explored for therapeutic applications.
Collapse
Affiliation(s)
- Neeraj Saklani
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| | - Varnit Chauhan
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Javed Akhtar
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| | - Santosh Kumar Upadhyay
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital, Uttarakhand, India
| | - Ravi Sirdeshmukh
- Manipal Academy of Higher Education (MAHE), Manipal, India.,Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Poonam Gautam
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| |
Collapse
|
11
|
MiR-125b-5p Targets MTFP1 to Inhibit Cell Proliferation, Migration, and Invasion and Facilitate Cell Apoptosis in Endometrial Carcinoma. Mol Biotechnol 2022; 65:961-969. [DOI: 10.1007/s12033-022-00601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
|
12
|
Sun L, Cai H, Zhou T, Xiang H, Long L. Verbascoside enhances radiosensitivity of hepatocellular carcinoma cells through regulating miR-101-3p/Wee1 axis. Drug Dev Res 2022; 83:891-899. [PMID: 35080031 DOI: 10.1002/ddr.21914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 12/24/2022]
Abstract
Verbascoside is a kind of phenylpropanoid glycoside derived from multiple medicinal plants, exerting anti-tumor effects in diverse human malignancies. However, the function of Verbascoside on the radiosensitivity of hepatocellular carcinoma (HCC) cells remains unknown. Human Huh7 and HepG2 cell lines were treated with Verbascosideis, and cell viability was detected with cell counting kit-8 (CCK-8) assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to detect miR-101-3p expression, and Western blot was used to quantify the expression of WEE1 G2 checkpoint kinase (WEE1). Then, CCK-8 and flow cytometry assays were used to detect the proliferation and apoptosis of HCC cells after Verbascoside and X-ray combined treatment, and the expressions of WEE1 and apoptosis-related proteins Bax and Bcl-2 were detected by Western blot. Verbascoside could improve the radiosensitivity of HCC cells in a dose-dependent manner. Verbascoside increased the expression of miR-101-3p but reduced WEE1 expression in HCC cells. Additionally, WEE1 was identified as a target of miR-101-3p. MiR-101-3p inhibition or WEE1 overexpression could reverse the effect of Verbascoside on the viability and apoptosis of HCC cells. Verbascoside increases the radiosensitivity of hepatocellular carcinoma cells via modulating miR-101-3p/WEE1 axis.
Collapse
Affiliation(s)
- Lin Sun
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Huangxing Cai
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Tengchao Zhou
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Hua Xiang
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Lin Long
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, China
| |
Collapse
|
13
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
14
|
Wang J, Cong S, Wu H, He Y, Liu X, Sun L, Zhao X, Zhang G. Identification and Analysis of Potential Autophagy-Related Biomarkers in Endometriosis by WGCNA. Front Mol Biosci 2021; 8:743012. [PMID: 34790699 PMCID: PMC8591037 DOI: 10.3389/fmolb.2021.743012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Endometriosis is a serious gynecological disorder characterized by debilitating pain, infertility and the establishment of innervated endometriosis lesions outside the uterus. Early detection and accurate diagnosis are pivotal in endometriosis. The work screened autophagy-related genes (ATGs) as potential biomarkers to reveal new molecular subgroups for the early diagnosis of endometriosis. Materials and Methods: The gene lists of ATGs from five databases were integrated. Then, weighted gene co-expression network analysis (WGCNA) was used to map the genes to the gene profile of endometriosis samples in GSE51981 to obtain functional modules. GO and KEGG analyses were performed on the ATGs from the key modules. Differentially expressed ATGs were identified by the limma R package and further validated in the external datasets of GSE7305 and GSE135485. The DESeq2 R package was utilized to establish multifactorial network. Subsequently, one-way analysis of variance (ANOVA) was performed to identify new molecular subgroups. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to confirm the differential expression of hub ATGs, and the receiver operating characteristic (ROC) curve analysis and Spearman correlation analysis were applied to assess the diagnostic value of hub ATGs in 40 clinical samples and human primary endometrial stromal cells (ESCs). Results: We screened 4 key modules and 12 hub ATGs and found the key genes to be strongly correlated with endometriosis. The pathways of ATGs were mainly enriched in autophagy, apoptosis, ubiquitin-protein ligase binding, and MAPK signaling pathway. The expression levels of EZH2 (Enhancer of Zeste homolog 2) and RND3 (also known as RhoE) had statistically significant changes with higher values in the endometriosis group compared with the controls, both in the tissue samples and primary ESCs. Besides, they also showed higher specificity and sensitivity by the receiver operating characteristic analysis and Spearman correlation analysis for the diagnosis of endometriosis. The TF-mRNA-miRNA-lncRNA multifactorial network was successfully constructed. Four new molecular subgroups were identified, and we preliminarily showed the ability of IQCG to independently differentiate subgroups. Conclusion: EZH2 and RND3 could be candidate biomarkers for endometriosis, which would contribute to the early diagnosis and intervention in endometriosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanshan Cong
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Wu
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan He
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoli Liu
- Department of Gynecology, The Red Cross Center Hospital of Harbin, Harbin, China
| | - Liyuan Sun
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xibo Zhao
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Zhang Y, Li R, Ding X, He M, Zhang R. Long noncoding RNA SNHG6 promotes oesophageal squamous cell carcinoma by downregulating the miR-101-3p/EZH2 pathway. J Biochem Mol Toxicol 2021; 36:e22959. [PMID: 34766670 DOI: 10.1002/jbt.22959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022]
Abstract
Long noncoding RNAs (LncRNAs) have been reported to play a vital role in the development of oesophageal squamous cell carcinoma (OSCC). Our previous study revealed that the significant upregulation of the LncRNA small nucleolar RNA host gene 6 (SNHG6) in OSCC promotes OSCC tumourigenesis. However, the mechanisms underlying the dynamics of SNHG6 expression in OSCC have rarely been studied. In this study, we verified the tumour-promoting effect of SNHG6 through sponging miR-101-3p, and their levels were negatively correlated in human samples of OSCC. In addition, miR-101-3p overexpression reversed the effect of SNHG6. Moreover, we confirmed that SNHG6/miR-101-3p affects OSCC by regulating the expression of the enhancer of zeste 2 (EZH2). The effect of EZH2 silencing resembled closely that of SNHG6 knockdown. EZH2 silencing inhibited the expression of protein cyclin D1 and β-catenin, but in contrast, it enhanced the expression of E-cadherin. These findings demonstrated the oncogenic role of SNHG6, which promotes OSCC progression by regulating the expression of EZH2 through its interaction with miR-101-3p. These findings may help in improving the diagnosis and treatment methods of OSCC.
Collapse
Affiliation(s)
- Yueli Zhang
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ruijia Li
- Department of Pharmacy, The Eight Hospital of Xian, Xian, China
| | - Xiaoliang Ding
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Meng He
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Rui Zhang
- Emergency Department, Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong University, Xian, China
| |
Collapse
|
16
|
Cui D, Feng Y, Qian R. Up-regulation of microRNA miR-101-3p enhances sensitivity to cisplatin via regulation of small interfering RNA (siRNA) Anti-human AGT4D and autophagy in non-small-cell lung carcinoma (NSCLC). Bioengineered 2021; 12:8435-8446. [PMID: 34694211 PMCID: PMC8806688 DOI: 10.1080/21655979.2021.1982274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The emergence of drug resistance hinders the treatment of malignant tumors, and autophagy plays an important role in tumor chemotherapy resistance. However, its mechanism in non-small cell lung cancer (NSCLC) has not been well-researched. We aim to investigate the role of miR-101-3p in cisplatin-resistant via regulation of autophagy-related protein 4D (ATG4D) and autophagy. Cell viability, apoptosis, fluorescence intensity of GFP-LC3 and RFP-GFP-LC3 were determined using Cell Counting Kit-8 (CCK-8) assay, flow cytometry, and Laser scanning confocal microscope analysis, respectively. The levels of LC3II/LC3I, P62 and ATG4D were detected by Western blot. The results showed that the sensitivity to cisplatin in NSCLC cells was up-regulated by miR-101-3p mimics treatment, inducing promoting cell apoptosis and inhibiting autophagy. Further mechanistic study identified that ATG4D was a direct target of miR-101-3p. Moreover, ATG4D siRNA also could reverse miR-101-3p inhibitor-induced the up-regulation of ATG4D and the ration of LC3II/LC3I, the down-regulation of p62 expression. Our findings indicated that miR-101-3p could regulate sensitivity to cisplatin of NSNCC cells by regulating autophagy mediated by ATG4D. Therefore, miR-101-3p may act as a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Dong Cui
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Yu Feng
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Rulin Qian
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou, China
| |
Collapse
|
17
|
Dong Y, Gao Y, Xie T, Liu H, Zhan X, Xu Y. miR-101-3p Serves as a Tumor Suppressor for Renal Cell Carcinoma and Inhibits Its Invasion and Metastasis by Targeting EZH2. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9950749. [PMID: 34307682 PMCID: PMC8282380 DOI: 10.1155/2021/9950749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND The role of miRNAs in renal cell carcinoma (RCC) is not certain. We wanted to study the biological functions and potential mechanisms of miR-101-3p in RCC. METHODS miR-101-3p was inhibited in A498 and OSRC-2 (two RCC cell lines). We studied its effect on cell invasion and proliferation. Target EZH2 of miR-101-3p was designated by different methods, including luciferase functional analysis and Western blotting. The expression level of the target gene in treated cells was quantitatively analyzed by quantitative real-time polymerase chain reaction. In addition, induction of miR-101-3p to prevent tumor formation of A498 cells in mice was further studied. RESULTS The overexpression of miR-101-3p significantly inhibited the proliferation, migration, and invasion in two RCC cells. Western blotting and luciferase functional analysis indicated that miR-101-3p regulated the expression of EZH2 in two cell lines. Mice inoculated with A498 and OSRC-2 cells transfected with miR-101-3p mimics showed significantly smaller xenografts and weaker EZH2 expression levels than the control group. CONCLUSIONS miR-101-3p inhibited RCC cell proliferation, migration, and invasion by targeting EZH2.
Collapse
Affiliation(s)
- Yunze Dong
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, 301 Yanchang Road, Jing'an District, Shanghai 200072, China
| | - Yuchen Gao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, 301 Yanchang Road, Jing'an District, Shanghai 200072, China
| | - Tiancheng Xie
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, 301 Yanchang Road, Jing'an District, Shanghai 200072, China
| | - Huan Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, 301 Yanchang Road, Jing'an District, Shanghai 200072, China
| | - Xiangcheng Zhan
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, 301 Yanchang Road, Jing'an District, Shanghai 200072, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, 301 Yanchang Road, Jing'an District, Shanghai 200072, China
| |
Collapse
|
18
|
Piergentili R, Zaami S, Cavaliere AF, Signore F, Scambia G, Mattei A, Marinelli E, Gulia C, Perelli F. Non-Coding RNAs as Prognostic Markers for Endometrial Cancer. Int J Mol Sci 2021; 22:3151. [PMID: 33808791 PMCID: PMC8003471 DOI: 10.3390/ijms22063151] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endometrial cancer (EC) has been classified over the years, for prognostic and therapeutic purposes. In recent years, classification systems have been emerging not only based on EC clinical and pathological characteristics but also on its genetic and epigenetic features. Noncoding RNAs (ncRNAs) are emerging as promising markers in several cancer types, including EC, for which their prognostic value is currently under investigation and will likely integrate the present prognostic tools based on protein coding genes. This review aims to underline the importance of the genetic and epigenetic events in the EC tumorigenesis, by expounding upon the prognostic role of ncRNAs.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, “Sapienza” University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Anna Franca Cavaliere
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santo Stefano Hospital, 59100 Prato, Italy;
| | - Fabrizio Signore
- Obstetrics and Gynecology Department, USL Roma2, Sant’Eugenio Hospital, 00144 Rome, Italy;
| | - Giovanni Scambia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Gynecologic Oncology Unit, 00168 Rome, Italy;
- Universita’ Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Mattei
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (A.M.); (F.P.)
| | - Enrico Marinelli
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy;
| | - Caterina Gulia
- Department of Urology, Misericordia Hospital, 58100 Grosseto, Italy;
| | - Federica Perelli
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (A.M.); (F.P.)
| |
Collapse
|
19
|
Wang H, Yang Q, Li J, Chen W, Jin X, Wang Y. MicroRNA-15a-5p inhibits endometrial carcinoma proliferation, invasion and migration via downregulation of VEGFA and inhibition of the Wnt/β-catenin signaling pathway. Oncol Lett 2021; 21:310. [PMID: 33732386 PMCID: PMC7905532 DOI: 10.3892/ol.2021.12570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Endometrial carcinoma (EC) is one of the most common malignant gynecological tumors. Dysregulation of microRNAs (miRNAs/miRs) is frequently identified in human tumors, playing key regulatory roles in tumor growth and metastasis. The present study aimed to explore the functions and potential mechanisms of miR-15a-5p in EC progression. RT-qPCR was used to detect the expression levels of miR-15a-5p and vascular endothelial growth factor A (VEGFA) mRNA. Western blot analysis was performed to examine the expression of related proteins. Functional assays, including proliferation and Transwell assays were performed to determine the roles of miR-15a-5p in EC progression. TargetScan and luciferase reporter assays were used to explore the potential target genes of miR-15a-5p. The results revealed that miR-15a-5p was underexpressed in EC tissue samples in comparison with that in matched normal tissue samples. The expression level of miR-15a-5p was associated with the clinicopathologic characteristics of EC patients. Notably, both in vitro and in vivo assays revealed that miR-15a-5p upregulation significantly inhibited EC growth and metastasis. Furthermore, bioinformatics analysis and dual luciferase reporter assay indicated that VEGFA was a candidate target of miR-15a-5p. Mechanistic investigation revealed that miR-15a-5p inhibited EC development via regulation of Wnt/β-catenin pathway and targeting of VEGFA. In summary, the present results demonstrated that miR-15a-5p could inhibit EC development and may serve as a promising therapeutic biomarker in EC.
Collapse
Affiliation(s)
- Honggang Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Qingju Yang
- Department of Gynaecology, Linyi People's Hospital, Dezhou, Shandong 251500, P.R. China
| | - Jieping Li
- Department of Anesthesiology, Qingdao Hospital of Traditional Chinese Medicine, Qingdao University, Qingdao, Shandong 266033, P.R. China
| | - Wenping Chen
- Department of Cardiothoracic Surgery, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Xiao Jin
- Department of Rehabilitation Medicine, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Yaowen Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
20
|
Wang G, Han J, Wang G, Wu X, Huang Y, Wu M, Chen Y. ERO1α mediates endoplasmic reticulum stress-induced apoptosis via microRNA-101/EZH2 axis in colon cancer RKO and HT-29 cells. Hum Cell 2021; 34:932-944. [PMID: 33559868 DOI: 10.1007/s13577-021-00494-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/18/2021] [Indexed: 01/15/2023]
Abstract
Although colon cancer is a leading and typical gastrointestinal tumor, there is little published data on the underlying molecular mechanisms of endoplasmic reticulum (ER) stress. Here, we investigated the role of ERO1α and its impact on microRNA (miR)-101 expression and ER stress in colon cancer cells. Cell ER stress was established by treating RKO or HT-29 cells with 1 μM thapsigargin (THG). Cell biological behaviors were detected using CCK-8, bromodeoxyuridine assay, flow cytometry and western blot. We also investigated the expression of ERO1α and miR-101 after THG treatment using RT-qPCR. Moreover, effects of ERO1α and miR-101 on ER stress of colon cancer cells were detected. Additionally, miR-101 impact on EZH2 expression and relevance of this regulation was confirmed by RT-qPCR and luciferase reporter. The regulation of miR-101/EZH2 axis and Wnt/β-catenin pathway in ER stress were investigated. Our results demonstrated that THG induced ER stress in colon cancer cells. Silencing ERO1α further promoted ER stress-induced cell apoptosis. ERO1α knockdown up-regulated miR-101 expression and promoted colon cancer cell apoptosis via regulating miR-101. Surprisingly, miR-101 negatively regulated EZH2 expression via miRNA-mRNA targeting. Moreover, ER stress promoted colon cancer cell apoptosis via regulating miR-101/EZH2 axis. Wnt/β-catenin pathway was also involved in the regulation of ERO1α/miR-101/EZH2 in ER stress of colon cancer cells. These findings illustrated that silencing ERO1α regulated ER stress-induced apoptosis via miR-101/EZH2 axis in RKO and HT-29 cells.
Collapse
Affiliation(s)
- Guoqin Wang
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China
| | - Jiangqiong Han
- Integrated Traditional Chinese and Western Medicine Department, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China
| | - Gaowei Wang
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China
| | - Xuesong Wu
- Department Gastrointestinal Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Youguang Huang
- Tumor Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Min Wu
- Tumor Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Yunlan Chen
- Cadre Medical Department, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, No. 517 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, China.
| |
Collapse
|
21
|
Upregulation of JHDM1D-AS1 alleviates neuroinflammation and neuronal injury via targeting miR-101-3p-DUSP1 in spinal cord after brachial plexus injury. Int Immunopharmacol 2020; 89:106962. [PMID: 33039970 DOI: 10.1016/j.intimp.2020.106962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/16/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neuroinflammation in the spinal cord following acute brachial plexus injury (BPI) remains a vital cause that leads to motor dysfunction and neuropathic pain. In this study, we aim to explore the role of long non-coding RNA JHDM1D antisense 1 (JHDM1D-AS1) in mediating BPI-induced neuroinflammation and neuronal injury. METHODS A total brachial plexus root avulsion (tBPRA) model in adult rats and IL-1β-treated motor neuron-like NSC-34 cells and LPS-treated microglia cell line BV2 were conducted for in vivo and in vitro experiments, respectively. The expressions of JHDM1D-AS1, miR-101-3p and DUSP1, p38, NF-κB, TNF-α, IL-1β, and IL-6 were detected by RT-PCR and western blot seven days after tBPI. Immunohistochemistry (IHC) was used to detect neuronal apoptosis. CCK8 assay, Tunel assay and LDH kit were used for the detection of neuronal injury. The targeted relationships between JHDM1D-AS1 and miR-101-3p, miR-101-3p and DUSP1 were verified by RNA immunoprecipitation (RIP) and dual-luciferase reporter gene assay. RESULTS We found significant downregulated expression of JHDM1D-AS1 and DUSP1 but upregulated expression of miR-101-3p in the spinal cord after tBPI. Overexpression of JHDM1D-AS1 had a prominent neuroprotective effect by suppressing neuronal apoptosis and microglial inflammation through reactivation of DUSP1. Further exploration revealed that JHDM1D-AS1 may act as a competitive endogenous RNA targeting miR-101-3p, which bound on the 3'UTR of DUSP1 mRNA. In addition, overexpression of miR-101-3p could reverse the neuroprotective effects of JHDM1D-AS1 upregulation by blocking DUSP1. CONCLUSIONS JHDM1D-AS1 exerted neuroprotective and anti-inflammatory effects in a rat model of tBPI by regulating miR-101-3p/DUSP1 axis.
Collapse
|
22
|
Malinowski B, Musiała N, Wiciński M. Metformin's Modulatory Effects on miRNAs Function in Cancer Stem Cells-A Systematic Review. Cells 2020; 9:cells9061401. [PMID: 32512882 PMCID: PMC7348732 DOI: 10.3390/cells9061401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) have been reported in various hematopoietic and solid tumors, therefore, are considered to promote cancer progression, metastasis, recurrence and drug resistance. However, regulation of CSCs at the molecular level is not fully understood. microRNAs (miRNAs) have been identified as key regulators of CSCs by modulating their major functions: self-renewal capacity, invasion, migration and proliferation. Various studies suggest that metformin, an anti-diabetic drug, has an anti-tumor activity but its precise mechanism of action has not been understood. The present article was written in accordance to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We systematically reviewed evidence for metformin’s ability to eradicate CSCs through modulating the expression of miRNAs in various solid tumors. PubMed and MEDLINE were searched from January 1990 to January 2020 for in vitro studies. Two authors independently selected and reviewed articles according to predefined eligibility criteria and assessed risk of bias of included studies. Four papers met the inclusion criteria and presented low risk bias. All of the included studies reported a suppression of CSCs’ major function after metformin dosage. Moreover, it was showed that metformin anti-tumor mechanism of action is based on regulation of miRNAs expression. Metformin inhibited cell survival, clonogenicity, wound-healing capacity, sphere formation and promotes chemosensitivity of tumor cells. Due to the small number of publications, aforementioned evidences are limited but may be consider as background for clinical studies.
Collapse
|
23
|
Meng XL, Fu P, Wang L, Yang X, Hong G, Zhao X, Lao J. Increased EZH2 Levels in Anterior Cingulate Cortex Microglia Aggravate Neuropathic Pain by Inhibiting Autophagy Following Brachial Plexus Avulsion in Rats. Neurosci Bull 2020; 36:793-805. [PMID: 32346844 DOI: 10.1007/s12264-020-00502-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
After brachial plexus avulsion (BPA), microglia induce inflammation, initiating and maintaining neuropathic pain. EZH2 (enhancer of zeste homolog 2) has been implicated in inflammation and neuropathic pain, but the mechanisms by which it regulates neuropathic pain remain unclear. Here, we found that EZH2 levels were markedly upregulated during BPA-induced neuropathic pain in vivo and in vitro, stimulating pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) secretion in vivo. In rats with BPA-induced neuropathic pain, mechanical and cold hypersensitivities were induced by EZH2 upregulation and inhibited by EZH2 downregulation in the anterior cingulate cortex. Microglial autophagy was also significantly inhibited, with EZH2 inhibition activating autophagy and reducing neuroinflammation in vivo. However, this effect was impaired by inhibiting autophagy with 3-methyladenine, suggesting that the MTOR signaling pathway is a functional target of EZH2. These data suggest that EZH2 regulates neuroinflammation and neuropathic pain via a novel MTOR-mediated autophagy signaling pathway, providing a promising approach for managing neuropathic pain.
Collapse
Affiliation(s)
- Xiang-Lei Meng
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China
| | - Pengfei Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lin Wang
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Xun Yang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China
| | - Guanghui Hong
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China
| | - Xin Zhao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China
| | - Jie Lao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China.
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China.
| |
Collapse
|
24
|
MiRNA-506 presents multiple tumor suppressor activities by targeting EZH2 in nasopharyngeal carcinoma. Auris Nasus Larynx 2020; 47:632-642. [PMID: 31932074 DOI: 10.1016/j.anl.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/11/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE MiR-506 has been reported to be associated with multiple malignancies, but its roles in nasopharyngeal cancer (NPC) are not fully understood. Our objective is to demonstrate its effects on NPC and the underlying mechanisms. METHODS Totally fifteen pairs of NPC and adjacent non-tumorous tissues were collected for the detection of miR-506 and enhancer of zeste homolog 2 (EZH2) expression. Dual luciferase reporter assay was employed for verifying the relationship between miR-506 and EZH2. The flow cytometry and MTT assays were employed to explore the effects of miR-506 and EZH2 on the cell apoptosis and proliferation, respectively. Wound closure and transwell assays were used to evaluate the cell migration and invasion abilities. Western blotting or RT-qPCR assays were applied to detect the alterations of miR-506, EZH2 and epithelial-mesenchymal transition (EMT)-related markers. Morphological changes of cells with EMT were assessed by light microscopy. RESULTS MiR-506 was significantly decreased and EZH2 was obviously increased in NPC tissues. Overexpression of miR-506 decreased the EZH2 level, promoted apoptosis, inhibited proliferation, invasion and migration of NPC cells. Accordingly, miR-506 overexpression attenuated EMT process of NPC cells as demonstrated by the alterations of EMT-related markers and the morphological changes. In addition, the luciferase assay proved that miR-506 directly targeted EZH2. Furthermore, the overexpression of EZH2 reversed the tumor-suppressive effects induced by miR-506 mimics. CONCLUSION MiR-506 acted as a tumor suppressor to promote apoptosis and inhibit invasion and migration via directly targeting EZH2. MiR-506 can be a candidate target for gene therapy against NPC.
Collapse
|
25
|
Epigenetic Control of Autophagy in Cancer Cells: A Key Process for Cancer-Related Phenotypes. Cells 2019; 8:cells8121656. [PMID: 31861179 PMCID: PMC6952790 DOI: 10.3390/cells8121656] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Although autophagy is a well-known and extensively described cell pathway, numerous studies have been recently interested in studying the importance of its regulation at different molecular levels, including the translational and post-translational levels. Therefore, this review focuses on the links between autophagy and epigenetics in cancer and summarizes the. following: (i) how ATG genes are regulated by epigenetics, including DNA methylation and post-translational histone modifications; (ii) how epidrugs are able to modulate autophagy in cancer and to alter cancer-related phenotypes (proliferation, migration, invasion, tumorigenesis, etc.) and; (iii) how epigenetic enzymes can also regulate autophagy at the protein level. One noteable observation was that researchers most often reported conclusions about the regulation of the autophagy flux, following the use of epidrugs, based only on the analysis of LC3B-II form in treated cells. However, it is now widely accepted that an increase in LC3B-II form could be the consequence of an induction of the autophagy flux, as well as a block in the autophagosome-lysosome fusion. Therefore, in our review, all the published results describing a link between epidrugs and autophagy were systematically reanalyzed to determine whether autophagy flux was indeed increased, or inhibited, following the use of these potentially new interesting treatments targeting the autophagy process. Altogether, these recent data strongly support the idea that the determination of autophagy status could be crucial for future anticancer therapies. Indeed, the use of a combination of epidrugs and autophagy inhibitors could be beneficial for some cancer patients, whereas, in other cases, an increase of autophagy, which is frequently observed following the use of epidrugs, could lead to increased autophagy cell death.
Collapse
|
26
|
Nuñez-Olvera SI, Gallardo-Rincón D, Puente-Rivera J, Salinas-Vera YM, Marchat LA, Morales-Villegas R, López-Camarillo C. Autophagy Machinery as a Promising Therapeutic Target in Endometrial Cancer. Front Oncol 2019; 9:1326. [PMID: 31850214 PMCID: PMC6896250 DOI: 10.3389/fonc.2019.01326] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Endometrial cancer is the fourth most frequent neoplasia for women worldwide, and over the past two decades it incidence has increased. The most common histological type of endometrial cancer is endometrioid adenocarcinoma, also known as type 1 endometrial cancer. Endometrioid endometrial cancer is associated with diverse epidemiological risk factors including estrogen use, obesity, diabetes, cigarette smoking, null parity, early menarche, and late menopause. Clinical effectiveness of chemotherapy is variable, indicating that novel molecular therapies against specific cellular processes associated to cell survival and resistance to therapy, such as autophagy, urged to ameliorate the rates of success in endometrial cancer treatment. Autophagy (also known as macroautophagy) is a specialized mechanism that maintains cell homeostasis which is activated in response to cellular stressors including nutrients deprivation, amino acids starvation, hypoxia, and metabolic stress to prolong cell survival via lysosomal degradation of cytoplasmic macromolecules and organelles. However, in human cancer cells, autophagy has a controversial function due to its dual role as self-protective or apoptotic. Conventional antitumor therapies including hormones, chemotherapy and ionizing radiation, may activate autophagy as a pro-survival tumor response contributing to treatment resistance. Intriguingly, if autophagy continues above reversibility of cell viability, autophagy can result in apoptosis of tumor cells. Here, we have reviewed the mechanisms of autophagy described in endometrial cancers, including the role of PI3K/AKT/mTOR, AMPK-mTOR, and p53 signaling pathways that trigger or inhibit the process and thus representing potential molecular targets in therapeutic clinical approaches. In addition, we discussed the recent findings indicating that autophagy can be modulated using repurposing drugs which may leads to faster experimentation and validation, as well as more easy access of the medications to patients. Finally, the promising role of dietary compounds and microRNAs in autophagy modulation is also discussed. In conclusion, although the research about autophagy is scarce but ongoing in endometrial cancer, the actual findings highlight the promising usefulness of novel molecules for directing targeted therapies.
Collapse
Affiliation(s)
| | - Dolores Gallardo-Rincón
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Jonathan Puente-Rivera
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yarely M. Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Laurence A. Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Raúl Morales-Villegas
- Coordinación Académica Huasteca del Sur, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| |
Collapse
|
27
|
Yang S, Wang H, Li D, Li M. Role of Endometrial Autophagy in Physiological and Pathophysiological Processes. J Cancer 2019; 10:3459-3471. [PMID: 31293650 PMCID: PMC6603423 DOI: 10.7150/jca.31742] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Endometrium is the mucosal lining of the uterus which expressed a cyclic process of proliferation, secretion and scaling under the control of hormones secreted by the ovary, and it also plays an indispensable role in the embryo implantation, the constitution of fetal-maternal interface, and the maintaining of pregnancy. In pathophysiological conditions, the abnormality or disorder of endometrium may lead to endometrium-related diseases, such as endometriosis, endometrium hyperplasia and even endometrial carcinoma. In recent years, more and more evidence revealed that autophagy exists in both the endometrium stroma cells and epithelial cells, and the activity of autophagy is changed in the different phases of menstruation, as well as in the endometrium-related diseases. Here, we aim to review the activity level, the regulatory factors and the function of autophagy in physiological and pathophysiological endometria, and to discuss the potential value of autophagy as a target for therapies of endometrium-related diseases.
Collapse
Affiliation(s)
- Shaoliang Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, 200080, People's Republic of China
| | - Haiyan Wang
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Dajin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, 200080, People's Republic of China
| | - Mingqing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, 200080, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| |
Collapse
|