1
|
Traini G, Ragosta ME, Tamburrino L, Papini A, Cipriani S, Vignozzi L, Baldi E, Marchiani S. Microfluidic Sorting Can Be Applied for Assisted Reproduction Sperm Selection in Different Cases of Semen Abnormalities. Life (Basel) 2025; 15:790. [PMID: 40430216 DOI: 10.3390/life15050790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Sperm preparation is a critical step in assisted reproduction, aiming to isolate spermatozoa with optimal characteristics and high fertilizing potential. Traditional sperm selection methods involve centrifugation, which may cause sperm damage. Microfluidic sperm sorting (MSS) offers an alternative approach, mimicking the female reproductive tract environment, avoiding centrifugation, and reducing manipulation and processing time. This study aims to compare the performance of MSS and Swim-up (SU) in 26 normozoospermic, 31 hyperviscous normozoospermic, 15 oligozoospermic, and 9 asthenozoospermic subjects. Semen samples were collected from male subjects undergoing routine semen analysis at Careggi University Hospital, Florence. Sperm selection was carried out using both SU and MSS. The parameters assessed included sperm motility, viability, concentration, kinematics, DNA fragmentation (sDF), chromatin compaction, and oxidative status. Both SU and MSS improved sperm characteristics compared to unselected samples. MSS isolated high-quality spermatozoa with lower sDF and higher chromatin compaction than SU, not only in normozoospermic samples but also in samples with semen defects like hyperviscosity, low concentration and/or motility, and high sDF. In conclusion, the use of microfluidics may enhance the chances of successful fertilization and improve reproductive outcomes, especially for individuals with compromised semen quality where conventional methods may fail.
Collapse
Affiliation(s)
- Giulia Traini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Maria Emanuela Ragosta
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Lara Tamburrino
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy
| | - Alice Papini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Sarah Cipriani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy
- Aware Fertility Unit, AUSL Toscana Centro, 50122 Florence, Italy
| | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy
| | - Elisabetta Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Sara Marchiani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| |
Collapse
|
2
|
Chen J, Liu L, Liu Z, Pan L, Zhou L, Chen K, Yang X, Chen Y, Jiang X, Ren J, Cai J. Intracytoplasmic sperm injection hampers fertilization rate and pregnancy per initiated cycle in patients with extremely poor ovarian response. Arch Gynecol Obstet 2025:10.1007/s00404-025-08033-3. [PMID: 40301138 DOI: 10.1007/s00404-025-08033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 04/08/2025] [Indexed: 05/01/2025]
Abstract
PURPOSE To compare the clinical outcomes of extremely poor responders with one or two oocytes who receive in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). METHODS A retrospective study was carried out on 2572 patients with one or two oocytes retrieved from 2013 to 2022, of which 2159 patients were scheduled to receive IVF treatment and 413 patients were scheduled to receive ICSI treatment. The laboratory parameters and clinical outcomes were compared with adjusted multivariate regression and propensity score (PS) matching. RESULTS In both matched and non-matched cohorts, The ICSI group had a significantly higher total fertilization failure (TFF) rate and lower multiple fertilization rate than the IVF group (P < 0.05). After matching, the cumulative pregnancy rate per initiated cycle in the IVF group was significantly higher than in the ICSI group (28.7% vs 21.7, P < 0.05). However, the difference in cumulative live births did not reach statistical significance (21.2% vs 17.2%, P > 0.05). The adjusted odds ratios for TFF, cumulative pregnancy, and cumulative live birth comparing ICSI versus IVF in multivariate models were 1.65(95% CI: 1.12, 2.43), 0.65(95% CI: 0.46, 0.91), and 0.76(95% CI: 0.55, 1.04), respectively. CONCLUSION In poor responders with one or two oocytes retrieved, ICSI insemination cannot avoid TFF, and it may hamper the cumulative pregnancy rate.
Collapse
Affiliation(s)
- Jinghua Chen
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, 361003, Fujian, China
| | - Lanlan Liu
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, 361003, Fujian, China
- School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Zhenfang Liu
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, 361003, Fujian, China
| | - Luxiang Pan
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, 361003, Fujian, China
| | - Liying Zhou
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, 361003, Fujian, China
| | - Kaijie Chen
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, 361003, Fujian, China
| | - Xiaolian Yang
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, 361003, Fujian, China
| | - Yurong Chen
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, 361003, Fujian, China
| | - Xiaoming Jiang
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, 361003, Fujian, China
| | - Jianzhi Ren
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, 361003, Fujian, China.
| | - Jiali Cai
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, 361003, Fujian, China.
- School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
3
|
Gigg M, Paulson RJ, Brems JA, Coward RM, Schlegel PN. Intracytoplasmic sperm injection alone is the most efficacious, effective, and efficient treatment for couples with male factor infertility. Fertil Steril 2025; 123:574-580. [PMID: 39985548 DOI: 10.1016/j.fertnstert.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Affiliation(s)
- Marisa Gigg
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, California
| | - Richard J Paulson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, California
| | | | | | | |
Collapse
|
4
|
Heidarnejad A, Sadeghi M, Arasteh S, Ghiass MA. A novel microfluidic device for human sperm separation based on rheotaxis. ZYGOTE 2025; 33:23-31. [PMID: 39726184 DOI: 10.1017/s0967199424000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
This study explores the efficacy of a novel microfluidic device in isolating rheotactic sperm and assesses their advantages compared with other motile sperm. Two microfluidic devices were used in this study: the microfluidic device we designed to separate sperm based on rheotaxis and a simple passive microfluidic device. We compared the results with the density gradient centrifugation technique. Sperm attributes including concentration, morphology, viability and motility were assessed using related procedures. Statistical analyses were conducted using one-way analysis of variance. Results showed differences in sperm concentration, motility, morphology and vitality using different sperm separation techniques. The sperms separated using our microfluidic device demonstrated the highest motilities, normal morphology percentages and higher sperm vitality but significantly lower sperm concentrations. These findings suggest the potential of our microfluidic design in enhancing sperm quality. Our findings are in agreement with previous research, emphasizing the capability of microfluidics in enhancing sperm quality. Specifically, our designed microfluidic device exhibited exceptional efficacy in isolating highly motile sperm, a critical factor for successful fertilization.
Collapse
Affiliation(s)
- Alireza Heidarnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammadreza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Saeid Arasteh
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Adel Ghiass
- Tissue Engineering Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Önen S, Gizer M, Çolak İÖ, Korkusuz P. Bioengineering Approaches for Male Infertility: From Microenvironmental Regeneration to in vitro Fertilization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:59-72. [PMID: 39881052 DOI: 10.1007/5584_2024_844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Male factor accounts for 30-50% of infertility cases and may occur due to congenital anomalies or acquired disorders. In such infertility cases where a limited number of mature sperm is produced, a solution is offered to patients with ART applications; however, these methods are inadequate in patients with germ cell aplasia due to damaged microenvironment. Since monolayer cell culture and static culture conditions do not provide the physical conditions of the 3D microenvironment, they have a limited effect on ensuring the execution of in vitro spermatogenesis properly. For this reason, current treatment approaches turn to biomaterial-implemented, microfluidic, and bioreactor systems where 3D physical conditions are provided. This book chapter focuses on static and dynamic culture conditions, as well as the use of biomaterials to increase the success of ex vivo spermatogenesis and microfluidic device-assisted sperm selection in ART.
Collapse
Affiliation(s)
| | | | - İmran Özge Çolak
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- METU MEMS Center, Ankara, Turkey.
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey.
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
6
|
Aflatoonian K, Amjadi F, Sheibak N, Moradi M, Aflatoonian A, Tabatabaei M, Berjis K, Aflatoonian R, Zandieh Z. Impact of Maternal Hormone Profile and Paternal Sperm DNA Fragmentation on Clinical Outcomes Following Assisted Reproduction. Arch Med Res 2024; 55:103108. [PMID: 39522141 DOI: 10.1016/j.arcmed.2024.103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/08/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Success of assisted reproductive techniques depends on multiple factors including maternal endocrine status, hormonal balance, and paternal sperm quality. A comprehensive pre-treatment evaluation allows better prediction of outcomes and avoidance of unnecessary procedures and expenses. METHODS To examine the impact of female hormonal profiles and sperm DNA damage on the success of assisted reproduction, medical data were extracted from the clinical records of infertile couples including couples' age and levels of maternal anti-Mullerian hormone (AMH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL), as well as the DNA fragmentation index (DFI) in men. Any correlation between these parameters and clinical outcomes was investigated. RESULTS DFI and FSH independently influenced the rate of high-quality embryos. A decrease in maternal age and PRL levels increased the rate of these embryos. On the other hand, an increase in maternal body mass index (BMI) or AMH levels was associated with a reduced chance of achieving high quality embryos. In addition, any reduction in PRL levels could be associated with a higher fertilization rate. FSH levels above the normal range contribute to a reduced rate of high-quality embryos. Overall, our findings demonstrate the complex interplay between different factors and their influence on fertilization success and emphasize the importance of optimizing these variables to achieve the best possible outcome. CONCLUSION Several factors can influence the outcome of infertility treatment. These factors include paternal DFI, maternal age, BMI, AMH, FSH, and PRL levels.
Collapse
Affiliation(s)
| | - Fatemehsadat Amjadi
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Nadia Sheibak
- Department of Anatomical Sciences, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Moradi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Aflatoonian
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryamsadat Tabatabaei
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Katayon Berjis
- Department of Reproductive Biology, The Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zahra Zandieh
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Moghadam AM, Javid-Naderi MJ, Fathi-karkan S, Sabz FTK, Abbasi Z, Rahdar A, Pourmadadi M, Pandey S. Nanoparticle-mediated L-carnitine delivery for improved male fertility. J Drug Deliv Sci Technol 2024; 102:106420. [DOI: 10.1016/j.jddst.2024.106420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Salehi P, Sheibak N, Amjadi F, Nejatbakhsh R, Zandieh Z. The effect of myo-inositol antioxidant activity on human sperm parameters and DNA damage in ultra-rapid and conventional freezing methods. Cryobiology 2024; 117:104978. [PMID: 39389224 DOI: 10.1016/j.cryobiol.2024.104978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Male fertility preservation is still challenged by cell damage induced during sperm cryopreservation and impaired sperm structure and function. Sperm ultra-rapid freezing, despite a higher protective effect compared to conventional freezing method, is still associated with suboptimal sperm cryosurvival and needs to be modified to increase its efficiency in sperm protection. Sperm freezing media supplemented with antioxidants can improve sperm parameters following freezing-warming process. In this study, we aimed to investigate the effect of employing ultra-rapid freezing and myo-inositol on sperm cryosurvival. Thirty semen samples with normal sperm parameters were collected and each one was divided into four portions to cryopreserve by conventional freezing, ultra-rapid freezing, conventional freezing + myo-inositol 2 mg/ml, and ultra-rapid freezing + myo-inositol 2 mg/ml. Sperm samples warmed after at least 24 h of freezing and sperm cryosurvival were analyzed by evaluation of sperm motility, viability, morphology and DNA fragmentation index (DFI). Freezing method had a significant influence on post-thaw sperm DFI and morphology (p < 0.05) and the interaction between freezing method and antioxidant supplementation significantly affected sperm morphology (p < 0.05). The highest percentage of sperm normal morphology and minimal DFI was achieved using ultra-rapid freezing supplemented by myo-inositol antioxidant compared to other groups (P < 0.05). The highest sperm DNA damage after freezing-warming was observed following the conventional freezing method. In conclusion, sperm freezing method was identified as factor strongly influencing sperm DFI and morphology after thawing/warming. Sperm samples can be rapidly frozen using the modified freezing media supplemented by myo-inositol without impacting sperm DNA and morphology.
Collapse
Affiliation(s)
- Parastoo Salehi
- Anatomy Department, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Nadia Sheibak
- Department of Anatomical Sciences, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemehsadat Amjadi
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Reza Nejatbakhsh
- Anatomy Department, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran.
| | - Zahra Zandieh
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Jahangiri AR, Ziarati N, Dadkhah E, Bucak MN, Rahimizadeh P, Shahverdi A, Sadighi Gilani MA, Topraggaleh TR. Microfluidics: The future of sperm selection in assisted reproduction. Andrology 2024; 12:1236-1252. [PMID: 38148634 DOI: 10.1111/andr.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/03/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Obtaining functional sperm cells is the first step to treat infertility. With the ever-increasing trend in male infertility, clinicians require access to effective solutions that are able to single out the most viable spermatozoa, which would max out the chance for a successful pregnancy. The new generation techniques for sperm selection involve microfluidics, which offers laminar flow and low Reynolds number within the platforms can provide unprecedented opportunities for sperm selection. Previous studies showed that microfluidic platforms can provide a novel approach to this challenge and since then researchers across the globe have attacked this problem from multiple angles. OBJECTIVE In this review, we seek to provide a much-needed bridge between the technical and medical aspects of microfluidic sperm selection. Here, we provide an up-to-date list on microfluidic sperm selection procedures and its application in assisted reproductive technology laboratories. SEARCH METHOD A literature search was performed in Web of Science, PubMed, and Scopus to select papers reporting microfluidic sperm selection using the keywords: microfluidic sperm selection, self-motility, non-motile sperm selection, boundary following, rheotaxis, chemotaxis, and thermotaxis. Papers published before March 31, 2023 were selected. OUTCOMES Our results show that most studies have used motility-based properties for sperm selection. However, microfluidic platforms are ripe for making use of other properties such as chemotaxis and especially rheotaxis. We have identified that low throughput is one of the major hurdles to current microfluidic sperm selection chips, which can be solved via parallelization. CONCLUSION Future work needs to be performed on numerical simulation of the microfluidics chip prior to fabrication as well as relevant clinical assessment after the selection procedure. This would require a close collaboration and understanding among engineers, biologists, and medical professionals. It is interesting that in spite of two decades of microfluidics sperm selection, numerical simulation and clinical studies are lagging behind. It is expected that microfluidic sperm selection platforms will play a major role in the development of fully integrated start-to-finish assisted reproductive technology systems.
Collapse
Affiliation(s)
- Ali Reza Jahangiri
- NanoLund, Lund University, Lund, Sweden
- Materials Science and Applied Mathematics, Malmö University, Malmö, Sweden
| | - Niloofar Ziarati
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ehsan Dadkhah
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mustafa Numan Bucak
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Pegah Rahimizadeh
- Division of Experimental Surgery, McGill University, Montreal, Quebec, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Tohid Rezaei Topraggaleh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
10
|
Cariati F, Orsi MG, Bagnulo F, Del Mondo D, Vigilante L, De Rosa M, Sciorio R, Conforti A, Fleming S, Alviggi C. Advanced Sperm Selection Techniques for Assisted Reproduction. J Pers Med 2024; 14:726. [PMID: 39063980 PMCID: PMC11278480 DOI: 10.3390/jpm14070726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Male infertility accounts for approximately 40% of infertility cases. There are many causes of male infertility, including environmental factors, age, lifestyle, infections, varicocele, and cancerous pathologies. Severe oligozoospermia, cryptozoospermia, and azoospermia (obstructive and non-obstructive) are identified as severe male factor infertility, once considered conditions of sterility. Today, in vitro fertilization (IVF) techniques are the only treatment strategy in cases of male factor infertility for which new methodologies have been developed in the manipulation of spermatozoa to achieve fertilization and increase success rates. This review is an update of in vitro manipulation techniques, in particular sperm selection, emphasizing clinical case-specific methodology. The success of an IVF process is related to infertility diagnosis, appropriate choice of treatment, and effective sperm preparation and selection. In fact, selecting the best spermatozoa to guarantee an optimal paternal heritage means increasing the blastulation, implantation, ongoing pregnancy and live birth rates, resulting in the greater success of IVF techniques.
Collapse
Affiliation(s)
- Federica Cariati
- Department of Public Health, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (L.V.); (M.D.R.); (C.A.)
- Fertility Unit, Maternal-Child Department, AOU Federico II Polyclinic, 80131 Naples, Italy;
| | - Maria Grazia Orsi
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (M.G.O.); (A.C.)
| | - Francesca Bagnulo
- Fertility Unit, Maternal-Child Department, AOU Federico II Polyclinic, 80131 Naples, Italy;
| | - Daniela Del Mondo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Luigi Vigilante
- Department of Public Health, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (L.V.); (M.D.R.); (C.A.)
- Fertility Unit, Maternal-Child Department, AOU Federico II Polyclinic, 80131 Naples, Italy;
| | - Martina De Rosa
- Department of Public Health, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (L.V.); (M.D.R.); (C.A.)
- Fertility Unit, Maternal-Child Department, AOU Federico II Polyclinic, 80131 Naples, Italy;
| | - Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman Mother Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (M.G.O.); (A.C.)
| | - Steven Fleming
- Discipline of Anatomy & Histology, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia;
| | - Carlo Alviggi
- Department of Public Health, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (L.V.); (M.D.R.); (C.A.)
- Fertility Unit, Maternal-Child Department, AOU Federico II Polyclinic, 80131 Naples, Italy;
| |
Collapse
|
11
|
Godiwala P, Kwieraga J, Almanza E, Neuber E, Grow D, Benadiva C, Makhijani R, DiLuigi A, Schmidt D, Bartolucci A, Engmann L. The impact of microfluidics sperm processing on blastocyst euploidy rates compared with density gradient centrifugation: a sibling oocyte double-blinded prospective randomized clinical trial. Fertil Steril 2024; 122:85-94. [PMID: 38367686 DOI: 10.1016/j.fertnstert.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVE To compare the euploidy rates among blastocysts created from sibling oocytes injected with sperm and processed using microfluidics or density gradient centrifugation. DESIGN Sibling oocyte randomized controlled trial. SETTING Single university-affiliated infertility practice. PATIENTS A total of 106 patients aged 18-42 years undergoing fresh in vitro fertilization treatment cycles with preimplantation genetic testing between January 2021 and April 2022 contributed 1,442 mature oocytes, which were injected with sperm and processed using microfluidics or density gradient centrifugation. INTERVENTION(S) The sperm sample is divided and processed using a microfluidics device and density gradient centrifugation for injection into sibling oocytes. MAIN OUTCOME MEASURE(S) The primary outcome was the embryo euploidy rate. Secondary outcomes included fertilization, high-quality blastulation, and ongoing pregnancy rates. RESULT(S) The blastocyst euploidy rate per mature oocyte was not significantly different in the study group compared with the control group (22.9% vs. 20.5%). The blastocyst euploidy rate per biopsied embryo was also similar between the 2 groups (53.0% vs. 45.7%). However, the fertilization rate per mature oocyte injected was found to be significantly higher in the study group compared with the control group (76.0% vs. 69.9%). The high-quality blastulation rate per mature oocyte injected was similar between the 2 groups, as was the total number of embryos frozen. There were no differences in the number of participants with no blastocysts for biopsy or the number of participants with no euploid embryos between the 2 groups. Among the male factor infertility and recurrent pregnancy loss subgroups, there were no differences in euploidy rates, fertilization rates, blastulation rates, or total numbers of blastocysts frozen, although the study was underpowered to detect these differences. Seventy-seven patients underwent frozen embryo transfer; there were no significant differences in pregnancy outcomes between the 2 groups. CONCLUSION(S) Microfluidics processing did not improve embryo euploidy rates compared with density gradient centrifugation in this sibling oocyte study, although fertilization rates were significantly higher. CLINICAL TRIAL REGISTRATION NUMBER NCT04744025.
Collapse
Affiliation(s)
- Prachi Godiwala
- The Center for Advanced Reproductive Services, Farmington, Connecticut; Division of Reproductive Endocrinology and Infertility, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Jane Kwieraga
- The Center for Advanced Reproductive Services, Farmington, Connecticut
| | - Emilse Almanza
- Division of Reproductive Endocrinology and Infertility, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Evelyn Neuber
- The Center for Advanced Reproductive Services, Farmington, Connecticut
| | - Daniel Grow
- The Center for Advanced Reproductive Services, Farmington, Connecticut; Division of Reproductive Endocrinology and Infertility, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Claudio Benadiva
- The Center for Advanced Reproductive Services, Farmington, Connecticut; Division of Reproductive Endocrinology and Infertility, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Reeva Makhijani
- The Center for Advanced Reproductive Services, Farmington, Connecticut; Division of Reproductive Endocrinology and Infertility, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Andrea DiLuigi
- The Center for Advanced Reproductive Services, Farmington, Connecticut; Division of Reproductive Endocrinology and Infertility, University of Connecticut School of Medicine, Farmington, Connecticut
| | - David Schmidt
- The Center for Advanced Reproductive Services, Farmington, Connecticut; Division of Reproductive Endocrinology and Infertility, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Alison Bartolucci
- The Center for Advanced Reproductive Services, Farmington, Connecticut; Division of Reproductive Endocrinology and Infertility, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Lawrence Engmann
- The Center for Advanced Reproductive Services, Farmington, Connecticut; Division of Reproductive Endocrinology and Infertility, University of Connecticut School of Medicine, Farmington, Connecticut.
| |
Collapse
|
12
|
Zhang X, Chao S, Ye N, Ouyang D. Emerging trends in sperm selection: enhancing success rates in assisted reproduction. Reprod Biol Endocrinol 2024; 22:67. [PMID: 38877490 PMCID: PMC11177495 DOI: 10.1186/s12958-024-01239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024] Open
Abstract
This comprehensive review explores the evolving landscape of sperm selection techniques within the realm of Assisted Reproductive Technology (ART). Our analysis delves into a range of methods from traditional approaches like density gradient centrifugation to advanced techniques such as Magnetic-Activated Cell Sorting (MACS) and Intracytoplasmic Morphologically Selected Sperm Injection (IMSI). We critically assess the efficacy of these methods in terms of sperm motility, morphology, DNA integrity, and other functional attributes, providing a detailed comparison of their clinical outcomes. We highlight the transition from conventional sperm selection methods, which primarily focus on physical characteristics, to more sophisticated techniques that offer a comprehensive evaluation of sperm molecular properties. This shift not only promises enhanced prediction of fertilization success but also has significant implications for improving embryo quality and increasing the chances of live birth. By synthesizing various studies and research papers, we present an in-depth analysis of the predictability of different sperm selection procedures in ART. The review also discusses the clinical applicability of these methods, emphasizing their potential in shaping the future of assisted reproduction. Our findings suggest that the integration of advanced sperm selection strategies in ART could lead to more cost-effective treatments with reduced duration and higher success rates. This review aims to provide clinicians and researchers in reproductive medicine with comprehensive insights into the current state and future prospects of sperm selection technologies in ART.
Collapse
Affiliation(s)
- Xiang Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuen Chao
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ningxin Ye
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Dongfang Ouyang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada.
| |
Collapse
|
13
|
Banti M, Van Zyl E, Kafetzis D. Sperm Preparation with Microfluidic Sperm Sorting Chip May Improve Intracytoplasmic Sperm Injection Outcomes Compared to Density Gradient Centrifugation. Reprod Sci 2024; 31:1695-1704. [PMID: 38393626 PMCID: PMC11111481 DOI: 10.1007/s43032-024-01483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Does sperm preparation using the FERTILE PLUS™ Sperm Sorting Chip improve fertilization rates, blastocyst formation, utilization, and euploidy rates in patients undergoing intracytoplasmic sperm injection (ICSI), compared with density gradient centrifugation (DGC)? A single-cohort, retrospective data review including data from 53 couples who underwent ICSI cycles within a 12-month period. For each couple, the two closest, consecutive cycles were identified, where one used the standard technique of sperm preparation (DGC) and the subsequent used FERTILE PLUS™, therefore, couples acted as their own controls. Paired samples t-test was used to compare means for the outcomes (fertilization, blastocyst formation, utilization, and euploidy rates). Binary logistic regression analysis assessed the relationship between female age, the presence of male factor infertility, and euploidy rates. Blastocyst, utilization, and euploidy rates were significantly higher for cycles using FERTILE PLUS™ compared to DGC (76% vs 56%, p = 0.002; 60% vs 41%, p = 0.005, and 40% vs 20%, p = 0.001, respectively). Although there was an increase in fertilization rates for cycles using FERTILE PLUS™, this was not significant (72% vs 68%, p = 0.449). The euploidy rates of females ≤ 35 years were significantly increased when the FERTILE PLUS™ sperm preparation method was used, compared to the older age group (OR 2.31, p = 0.007). No significant association was found between the presence or absence of male factor infertility and euploidy rates between the two cycles. This study provides tentative evidence that the FERTILE PLUS™ microfluidic sorting device for sperm selection can improve blastocyst formation, utilization, and euploidy rates following ICSI in comparison to the DGC method.
Collapse
Affiliation(s)
- Maria Banti
- Orchid Reproductive & Andrology Services, Dubai Healthcare City, Unit 4016, Block E, Al Razi Bldg #64, Dubai, UAE.
| | - Estee Van Zyl
- Orchid Reproductive & Andrology Services, Dubai Healthcare City, Unit 4016, Block E, Al Razi Bldg #64, Dubai, UAE
| | - Dimitrios Kafetzis
- Orchid Reproductive & Andrology Services, Dubai Healthcare City, Unit 4016, Block E, Al Razi Bldg #64, Dubai, UAE
| |
Collapse
|
14
|
Sheibak N, Amjadi F, Shamloo A, Zarei F, Zandieh Z. Microfluidic sperm sorting selects a subpopulation of high-quality sperm with a higher potential for fertilization. Hum Reprod 2024; 39:902-911. [PMID: 38461455 DOI: 10.1093/humrep/deae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/12/2024] [Indexed: 03/12/2024] Open
Abstract
STUDY QUESTION Is a microfluidic sperm sorter (MSS) able to select higher quality sperm compared to conventional methods? SUMMARY ANSWER The MSS selects sperm with improved parameters, lower DNA fragmentation, and higher fertilizing potential. WHAT IS KNOWN ALREADY To date, the few studies that have compared microfluidics sperm selection with conventional methods have used heterogeneous study population and have lacked molecular investigations. STUDY DESIGN, SIZE, DURATION The efficiency of a newly designed MSS in isolating high-quality sperm was compared to the density-gradient centrifugation (DGC) and swim-up (SU) methods, using 100 semen samples in two groups, during 2023-2024. PARTICIPANTS/MATERIALS, SETTING, METHODS Semen specimens from 50 normozoospermic and 50 non-normozoospermic men were sorted using MSS, DGC, and SU methods to compare parameters related to the quality and fertilizing potential of sperm. The fertilizing potential of sperm was determined by measurement of phospholipase C zeta (PLCζ) and post-acrosomal sheath WW domain-binding protein (PAWP) expression using flow cytometry, and the chromatin dispersion test was used to assess sperm DNA damage. MAIN RESULTS AND THE ROLE OF CHANCE In both normozoospermic and non-normozoospermic groups, the MSS-selected sperm with the highest progressive motility, PLCζ positive expression and PLCζ and PAWP fluorescence intensity the lowest non-progressive motility, and minimal DNA fragmentation, compared to sperm selected by DGC and SU methods (P < 0.05). LIMITATION, REASONS FOR CAUTION The major limitations of our study were the low yield of sperm in the MSS chips and intentional exclusion of severe male factor infertility to yield a sufficient sperm count for molecular experiments; thus testing with severe oligozoospermic semen and samples with low count and motility is still required. In addition, due to ethical considerations, at present, it was impossible to use the sperm achieved from MSS in the clinic to assess the fertilization rate and further outcomes. WIDER IMPLICATIONS OF THE FINDINGS Our research presents new evidence that microfluidic sperm sorting may result in the selection of high-quality sperm from raw semen. This novel technology might be a key to improving clinical outcomes of assisted reproduction in infertile patients. STUDY FUNDING/COMPETING INTEREST(S) The study is funded by the Iran University of Medical Sciences and no competing interest exists. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Nadia Sheibak
- Department of Anatomical Sciences, Reproductive Sciences and Technology Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomical Sciences, Reproductive Sciences and Technology Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Zarei
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomical Sciences, Reproductive Sciences and Technology Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Parrella A, Medrano L, Aizpurua J, Gómez-Torres MJ. Phospholipase C Zeta in Human Spermatozoa: A Systematic Review on Current Development and Clinical Application. Int J Mol Sci 2024; 25:1344. [PMID: 38279344 PMCID: PMC10815952 DOI: 10.3390/ijms25021344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
During fertilization, the fusion of the spermatozoa with the oocytes causes the release of calcium from the oocyte endoplasmatic reticulum. This, in turn, triggers a series of calcium ion (Ca2+) oscillations, a process known as oocyte activation. The sperm-specific factor responsible for oocyte activation is phospholipase C zeta (PLCζ). Men undergoing intracytoplasmic sperm injection (ICSI) with their spermatozoa lacking PLCζ are incapable of generating Ca2+ oscillation, leading to fertilization failure. The immunofluorescence assay is the most used technique to assess the expression and localization of PLCζ and to diagnose patients with reduced/absent ability to activate the oocytes. In these patients, the use of assisted oocyte activation (AOA) technique can help to yield successful ICSI results and shorten the time of pregnancy. However, the production of a stable PLCζ recombinant protein represents a new powerful therapeutic approach to treating individuals with this condition. We aim to conduct a systematic review focusing on the expression, level, and localization of PLCζ, discussing the novel genetic mutation associated with its impairment. In addition, we highlight the benefits of AOA, looking at new and less invasive methods to diagnose and treat cases with PLCζ dysfunction.
Collapse
Affiliation(s)
- Alessandra Parrella
- IVF Life, Reproductive Medicine, 03540 Alicante, Spain; (A.P.); (L.M.); (J.A.)
| | - Llanos Medrano
- IVF Life, Reproductive Medicine, 03540 Alicante, Spain; (A.P.); (L.M.); (J.A.)
| | - Jon Aizpurua
- IVF Life, Reproductive Medicine, 03540 Alicante, Spain; (A.P.); (L.M.); (J.A.)
- Cátedra Human Fertility, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain
| | - María José Gómez-Torres
- Cátedra Human Fertility, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain
| |
Collapse
|
16
|
Soto-Heras S, Sakkas D, Miller DJ. Sperm selection by the oviduct: perspectives for male fertility and assisted reproductive technologies†. Biol Reprod 2023; 108:538-552. [PMID: 36625382 PMCID: PMC10106845 DOI: 10.1093/biolre/ioac224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
The contribution of sperm to embryogenesis is gaining attention with up to 50% of infertility cases being attributed to a paternal factor. The traditional methods used in assisted reproductive technologies for selecting and assessing sperm quality are mainly based on motility and viability parameters. However, other sperm characteristics, including deoxyribonucleic acid integrity, have major consequences for successful live birth. In natural reproduction, sperm navigate the male and female reproductive tract to reach and fertilize the egg. During transport, sperm encounter many obstacles that dramatically reduce the number arriving at the fertilization site. In humans, the number of sperm is reduced from tens of millions in the ejaculate to hundreds in the Fallopian tube (oviduct). Whether this sperm population has higher fertilization potential is not fully understood, but several studies in animals indicate that many defective sperm do not advance to the site of fertilization. Moreover, the oviduct plays a key role in fertility by modulating sperm transport, viability, and maturation, providing sperm that are ready to fertilize at the appropriate time. Here we present evidence of sperm selection by the oviduct with emphasis on the mechanisms of selection and the sperm characteristics selected. Considering the sperm parameters that are essential for healthy embryonic development, we discuss the use of novel in vitro sperm selection methods that mimic physiological conditions. We propose that insight gained from understanding how the oviduct selects sperm can be translated to assisted reproductive technologies to yield high fertilization, embryonic development, and pregnancy rates.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - David J Miller
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
17
|
Sperm DNA Damage and Its Relevance in Fertility Treatment: A Review of Recent Literature and Current Practice Guidelines. Int J Mol Sci 2023; 24:ijms24021446. [PMID: 36674957 PMCID: PMC9860847 DOI: 10.3390/ijms24021446] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
Sperm deoxyribonucleic acid (DNA) damage has recently emerged as one of the most controversial topics in male reproductive medicine. While level I evidence indicates that abnormal sperm DNA damage has substantial adverse effects on reproductive outcomes (including chance of pregnancy and risk of miscarriage), there is limited consensus on how sperm DNA fragmentation (SDF) testing should be performed and/or interpreted in clinical practice. In this article, we review: (1) how SDF is assessed, (2) cumulative evidence regarding its impact on reproductive outcomes, (3) methods for mitigating high SDF, and (4) the most recent practice guidelines available for clinicians regarding the use and interpretation of SDF testing.
Collapse
|