1
|
Vogelmann U, Stadler M, Soldini A, Chang KY, Chen M, Bulubas L, Dechantsreiter E, Plewnia C, Fallgatter A, Langguth B, Normann C, Frase L, Zwanzger P, Kammer T, Schönfeldt-Lecuona C, Kamp D, Bajbouj M, Hunold A, Schramm S, Priller J, Palm U, Charvet L, Keeser D, Burkhardt G, Padberg F. A Comparative Analysis of Technical Data: At-Home vs. In-Clinic Application of Transcranial Direct Current Stimulation in Depression. Brain Stimul 2025:S1935-861X(25)00207-4. [PMID: 40374109 DOI: 10.1016/j.brs.2025.05.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025] Open
Abstract
OBJECTIVE The application of transcranial direct current stimulation (tDCS) at home for the treatment of depression and other neuropsychiatric disorders presents both significant opportunities and inherent challenges. Ensuring safety and maintaining high-quality stimulation are paramount for the efficacy and safety of at-home tDCS. This study investigates tDCS quality based on its technical parameters as well as safety of at-home and in-clinic tDCS applications comparing the data from two randomized controlled trials in patients with major depressive disorder. METHODS We analyzed 229 active stimulation sessions from the HomeDC study (at-home tDCS) and 835 sessions from the DepressionDC study (in-clinic tDCS). Notably, five adverse events (skin lesions) were reported exclusively in the at-home cohort, highlighting the critical need for enhanced safety protocols in unsupervised environments. RESULTS The analysis revealed a significant difference in the average variability of impedances between at-home and in-clinic applications (F1,46 = 4.96, p = .031, η2 = .097). The at-home tDCS sessions exhibited higher impedance variability (M = 837, SD = 328) compared to in-clinic sessions (M = 579, SD = 309). Furthermore, at-home tDCS sessions resulting in adverse events (AEs) were associated with significantly higher average impedances than sessions without such issues. CONCLUSION The study demonstrates that monitoring the technical parameters of at-home tDCS used in this study is essential. However, it may be not sufficient for ensuring safety and promptly detecting or preventing adverse events. Quality control protocols including digital training and monitoring techniques should be systematically developed and tested for a reliable and safe application of at-home tDCS therapies.
Collapse
Affiliation(s)
- Ulrike Vogelmann
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, TUM University Hospital, Germany; German Center for Mental Health (DZPG), partner site München-Augsburg, Germany.
| | - Matthias Stadler
- Institute of Medical Education, University Hospital LMU, Munich, Germany
| | - Aldo Soldini
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany
| | - Kai-Yen Chang
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany; Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany
| | - Miaoxi Chen
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Lucia Bulubas
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany; Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany
| | - Christian Plewnia
- Tübingen Center for Mental Health, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), partner site Tübingen, Germany
| | - Andreas Fallgatter
- Tübingen Center for Mental Health, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), partner site Tübingen, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Lukas Frase
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Peter Zwanzger
- kbo-Inn-Salzach-Klinikum, Clinical Center for Psychiatry, Psychotherapy, Psychosomatic Medicine, Geriatrics and Neurology, Gabersee, Wasserburg/Inn, Germany
| | - Thomas Kammer
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| | | | - Daniel Kamp
- Department of Psychiatry and Psychotherapy, LVR-Klinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Psychotherapy, Charité-Campus Benjamin Franklin, Berlin, Germany; German Center for Mental Health (DZPG), partner site Berlin-Potsdam, Germany
| | | | - Severin Schramm
- German Center for Mental Health (DZPG), partner site München-Augsburg, Germany; Institute for Neuroradiology, Technical University of Munich, TUM School of Medicine and Health, TUM University Hospital, Germany
| | - Josef Priller
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, TUM University Hospital, Germany; German Center for Mental Health (DZPG), partner site München-Augsburg, Germany
| | - Ulrich Palm
- Institute of Medical Education, University Hospital LMU, Munich, Germany; P3 Clinic, Private Hospital for Psychiatry, Psychotherapy and Psychosomatics, Tutzing, Germany
| | - Leigh Charvet
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, USA
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany; Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany
| | - Gerrit Burkhardt
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany; German Center for Mental Health (DZPG), partner site München-Augsburg, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany; German Center for Mental Health (DZPG), partner site München-Augsburg, Germany
| |
Collapse
|
2
|
Kumpf U, Ezim H, Stadler M, Burkhardt G, Palm U, Dechantsreiter E, Padberg F. Transcranial direct current stimulation as treatment for major depression in a home treatment setting (HomeDC trial): study protocol and methodology of a double-blind, placebo-controlled pilot study. Pilot Feasibility Stud 2023; 9:197. [PMID: 38102647 PMCID: PMC10722795 DOI: 10.1186/s40814-023-01423-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) of prefrontal cortex regions has been reported to exert therapeutic effects in patients with major depressive disorder (MDD). Due to its beneficial safety profile, its easy mode of application, and its cost-effectiveness, tDCS has recently been proposed for treatment at home. This would offer new chances for regionally widespread and long-term application. However, tDCS at home must meet the new methodological challenges of handling and adherence. At the same time, data from randomized controlled trials (RCT) investigating this mode of application are still lacking. In this pilot RCT, we therefore investigate the feasibility, safety, and effectiveness of a new antidepressant tDCS application set-up. METHODS AND ANALYSIS The HomeDC trial will be conducted as a double-blind, placebo-controlled, parallel-group design trial. Thirty-two study participants with MDD will be randomly assigned to active or sham tDCS groups. Participants will self-administer prefrontal tDCS for 6 weeks. Active tDCS will be conducted with anode over F3, cathode over F4, for 5 sessions/week, with a duration of 30 min/day, and 2 mA stimulation intensity. Sham tDCS, conversely, follows an identical protocol in regard to electrode montage and timing, but with no electric stimulation between the ramp-in and ramp-out periods. Both conditions will be administered either as a monotherapy or an adjunctive treatment to a stable dose of antidepressant medication. Adjunctive magnetic resonance imaging (MRI) and electric field (E-field) modelling will be conducted at baseline. Primary outcome is feasibility based on successfully completed stimulations and drop-out rates. The intervention is considered feasible when 20 out of 30 sessions have been fully conducted by at least 75% of the participants. Effectiveness and safety will be assessed as secondary outcomes. DISCUSSION In the HomeDC trial, the technical requirements for a placebo-controlled tDCS study in a home-based treatment setting have been established. The trial addresses the crucial points of the home-based tDCS treatment approach: uniform electrode positioning, frequent monitoring of stimulation parameters, adherence, and ensuring an appropriate home treatment environment. This study will further identify constraints and drawbacks of this novel mode of treatment. TRIAL REGISTRATION www. CLINICALTRIALS gov . TRIAL REGISTRATION NUMBER NCT05172505. Registration date: 12/13/2021.
Collapse
Affiliation(s)
- Ulrike Kumpf
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany.
| | - Harry Ezim
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Matthias Stadler
- Faculty of Psychology and Educational Sciences, Ludwig Maximilian University Munich, Munich, Germany
| | - Gerrit Burkhardt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Ulrich Palm
- Medicalpark Chiemseeblick, Bernau-Felden, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| |
Collapse
|
3
|
Kumpf U, Palm U, Eder J, Ezim H, Stadler M, Burkhardt G, Dechantsreiter E, Padberg F. TDCS at home for depressive disorders: an updated systematic review and lessons learned from a prematurely terminated randomized controlled pilot study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1403-1420. [PMID: 37191697 PMCID: PMC10185954 DOI: 10.1007/s00406-023-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The application of transcranial direct current stimulation (tDCS) at home for the treatment of major depressive disorder (MDD) is the subject of current clinical trials. This is due to its positive safety profile, cost-effectiveness, and potential scalability for a wide outreach in clinical practice. Here, we provide a systematic review of the available studies and also a report on the results of a randomized controlled trial (RCT) on tDCS at home for the treatment of MDD. This trial had to be prematurely terminated due to safety concerns. The HomeDC trial is a double-blinded, placebo-controlled, parallel-group study. Patients with MDD (DSM-5) were randomized to active or sham tDCS. Patients conducted tDCS at home for 6 weeks with 5 sessions/week (30 min at 2 mA) anode over F3, cathode over F4. Sham tDCS resembled active tDCS, with ramp-in and ramp-out periods, but without intermittent stimulation. The study was prematurely terminated due to an accumulation of adverse events (AEs, skin lesions), so that only 11 patients were included. Feasibility was good. Safety monitoring was not sufficient enough to detect or prevent AEs within an appropriate timeframe. Regarding antidepressant effects, the reduction in depression scales over time was significant. However, active tDCS was not superior to sham tDCS in this regard. Both the conclusions from this review and the HomeDC trial show that there are several critical issues with the use of tDCS at home that need to be addressed. Nevertheless the array of transcranial electric simulation (TES) methods that this mode of application offers, including tDCS, is highly interesting and warrants further investigation in high quality RCTs. TRIAL REGISTRATION www. CLINICALTRIALS gov . TRIAL REGISTRATION NUMBER NCT05172505. Registration date: 12/13/2021, https://clinicaltrials.gov/ct2/show/NCT05172505 . *Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all databases/registers) **If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation tools From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://doi.org/10.1136/bmj.n71 . For more information, visit: http://www.prisma-statement.org/.
Collapse
Affiliation(s)
- Ulrike Kumpf
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany.
| | - Ulrich Palm
- Medicalpark Chiemseeblick, Bernau-Felden, Germany
| | - Julia Eder
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Harry Ezim
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Matthias Stadler
- Faculty of Psychology and Educational Sciences Ludwig Maximilian University Munich, Munich, Germany
| | - Gerrit Burkhardt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| |
Collapse
|
4
|
Zhou Y, Xia X, Zhao X, Yang R, Wu Y, Liu J, Lyu X, Li Z, Zhang G, Du X. Efficacy and safety of Transcranial Direct Current Stimulation (tDCS) on cognitive function in chronic schizophrenia with Tardive Dyskinesia (TD): a randomized, double-blind, sham-controlled, clinical trial. BMC Psychiatry 2023; 23:623. [PMID: 37620825 PMCID: PMC10464035 DOI: 10.1186/s12888-023-05112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
OBJECTIVE Previous studies have shown that transcranial direct current stimulation(tDCS) led to an improvement of cognitive function in patients with schizophrenia, but rare study has explored the effect of tDCS on long-term hospitalized chronic schizophrenia with tardive dyskinesia (TD). The present research explored if cognitive function in patients with long-term hospitalized chronic schizophrenia with TD could be improved through tDCS. METHODS This study is a randomized, double-blind, sham-controlled clinical trial. Of the 52 patients, 14 dropped out, and 38 completed the experiment. Thirty-eight patients on stable treatment regimens were randomly assigned to receive active tDCS(n = 21) or sham stimulation(n = 17) on weekdays of the first, third, and fifth weeks of treatment. Patients performed the Pattern Recognition Memory (PRM) and the Intra/Extradimensional Set Shift (IED) from the Cambridge Neuropsychological Test Automated Battery (CANTAB) at baseline and the end of week 3, week 5. Clinical symptoms were also measured at the baseline and the fifth week using the Scale for the Assessment of Negative Symptoms (SANS) and the Positive and Negative Syndrome Scale (PANSS). Side effects of tDCS were assessed with an experimenter-administered open-ended questionnaire during the whole experiment. RESULTS There were no significant differences in PRM and IED performance metrics, SANS total score and PANSS total score between active and sham tDCS groups at the end of week 5 (p > 0.05). Furthermore, there was a significant difference in the adverse effects of the tingling sensation between the two groups (p < 0.05), but there was no significant difference in other side effects (p > 0.05). CONCLUSION According to these findings, no evidence supports using anodal stimulation over the left dorsolateral prefrontal cortex to improve cognitive function in patients with long-term hospitalized chronic schizophrenia with TD.
Collapse
Affiliation(s)
- Yue Zhou
- Xuzhou Medical University, Xuzhou, China
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xingzhi Xia
- Xuzhou Medical University, Xuzhou, China
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xueli Zhao
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Ruchang Yang
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
- Medical College of Soochow University, Suzhou, China
| | - Yuxuan Wu
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
- Medical College of Soochow University, Suzhou, China
| | - Junjun Liu
- Nanjing Meishan Hospital, Nanjing, China
| | - Xiaoli Lyu
- Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, China
| | - Zhe Li
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Guangya Zhang
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiangdong Du
- Xuzhou Medical University, Xuzhou, China.
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Burkhardt G, Kumpf U, Crispin A, Goerigk S, Andre E, Plewnia C, Brendel B, Fallgatter A, Langguth B, Abdelnaim M, Hebel T, Normann C, Frase L, Zwanzger P, Diemer J, Kammer T, Schönfeldt-Lecuona C, Kamp D, Bajbouj M, Behler N, Wilkening A, Nenov-Matt T, Dechantsreiter E, Keeser D, Bulubas L, Palm U, Blankenstein C, Mansmann U, Falkai P, Brunoni AR, Hasan A, Padberg F. Transcranial direct current stimulation as an additional treatment to selective serotonin reuptake inhibitors in adults with major depressive disorder in Germany (DepressionDC): a triple-blind, randomised, sham-controlled, multicentre trial. Lancet 2023; 402:545-554. [PMID: 37414064 DOI: 10.1016/s0140-6736(23)00640-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/28/2023] [Accepted: 03/22/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been proposed as a feasible treatment for major depressive disorder (MDD). However, meta-analytic evidence is heterogenous and data from multicentre trials are scarce. We aimed to assess the efficacy of tDCS versus sham stimulation as an additional treatment to a stable dose of selective serotonin reuptake inhibitors (SSRIs) in adults with MDD. METHODS The DepressionDC trial was triple-blind, randomised, and sham-controlled and conducted at eight hospitals in Germany. Patients being treated at a participating hospital aged 18-65 years were eligible if they had a diagnosis of MDD, a score of at least 15 on the Hamilton Depression Rating Scale (21-item version), no response to at least one antidepressant trial in their current depressive episode, and treatment with an SSRI at a stable dose for at least 4 weeks before inclusion; the SSRI was continued at the same dose during stimulation. Patients were allocated (1:1) by fixed-blocked randomisation to receive either 30 min of 2 mA bifrontal tDCS every weekday for 4 weeks, then two tDCS sessions per week for 2 weeks, or sham stimulation at the same intervals. Randomisation was stratified by site and baseline Montgomery-Åsberg Depression Rating Scale (MADRS) score (ie, <31 or ≥31). Participants, raters, and operators were masked to treatment assignment. The primary outcome was change on the MADRS at week 6, analysed in the intention-to-treat population. Safety was assessed in all patients who received at least one treatment session. The trial was registered with ClinicalTrials.gov (NCT02530164). FINDINGS Between Jan 19, 2016, and June 15, 2020, 3601 individuals were assessed for eligibility. 160 patients were included and randomly assigned to receive either active tDCS (n=83) or sham tDCS (n=77). Six patients withdrew consent and four patients were found to have been wrongly included, so data from 150 patients were analysed (89 [59%] were female and 61 [41%] were male). No intergroup difference was found in mean improvement on the MADRS at week 6 between the active tDCS group (n=77; -8·2, SD 7·2) and the sham tDCS group (n=73; -8·0, 9·3; difference 0·3 [95% CI -2·4 to 2·9]). Significantly more participants had one or more mild adverse events in the active tDCS group (50 [60%] of 83) than in the sham tDCS group (33 [43%] of 77; p=0·028). INTERPRETATION Active tDCS was not superior to sham stimulation during a 6-week period. Our trial does not support the efficacy of tDCS as an additional treatment to SSRIs in adults with MDD. FUNDING German Federal Ministry of Education and Research.
Collapse
Affiliation(s)
- Gerrit Burkhardt
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrike Kumpf
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alexander Crispin
- Ludwig-Maximilians-Universität Hospital, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Goerigk
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychological Methodology and Assessment, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychology, Charlotte Fresenius Hochschule, University of Psychology, Munich, Germany
| | - Elisabeth Andre
- Münchner Studienzentrum, Technical University of Munich, Munich, Germany
| | - Christian Plewnia
- Tübingen Center for Mental Health, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Bettina Brendel
- Tübingen Center for Mental Health, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany; Institute of Clinical Epidemiology and Applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Andreas Fallgatter
- Tübingen Center for Mental Health, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Mohamed Abdelnaim
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Tobias Hebel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine and Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany
| | - Lukas Frase
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Peter Zwanzger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany; kbo-Inn-Salzach-Klinikum, Clinical Center for Psychiatry, Psychotherapy, Psychosomatic Medicine, Geriatrics and Neurology, Wasserburg am Inn, Germany
| | - Julia Diemer
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany; kbo-Inn-Salzach-Klinikum, Clinical Center for Psychiatry, Psychotherapy, Psychosomatic Medicine, Geriatrics and Neurology, Wasserburg am Inn, Germany
| | - Thomas Kammer
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| | | | - Daniel Kamp
- Department of Psychiatry and Psychotherapy, Landschaftsverband-Rheinland-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Psychotherapy, Charité-Campus Benjamin Franklin, University Medicine Berlin, Berlin, Germany
| | - Nora Behler
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anja Wilkening
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tabea Nenov-Matt
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany; NeuroImaging Core Unit Munich, Ludwig-Maximilians-Universität München, Munich, Germany; Munich Center for Neurosciences-Brain and Mind, Munich, Germany
| | - Lucia Bulubas
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | | | - Ulrich Mansmann
- Ludwig-Maximilians-Universität Hospital, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany; Munich Center for Neurosciences-Brain and Mind, Munich, Germany
| | - Andre R Brunoni
- Department of Internal Medicine and Department of Psychiatry, University of São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
6
|
Navarro-López V, Del-Valle-Gratacós M, Fernández-Vázquez D, Fernández-González P, Carratalá-Tejada M, Molina-Rueda F. Transcranial direct current stimulation in the management of phantom limb pain: a systematic review of randomized controlled trials. Eur J Phys Rehabil Med 2022; 58:738-748. [PMID: 35758072 PMCID: PMC10019480 DOI: 10.23736/s1973-9087.22.07439-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Phantom limb pain (PLP) after amputation is a frequent entity that conditions the life of those who suffer it. Current treatment methods are not sufficiently effective for PLP management. We aim to analyze the clinical application of transcranial direct current (tDCS) in people with amputation suffering from PLP. EVIDENCE ACQUISITION The following databases were consulted in September 2021: MEDLINE, EMBASE, The Web of Science, PEDro, SCOPUS and SciELO. Randomized controlled trials investigating the use of tDCS in people with amputation undergoing PLP were selected. Demographic data, type and cause of amputation, time since amputation, stimulation parameters, and outcomes were extracted. EVIDENCE SYNTHESIS Six articles were included in this review (seven studies were considered because one study performed two individual protocols). All included studies evaluated PLP; six evaluated the phantom limb sensations (PLS) and two evaluated the psychiatric disorders. In all included studies the intensity and frequency of PLP was reduced, in three PLS were reduced, and in none study psychiatric symptoms were modified. CONCLUSIONS Anodic tDCS over the contralateral M1 to the affected limb, with an intensity of 1-2 mA, for 15-20 minutes seems to significantly reduce PLP in people with amputation. Single-session treatment could modify PLP intensity for hours, and multi-session treatment could modify PLP for months. Limited evidence suggests that PLS and psychiatric disorders should be treated with different PLP electrode placements. Further studies with larger sample size and longer follow-up times are needed to establish the priority of tDCS application in the PLP management.
Collapse
Affiliation(s)
- Víctor Navarro-López
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain
- International Doctoral School, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | | | - Diego Fernández-Vázquez
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain
- International Doctoral School, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Pilar Fernández-González
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain
| | - María Carratalá-Tejada
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain -
| | - Francisco Molina-Rueda
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain
| |
Collapse
|
7
|
Aust S, Brakemeier EL, Spies J, Herrera-Melendez AL, Kaiser T, Fallgatter A, Plewnia C, Mayer SV, Dechantsreiter E, Burkhardt G, Strauß M, Mauche N, Normann C, Frase L, Deuschle M, Böhringer A, Padberg F, Bajbouj M. Efficacy of Augmentation of Cognitive Behavioral Therapy With Transcranial Direct Current Stimulation for Depression: A Randomized Clinical Trial. JAMA Psychiatry 2022; 79:528-537. [PMID: 35442431 PMCID: PMC9021985 DOI: 10.1001/jamapsychiatry.2022.0696] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
IMPORTANCE Major depressive disorder (MDD) affects approximately 10% of the population globally. Approximately 20% to 30% of patients with MDD do not sufficiently respond to standard treatment. Therefore, there is a need to develop more effective treatment strategies. OBJECTIVE To investigate whether the efficacy of cognitive behavioral therapy (CBT) for the treatment of MDD can be enhanced by concurrent transcranial direct current stimulation (tDCS). DESIGN, SETTING, AND PARTICIPANTS The double-blind, placebo-controlled randomized clinical trial PsychotherapyPlus was conducted at 6 university hospitals across Germany. Enrollment took place between June 2, 2016, and March 10, 2020; follow-up was completed August 27, 2020. Adults aged 20 to 65 years with a single or recurrent depressive episode were eligible. They were either not receiving medication or were receiving a stable regimen of antidepressant medication (selective serotonin reuptake inhibitor and/or mirtazapine). A total of 148 women and men underwent randomization: 53 individuals were assigned to CBT alone (group 0), 48 to CBT plus tDCS (group 1), and 47 to CBT plus sham-tDCS (group 2). INTERVENTIONS Participants attended a 6-week group intervention comprising 12 sessions of CBT. If assigned, tDCS was applied simultaneously. Active tDCS included stimulation with an intensity of 2 mA for 30 minutes (anode over F3, cathode over F4). MAIN OUTCOMES AND MEASURES The primary outcome was the change in Montgomery-Åsberg Depression Rating Scale (MADRS) score from baseline to posttreatment in the intention-to-treat sample. Scores of 0 to 6 indicate no depression; 7 to 19, mild depression; 20 to 34, moderate depression; and 34 and higher, severe depression. RESULTS A total of 148 patients (89 women, 59 men; mean [SD] age, 41.1 [13.7] years; MADRS score at baseline, 23.0 [6.4]) were randomized. Of these, 126 patients (mean [SD] age, 41.5 [14.0] years; MADRS score at baseline, 23.0 [6.3]) completed the study. In each of the intervention groups, intervention was able to reduce MADRS scores by a mean of 6.5 points (95% CI, 3.82-9.14 points). The Cohen d value was -0.90 (95% CI, -1.43 to -0.50), indicating a significant effect over time. However, there was no significant effect of group and no significant interaction of group × time, indicating the estimated additive effects were not statistically significant. There were no severe adverse events throughout the whole trial, and there were no significant differences of self-reported adverse effects during and after stimulation between groups 1 and 2. CONCLUSIONS AND RELEVANCE Based on MADRS score changes, this trial did not indicate superior efficacy of tDCS-enhanced CBT compared with 2 CBT control conditions. The study confirmed that concurrent group CBT and tDCS is safe and feasible. However, additional research on mechanisms of neuromodulation to complement CBT and other behavioral interventions is needed. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02633449.
Collapse
Affiliation(s)
- Sabine Aust
- Charité–Universitätsmedizin Berlin, Department of Psychiatry, Campus Benjamin Franklin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eva-Lotta Brakemeier
- Department of Clinical Psychology and Psychotherapy, Universität Greifswald, Greifswald, Germany
| | - Jan Spies
- Charité–Universitätsmedizin Berlin, Department of Psychiatry, Campus Benjamin Franklin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ana Lucia Herrera-Melendez
- Charité–Universitätsmedizin Berlin, Department of Psychiatry, Campus Benjamin Franklin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tim Kaiser
- Department of Clinical Psychology and Psychotherapy, Universität Greifswald, Greifswald, Germany
| | - Andreas Fallgatter
- Universitätsklinik für Psychiatrie und Psychotherapie, Neurophysiologie & Interventionelle Neuropsychiatrie, Tübingen Center for Mental Health, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Christian Plewnia
- Universitätsklinik für Psychiatrie und Psychotherapie, Neurophysiologie & Interventionelle Neuropsychiatrie, Tübingen Center for Mental Health, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Sarah V. Mayer
- Universitätsklinik für Psychiatrie und Psychotherapie, Neurophysiologie & Interventionelle Neuropsychiatrie, Tübingen Center for Mental Health, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany
| | - Gerrit Burkhardt
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany
| | - Maria Strauß
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Nicole Mauche
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine & Center for Basics in NeuroModulation, University of Freiburg, Freiburg, Germany
| | - Lukas Frase
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine & Center for Basics in NeuroModulation, University of Freiburg, Freiburg, Germany
| | - Michael Deuschle
- Central Institute for Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Andreas Böhringer
- Central Institute for Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany
| | - Malek Bajbouj
- Charité–Universitätsmedizin Berlin, Department of Psychiatry, Campus Benjamin Franklin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Mizutani-Tiebel Y, Takahashi S, Karali T, Mezger E, Bulubas L, Papazova I, Dechantsreiter E, Stoecklein S, Papazov B, Thielscher A, Padberg F, Keeser D. Differences in electric field strength between clinical and non-clinical populations induced by prefrontal tDCS: A cross-diagnostic, individual MRI-based modeling study. Neuroimage Clin 2022; 34:103011. [PMID: 35487132 PMCID: PMC9125784 DOI: 10.1016/j.nicl.2022.103011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023]
Abstract
MDD and SCZ showed lower prefrontal tDCS-induced e-field strengths compared to HC. Average e-field strengths did not significantly differ between MDD and SCZ patients. Inter-individual variability of e-field intensities and distribution was prominent. Inter-rater variability emphasizes the importance of standardized positioning.
Introduction Prefrontal cortex (PFC) regions are promising targets for therapeutic applications of non-invasive brain stimulation, e.g. transcranial direct current stimulation (tDCS), which has been proposed as a novel intervention for major depressive disorder (MDD) and negative symptoms of schizophrenia (SCZ). However, the effects of tDCS vary inter-individually, and dose–response relationships have not been established. Stimulation parameters are often tested in healthy subjects and transferred to clinical populations. The current study investigates the variability of individual MRI-based electric fields (e-fields) of standard bifrontal tDCS across individual subjects and diagnoses. Method The study included 74 subjects, i.e. 25 patients with MDD, 24 patients with SCZ, and 25 healthy controls (HC). Individual e-fields of a common tDCS protocol (i.e. 2 mA stimulation intensity, bifrontal anode-F3/cathode-F4 montage) were modeled by two investigators using SimNIBS (2.0.1) based on structural MRI scans. Result On a whole-brain level, the average e-field strength was significantly reduced in MDD and SCZ compared to HC, but MDD and SCZ did not differ significantly. Regions of interest (ROI) analysis for PFC subregions showed reduced e-fields in Sallet areas 8B and 9 for MDD and SCZ compared to HC, whereas there was again no difference between MDD and SCZ. Within groups, we generally observed high inter-individual variability of e-field intensities at a higher percentile of voxels. Conclusion MRI-based e-field modeling revealed significant differences in e-field strengths between clinical and non-clinical populations in addition to a general inter-individual variability. These findings support the notion that dose–response relationships for tDCS cannot be simply transferred from healthy to clinical cohorts and need to be individually established for clinical groups. In this respect, MRI-based e-field modeling may serve as a proxy for individualized dosing.
Collapse
Affiliation(s)
- Yuki Mizutani-Tiebel
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM), Munich, Germany.
| | - Shun Takahashi
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Clinical Research and Education Center, Asakayama General Hospital, Sakai, Japan; Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Temmuz Karali
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany
| | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Lucia Bulubas
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Irina Papazova
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Psychiatry and Psychotherapy, University of Augsburg, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | | | - Boris Papazov
- NeuroImaging Core Unit Munich (NICUM), Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM), Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany; Munich Center for Neurosciences (MCN) - Brain & Mind, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
9
|
Cheng YC, Kuo PH, Su MI, Huang WL. The efficacy of non-invasive, non-convulsive electrical neuromodulation on depression, anxiety and sleep disturbance: a systematic review and meta-analysis. Psychol Med 2022; 52:801-812. [PMID: 35105413 DOI: 10.1017/s0033291721005560] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effects of non-invasive, non-convulsive electrical neuromodulation (NINCEN) on depression, anxiety and sleep disturbance are inconsistent in different studies. Previous meta-analyses on transcranial direct current stimulation (tDCS) and cerebral electrotherapy stimulation (CES) suggested that these methods are effective on depression. However, not all types of NINECN were included; results on anxiety and sleep disturbance were lacking and the influence of different populations and treatment parameters was not completely analyzed. We searched PubMed, Embase, PsycInfo, PsycArticles and CINAHL before March 2021 and included published randomized clinical trials of all types of NINCEN for symptoms of depression, anxiety and sleep in clinical and non-clinical populations. Data were pooled using a random-effects model. The main outcome was change in the severity of depressive symptoms after NINCEN treatment. A total of 58 studies on NINCEN were included in the meta-analysis. Active tDCS showed a significant effect on depressive symptoms (Hedges' g = 0.544), anxiety (Hedges' g = 0.667) and response rate (odds ratio = 1.9594) compared to sham control. CES also had a significant effect on depression (Hedges' g = 0.654) and anxiety (Hedges' g = 0.711). For all types of NINCEN, active stimulation was significantly effective on depression, anxiety, sleep efficiency, sleep latency, total sleep time, etc. Our results showed that tDCS has significant effects on both depression and anxiety and that these effects are robust for different populations and treatment parameters. The rational expectation of the tDCS effect is 'response' rather than 'remission'. CES also is effective for depression and anxiety, especially in patients with disorders of low severity.
Collapse
Affiliation(s)
- Ying-Chih Cheng
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Min-I Su
- Division of Cardiology, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Wei-Lieh Huang
- Department of Psychiatry, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| |
Collapse
|
10
|
Ekhtiari H, Ghobadi-Azbari P, Thielscher A, Antal A, Li LM, Shereen AD, Cabral-Calderin Y, Keeser D, Bergmann TO, Jamil A, Violante IR, Almeida J, Meinzer M, Siebner HR, Woods AJ, Stagg CJ, Abend R, Antonenko D, Auer T, Bächinger M, Baeken C, Barron HC, Chase HW, Crinion J, Datta A, Davis MH, Ebrahimi M, Esmaeilpour Z, Falcone B, Fiori V, Ghodratitoostani I, Gilam G, Grabner RH, Greenspan JD, Groen G, Hartwigsen G, Hauser TU, Herrmann CS, Juan CH, Krekelberg B, Lefebvre S, Liew SL, Madsen KH, Mahdavifar-Khayati R, Malmir N, Marangolo P, Martin AK, Meeker TJ, Ardabili HM, Moisa M, Momi D, Mulyana B, Opitz A, Orlov N, Ragert P, Ruff CC, Ruffini G, Ruttorf M, Sangchooli A, Schellhorn K, Schlaug G, Sehm B, Soleimani G, Tavakoli H, Thompson B, Timmann D, Tsuchiyagaito A, Ulrich M, Vosskuhl J, Weinrich CA, Zare-Bidoky M, Zhang X, Zoefel B, Nitsche MA, Bikson M. A checklist for assessing the methodological quality of concurrent tES-fMRI studies (ContES checklist): a consensus study and statement. Nat Protoc 2022; 17:596-617. [PMID: 35121855 PMCID: PMC7612687 DOI: 10.1038/s41596-021-00664-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/12/2021] [Indexed: 11/09/2022]
Abstract
Low-intensity transcranial electrical stimulation (tES), including alternating or direct current stimulation, applies weak electrical stimulation to modulate the activity of brain circuits. Integration of tES with concurrent functional MRI (fMRI) allows for the mapping of neural activity during neuromodulation, supporting causal studies of both brain function and tES effects. Methodological aspects of tES-fMRI studies underpin the results, and reporting them in appropriate detail is required for reproducibility and interpretability. Despite the growing number of published reports, there are no consensus-based checklists for disclosing methodological details of concurrent tES-fMRI studies. The objective of this work was to develop a consensus-based checklist of reporting standards for concurrent tES-fMRI studies to support methodological rigor, transparency and reproducibility (ContES checklist). A two-phase Delphi consensus process was conducted by a steering committee (SC) of 13 members and 49 expert panelists through the International Network of the tES-fMRI Consortium. The process began with a circulation of a preliminary checklist of essential items and additional recommendations, developed by the SC on the basis of a systematic review of 57 concurrent tES-fMRI studies. Contributors were then invited to suggest revisions or additions to the initial checklist. After the revision phase, contributors rated the importance of the 17 essential items and 42 additional recommendations in the final checklist. The state of methodological transparency within the 57 reviewed concurrent tES-fMRI studies was then assessed by using the checklist. Experts refined the checklist through the revision and rating phases, leading to a checklist with three categories of essential items and additional recommendations: (i) technological factors, (ii) safety and noise tests and (iii) methodological factors. The level of reporting of checklist items varied among the 57 concurrent tES-fMRI papers, ranging from 24% to 76%. On average, 53% of checklist items were reported in a given article. In conclusion, use of the ContES checklist is expected to enhance the methodological reporting quality of future concurrent tES-fMRI studies and increase methodological transparency and reproducibility.
Collapse
Affiliation(s)
| | - Peyman Ghobadi-Azbari
- Department of Biomedical Engineering, Shahed University, Tehran, Iran
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andrea Antal
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Lucia M Li
- Computational, Cognitive and Clinical Imaging Lab, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
- UK DRI Centre for Care Research and Technology, Imperial College London, London, UK
| | - A Duke Shereen
- Advanced Science Research Center, The Graduate Center, City University of New York, New York, NY, USA
| | - Yuranny Cabral-Calderin
- Research Group Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Munich, Germany
- Department of Radiology, University Hospital LMU Munich, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), University Hospital LMU Munich, Munich, Germany
| | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
- Department of Neurology and Stroke and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Asif Jamil
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jorge Almeida
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Marcus Meinzer
- Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Rany Abend
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Daria Antonenko
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Tibor Auer
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Marc Bächinger
- Neural Control of Movement Lab, Department of Health Sciences and Technology, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, University Hospital Ghent, Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel, University Hospital Brussels, Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Helen C Barron
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jenny Crinion
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Abhishek Datta
- Research and Development, Soterix Medical, New York, USA
- The City College of the City University of New York, New York, USA
| | - Matthew H Davis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Mohsen Ebrahimi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Brian Falcone
- Northrop Grumman Company, Mission Systems, Falls Church, VA, USA
| | - Valentina Fiori
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Iman Ghodratitoostani
- Neurocognitive Engineering Laboratory (NEL), Center for Engineering Applied to Health, Institute of Mathematics and Computer Science (ICMC), University of Sao Paulo, Sao Paulo, Brazil
| | - Gadi Gilam
- Systems Neuroscience and Pain Laboratory, Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roland H Grabner
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Joel D Greenspan
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Georg Groen
- Department of Psychiatry, University of Ulm, Ulm, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tobias U Hauser
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Christoph S Herrmann
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
- Neuroimaging Unit, European Medical School, University of Oldenburg, Oldenburg, Germany
- Research Centre Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan, Taiwan
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - Stephanie Lefebvre
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Sook-Lei Liew
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
- USC Stevens Neuroimaging and Informatics Institute, Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, K, Lyngby, Denmark
| | | | - Nastaran Malmir
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Paola Marangolo
- Department of Humanities Studies, University Federico II, Naples, Italy
- Aphasia Research Lab, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Andrew K Martin
- Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
- Department of Psychology, University of Kent, Canterbury, UK
| | - Timothy J Meeker
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Hossein Mohaddes Ardabili
- Psychiatry and Behavioral Sciences Research Center, Ibn-e-Sina Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marius Moisa
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Davide Momi
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Beni Mulyana
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Natasza Orlov
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Psychology, Jagiellonian University, Cracow, Poland
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christian C Ruff
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Giulio Ruffini
- Neuroelectrics Corporation, Cambridge, Cambridge, MA, USA
- Neuroelectrics Corporation, Barcelona, Barcelona, Spain
| | - Michaela Ruttorf
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arshiya Sangchooli
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Gottfried Schlaug
- Neuroimaging-Neuromodulation and Stroke Recovery Laboratories, Department of Neurology, Baystate-University of Massachusetts Medical School, and Department of Biomedical Engineering, Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ghazaleh Soleimani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hosna Tavakoli
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Cognitive Neuroscience, Institute for Cognitive Sciences Studies, Tehran, Iran
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
- Centre for Eye and Vision Research, Hong Kong, Hong Kong
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | | | - Martin Ulrich
- Department of Psychiatry, University of Ulm, Ulm, Germany
| | - Johannes Vosskuhl
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Christiane A Weinrich
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Department of Cognitive Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Mehran Zare-Bidoky
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
- Shahid-Sadoughi University of Medical Sciences, Yazd, Iran
| | - Xiaochu Zhang
- Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, China
| | - Benedikt Zoefel
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| |
Collapse
|
11
|
Mota SM, Amaral de Castro L, Riedel PG, Torres CM, Bragatti JA, Brondani R, Secchi TL, Sanches PRS, Caumo W, Bianchin MM. Home-Based Transcranial Direct Current Stimulation for the Treatment of Symptoms of Depression and Anxiety in Temporal Lobe Epilepsy: A Randomized, Double-Blind, Sham-Controlled Clinical Trial. Front Integr Neurosci 2021; 15:753995. [PMID: 34955774 PMCID: PMC8693513 DOI: 10.3389/fnint.2021.753995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
We conducted a double-blind randomized clinical trial in order to examine the effects and the safety of home-based transcranial direct current stimulation (tDCS) on depressive and anxious symptoms of patients with temporal lobe epilepsy (TLE). We evaluated 26 adults with TLE and depressive symptoms randomized into two different groups: active tDCS (tDCSa) and Sham (tDCSs). The patients were first submitted to 20 sessions of tDCS for 20 min daily, 5 days a week for 4 weeks and then received a maintenance tDCS application in the research laboratory once a week for 3 weeks. The intensity of the current was 2 mA, applied bilaterally over the dorsolateral prefrontal cortex, with the anode positioned on the left side and the cathode on the right side. Participants were evaluated on days 1, 15, 30, and 60 of the study using the Beck Depression Inventory II (BDI). A follow-up evaluation was performed 1 year after the end of treatment. They were also evaluated for quality of life and for anxious symptoms as secondary outcomes. The groups did not differ in clinical, socioeconomic or psychometric characteristics at the initial assessment. There was no statistically significant difference between groups regarding reported adverse effects, seizure frequency or dropouts. On average, between the 1st and 60th day, the BDI score decreased by 43.93% in the active group and by 44.67% in the Sham group (ΔBDIfinal – initial = −12.54 vs. −12.20, p = 0.68). The similar improvement in depressive symptoms observed in both groups was attributed to placebo effect and interaction between participants and research group and not to tDCS intervention per se. In our study, tDCS was safe and well tolerated, but it was not effective in reducing depressive or anxiety symptoms in patients with temporal lobe epilepsy. Clinical Trial Registration: [ClinicalTrials.gov], identifier [NCT03871842].
Collapse
Affiliation(s)
- Suelen Mandelli Mota
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Carolina Machado Torres
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centro para Tratamento de Epilepsia Refratária (CETER), Basic Research and Advanced Investigations in Neuroscience (BRAIN), Serviço de Neurologia do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - José Augusto Bragatti
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centro para Tratamento de Epilepsia Refratária (CETER), Basic Research and Advanced Investigations in Neuroscience (BRAIN), Serviço de Neurologia do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Rosane Brondani
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centro para Tratamento de Epilepsia Refratária (CETER), Basic Research and Advanced Investigations in Neuroscience (BRAIN), Serviço de Neurologia do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Thais Leite Secchi
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Wolnei Caumo
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Engenharia Biomédica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Dor & Neuromodulação, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Marino Muxfeldt Bianchin
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centro para Tratamento de Epilepsia Refratária (CETER), Basic Research and Advanced Investigations in Neuroscience (BRAIN), Serviço de Neurologia do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
12
|
Choi GY, Han CH, Lee HT, Paik NJ, Kim WS, Hwang HJ. An artificial neural-network approach to identify motor hotspot for upper-limb based on electroencephalography: a proof-of-concept study. J Neuroeng Rehabil 2021; 18:176. [PMID: 34930380 PMCID: PMC8686235 DOI: 10.1186/s12984-021-00972-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Background To apply transcranial electrical stimulation (tES) to the motor cortex, motor hotspots are generally identified using motor evoked potentials by transcranial magnetic stimulation (TMS). The objective of this study is to validate the feasibility of a novel electroencephalography (EEG)-based motor-hotspot-identification approach using a machine learning technique as a potential alternative to TMS. Methods EEG data were measured using 63 channels from thirty subjects as they performed a simple finger tapping task. Power spectral densities of the EEG data were extracted from six frequency bands (delta, theta, alpha, beta, gamma, and full) and were independently used to train and test an artificial neural network for motor hotspot identification. The 3D coordinate information of individual motor hotspots identified by TMS were quantitatively compared with those estimated by our EEG-based motor-hotspot-identification approach to assess its feasibility. Results The minimum mean error distance between the motor hotspot locations identified by TMS and our proposed motor-hotspot-identification approach was 0.22 ± 0.03 cm, demonstrating the proof-of-concept of our proposed EEG-based approach. A mean error distance of 1.32 ± 0.15 cm was measured when using only nine channels attached to the middle of the motor cortex, showing the possibility of practically using the proposed motor-hotspot-identification approach based on a relatively small number of EEG channels. Conclusion We demonstrated the feasibility of our novel EEG-based motor-hotspot-identification method. It is expected that our approach can be used as an alternative to TMS for motor hotspot identification. In particular, its usability would significantly increase when using a recently developed portable tES device integrated with an EEG device.
Collapse
Affiliation(s)
- Ga-Young Choi
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Chang-Hee Han
- Department of Software, College of Software Convergence, Dongseo University, Busan, 47011, South Korea
| | - Hyung-Tak Lee
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, South Korea
| | - Nam-Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, 13620, Republic of Korea
| | - Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, 13620, Republic of Korea.
| | - Han-Jeong Hwang
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea. .,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, South Korea.
| |
Collapse
|
13
|
Kumpf U, Stadler M, Plewnia C, Bajbouj M, Langguth B, Zwanzger P, Normann C, Keeser D, Schellhorn K, Egert-Schwender S, Berkes S, Palm U, Hasan A, Padberg F. Transcranial Direct Current Stimulation (tDCS) for major depression - Interim analysis of cloud supervised technical data from the DepressionDC trial. Brain Stimul 2021; 14:1234-1237. [PMID: 34391956 DOI: 10.1016/j.brs.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) of prefrontal cortex regions has been reported to exert antidepressant effects, though large scale multicenter trials in major depressive disorder (MDD) supporting this notion are still lacking. Application of tDCS in multicenter settings, however, requires measurement, storage and evaluation of technical parameters of tDCS sessions not only for safety reasons but also for quality control. To address this issue, we conducted an interim analysis of supervised technical data across study centers in order to monitor technical quality of tDCS in an ongoing multicenter RCT in MDD (DepressionDC trial). METHODS Technical data of 818 active tDCS sessions were recorded, stored in a data cloud, and analysed without violating study blinding. Impedance, voltage and current were monitored continuously with one data point recorded every second of stimulation. RESULTS Variability of impedance was considerable (1,42 kΩ, to 8,23 kΩ), inter-individually and even more intra-individually, but did not significantly differ between the study centre in Munich and all other sites. CONCLUSION Measurement, centralized data storage via data cloud and remote supervision of technical parameters of tDCS are feasible and proposed for future RCTs on therapeutic tDCS in multiple settings.
Collapse
Affiliation(s)
- U Kumpf
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany.
| | - M Stadler
- Faculty of Psychology and Educational Sciences, Ludwig Maximilian University Munich, Germany
| | - C Plewnia
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - M Bajbouj
- Department of Psychiatry and Psychotherapy, Charité-Campus Benjamin Franklin, Berlin, Germany
| | - B Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - P Zwanzger
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany; kbo-Inn-Salzach-Hospital, Wasserburg am Inn, Germany
| | - C Normann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine & Center for Basics in Neuomodulation NeuroModulBasics, University of Freiburg, Germany
| | - D Keeser
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Germany; Department of Radiology, Ludwig Maximilian University Munich, Germany; Munich Center for Neurosciences (MCN) - Brain & Mind, Planegg-Martinsried, Germany
| | | | | | - S Berkes
- NeuroCare Group GmbH, Munich, Germany
| | - U Palm
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany; Medicalpark Chiemseeblick, Bernau-Felden, Germany
| | - A Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, BKH Augsburg, Augsburg, Germany
| | - F Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Germany
| |
Collapse
|
14
|
Brain glucose uptake during transcranial direct current stimulation measured with functional [ 18F]FDG-PET. Brain Imaging Behav 2021; 14:477-484. [PMID: 31598826 PMCID: PMC7160063 DOI: 10.1007/s11682-019-00195-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous evidence indicates that transcranial direct stimulation (tDCS) is a neuromodulatory brain stimulation technique. Easy applicability, low side-effects and negligible costs facilitated its wide-spread application in efforts to modulate brain function, however neuronal mechanisms of tDCS are insufficiently understood. Hence, we investigated the immediate impact of tDCS on the brain's glucose consumption in a continuous infusion protocol with the radioligand 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) and positron emission tomography (PET). This novel functional PET (fPET) method is capable to reliably detect area-specific and dynamic absolute glucose demand related to neuronal activity in a single molecular imaging session. Fifteen healthy subjects underwent tDCS at 0.5, 1 and 2 mA (mA) at the bilateral dorsolateral prefrontal cortex (dlPFC, cathodal right) for 10 min during functional [18F]FDG-PET lasting 70 min. Active stimulation compared to sham did not yield significant changes in glucose consumption at any tested stimulation intensity in this paradigm. Exploratory investigation of aftereffects provided hints for increased glucose consumption with a delay of 5 min at 1 mA in the right posterior temporal cortex. This is the first study investigating changes of glucose consumption in the brain during tDCS. The lack of immediately increased glucose consumption indicates that energy demanding processes in the brain such as glutamatergic signaling might not be immediately increased by tDCS. However, our results implicate the need of fPET investigations for medium-term and long-term effects.
Collapse
|
15
|
Transcranial direct current stimulation induces long-term potentiation-like plasticity in the human visual cortex. Transl Psychiatry 2021; 11:17. [PMID: 33414402 PMCID: PMC7791098 DOI: 10.1038/s41398-020-01134-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is increasingly used as a form of noninvasive brain stimulation to treat psychiatric disorders; however, its mechanism of action remains unclear. Prolonged visual stimulation (PVS) can enhance evoked EEG potentials (visually evoked potentials, VEPs) and has been proposed as a tool to examine long-term potentiation (LTP) in humans. The objective of the current study was to induce and analyze VEP plasticity and examine whether tDCS could either modulate or mimic plasticity changes induced by PVS. Thirty-eight healthy participants received tDCS, PVS, either treatment combined or neither treatment, with stimulation sessions being separated by one week. One session consisted of a baseline VEP measurement, one stimulation block, and six test VEP measurements. For PVS, a checkerboard reversal pattern was presented, and for tDCS, a constant current of 1 mA was applied via each bioccipital anodal target electrode for 10 min (Fig. S1). Both stimulation types decreased amplitudes of C1 compared to no stimulation (F = 10.1; p = 0.002) and led to a significantly smaller increase (PVS) or even decrease (tDCS) in N1 compared to no stimulation (F = 4.7; p = 0.034). While all stimulation types increased P1 amplitudes, the linear mixed effects model did not detect a significant difference between active stimulation and no stimulation. Combined stimulation induced sustained plastic modulation of C1 and N1 but with a smaller effect size than what would be expected for an additive effect. The results demonstrate that tDCS can directly induce LTP-like plasticity in the human cortex and suggest a mechanism of action of tDCS relying on the restoration of dysregulated synaptic plasticity in psychiatric disorders such as depression and schizophrenia.
Collapse
|
16
|
Effects of bifrontal transcranial direct current stimulation on brain glutamate levels and resting state connectivity: multimodal MRI data for the cathodal stimulation site. Eur Arch Psychiatry Clin Neurosci 2021; 271:111-122. [PMID: 32743758 PMCID: PMC7867555 DOI: 10.1007/s00406-020-01177-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
Transcranial direct current stimulation (tDCS) over prefrontal cortex (PFC) regions is currently proposed as therapeutic intervention for major depression and other psychiatric disorders. The in-depth mechanistic understanding of this bipolar and non-focal stimulation technique is still incomplete. In a pilot study, we investigated the effects of bifrontal stimulation on brain metabolite levels and resting state connectivity under the cathode using multiparametric MRI techniques and computational tDCS modeling. Within a double-blind cross-over design, 20 subjects (12 women, 23.7 ± 2 years) were randomized to active tDCS with standard bifrontal montage with the anode over the left dorsolateral prefrontal cortex (DLPFC) and the cathode over the right DLPFC. Magnetic resonance spectroscopy (MRS) was acquired before, during, and after prefrontal tDCS to quantify glutamate (Glu), Glu + glutamine (Glx) and gamma aminobutyric acid (GABA) concentration in these areas. Resting-state functional connectivity MRI (rsfcMRI) was acquired before and after the stimulation. The individual distribution of tDCS induced electric fields (efields) within the MRS voxel was computationally modelled using SimNIBS 2.0. There were no significant changes of Glu, Glx and GABA levels across conditions but marked differences in the course of Glu levels between female and male participants were observed. Further investigation yielded a significantly stronger Glu reduction after active compared to sham stimulation in female participants, but not in male participants. For rsfcMRI neither significant changes nor correlations with MRS data were observed. Exploratory analyses of the effect of efield intensity distribution on Glu changes showed distinct effects in different efield groups. Our findings are limited by the small sample size, but correspond to previously published results of cathodal tDCS. Future studies should address gender and efield intensity as moderators of tDCS induced effects.
Collapse
|
17
|
Razza LB, Palumbo P, Moffa AH, Carvalho AF, Solmi M, Loo CK, Brunoni AR. A systematic review and meta-analysis on the effects of transcranial direct current stimulation in depressive episodes. Depress Anxiety 2020; 37:594-608. [PMID: 32101631 DOI: 10.1002/da.23004] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has shown mixed results for depression treatment. OBJECTIVE To perform a systematic review and meta-analysis of trials using tDCS to improve depressive symptoms. METHODS A systematic review was performed from the first date available to January 06, 2020 in PubMed, EMBASE, Cochrane Library, and additional sources. We included randomized, sham-controlled clinical trials (RCTs) enrolling participants with an acute depressive episode and compared the efficacy of active versus sham tDCS, including association with other interventions. The primary outcome was the Hedges' g for continuous depression scores; secondary outcomes included odds ratios (ORs) and number needed to treat (NNT) for response, remission, and acceptability. Random effects models were employed. Sources of heterogeneity were explored via metaregression, sensitivity analyses, subgroup analyses, and bias assessment. RESULTS We included 23 RCTs (25 datasets, 1,092 participants), most (57%) presenting a low risk of bias. Active tDCS was superior to sham regarding endpoint depression scores (k = 25, g = 0.46, 95% confidence interval [CI]: 0.22-0.70), and also achieved superior response (k = 18, 33.3% vs. 16.56%, OR = 2.28 [1.52-3.42], NNT = 6) and remission (k = 18, 19.12% vs. 9.78%, OR = 2.12 [1.42-3.16], NNT = 10.7) rates. Moreover, active tDCS was as acceptable as sham. No risk of publication bias was identified. Cumulative meta-analysis showed that effect sizes are basically unchanged since total sample reached 439 participants. CONCLUSIONS TDCS is modestly effective in treating depressive episodes. Further well-designed, large-scale RCTs are warranted.
Collapse
Affiliation(s)
- Lais B Razza
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Priscila Palumbo
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Adriano H Moffa
- Black Dog Institute, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Marco Solmi
- Department of Neurosciences, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Colleen K Loo
- Black Dog Institute, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Andre Russowsky Brunoni
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Hunold A, Ortega D, Schellhorn K, Haueisen J. Novel flexible cap for application of transcranial electrical stimulation: a usability study. Biomed Eng Online 2020; 19:50. [PMID: 32552720 PMCID: PMC7302393 DOI: 10.1186/s12938-020-00792-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/06/2020] [Indexed: 11/12/2022] Open
Abstract
Background Advances in transcranial electrical stimulation (tES) are hampered by the conventional rubber electrodes manually attached to the head with rubber bands. This procedure limits montages to a few electrodes, is error prone with respect to electrode configurations and is burdensome for participants and operators. A newly developed flexible cap with integrated textile stimulation electrodes was compared to the conventional setup of rubber electrodes inserted into sponges fixated by rubber bands, with respect to usability and reliability. Two operators applied both setups to 20 healthy volunteers participating in the study. Electrode position and impedance measures as well as subjective evaluations from participants and operators were obtained throughout the stimulation sessions. Results Our results demonstrated the superiority of the flexible cap by means of significantly higher electrode configuration reproducibility and a more efficient application. Both, operators and volunteers evaluated the flexible cap as easier to use and more comfortable to wear when compared to the conventional setup. Conclusion In conclusion, the new cap improves existing and opens new application scenarios for tES.
Collapse
Affiliation(s)
- Alexander Hunold
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany.
| | - Daniela Ortega
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany.,Bioinstrumentation and Clinical Engineering Research Group, Universidad de Antioquia, Medellín, 050010, Colombia
| | | | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany.,Hans Berger Department of Neurology, Biomagnetic Center, University Hospital Jena, 07747, Jena, Germany
| |
Collapse
|
19
|
Lee J, Jin Y, Yoon B. Bilateral Transcranial Direct Stimulation Over the Primary Motor Cortex Alters Motor Modularity of Multiple Muscles. J Mot Behav 2019; 52:474-488. [PMID: 31795875 DOI: 10.1080/00222895.2019.1646206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has been demonstrated to modulate the motor performance of both healthy individuals and patients with neuromuscular disorders. However, the effect of tDCS on motor control of multiple muscles, which is a prerequisite to change in motor performance, is currently unknown. Using dimensionality reduction analysis, we investigated whether bilateral tDCS over M1 modulates the coordinated activity of 12 muscles. Fifteen healthy men participated in this randomized, double-blind crossover study. Each participant received a 20-min sham and 2-mA stimulation bilaterally over M1 (anode on the right M1 and cathode on the left M1), with a minimum washout period of 4 days. Muscle activation and end-point kinematics were evaluated during a task where participants reached out to a marked target with non-dominant hand as fast as possible, before and immediately after tDCS application. We found decreased similarity in motor modularity and significant changes in muscle activation in a specific motor module, particularly when reaching out to a target placed within arm's length and improved smoothness index of movement only following 2-mA stimulation. These findings indicate that clinicians and researchers need to consider the simultaneous effect of bilateral tDCS over M1 on multiple muscles when they establish tDCS protocol to change in motor performance of patients with neuromuscular deficits.
Collapse
Affiliation(s)
- JaeHyuk Lee
- Major in Rehabilitation Science, Graduate School, Korea University, Seoul, Korea
| | - Yan Jin
- Major in Rehabilitation Science, Graduate School, Korea University, Seoul, Korea
| | - BumChul Yoon
- Major in Rehabilitation Science, Graduate School, Korea University, Seoul, Korea.,Department of Physical Therapy, College of Health Science, Korea University, Seoul, Korea
| |
Collapse
|
20
|
Sharafi E, Taghva A, Arbabi M, Dadarkhah A, Ghaderi J. Transcranial Direct Current Stimulation for Treatment-Resistant Major Depression: A Double-Blind Randomized Sham-Controlled Trial. Clin EEG Neurosci 2019; 50:375-382. [PMID: 31304775 DOI: 10.1177/1550059419863209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the current study, we tried to evaluate the effect of transcranial direct current stimulation (tDCS) on treatment-resistant major depression. We carried out a double-blind randomized sham-controlled trial was conducted in University Hospitals. Individuals with less than 50% decrease in the intensity of depression after 8 weeks of treatment with selective serotonin reuptake inhibitors were recruited. Thirty patients (16 women) with a mean (SD) age of 47.2 (12.0) years were randomly allocated to 2 groups. For the active group we administered 2-mA stimulation 20 minutes for each session, with 30 seconds ramp-up from 0 and 30 seconds ramp-down. For the sham group we administered 30 seconds ramp-up to 2 mA, 10 seconds stimulation, 30 seconds ramp-down, and 20 minutes no current. The anode was fixed on the center of F3, and the cathode on F4, over the dorsolateral prefrontal cortex. We assessed the Hamilton Depression Rating Scale at the baseline (mean difference = 1.0, P = .630), at the last session of tDCS, and at 1-month postintervention. There were statistically significant differences in the mean Hamilton scores after the intervention, and 1 month later in favor of active group; P < .001, and P = .003, respectively. Mixed analysis of variance showed a significant difference in the mean scores for active group P = .010 and pattern of change during the study P < .001 in favor of active intervention. We concluded that tDCS is an efficient therapy for patients with resistant major depression, and the benefits would remain at least for 1 month.
Collapse
Affiliation(s)
- Elham Sharafi
- 1 Department of Psychiatry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arsia Taghva
- 2 Department of Psychiatry, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Arbabi
- 1 Department of Psychiatry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Afsaneh Dadarkhah
- 3 Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Jamshid Ghaderi
- 4 Tehran University of Medical Sciences, Roozbeh Hospital, Tehran, Islamic Republic of Iran
| |
Collapse
|
21
|
Nenov-Matt T, Kumpf U, Behler N, Mezger E, Keeser D, Plewnia C, Langguth B, Zwanzger P, Frase L, Cordes J, Kammer T, Wulf L, Wörsching J, Bajbouj M, Palm U, Padberg F. Transcranial direct current stimulation (tDCS) as treatment for major depression–analysis of the first technical data from a blind selection of active tDCS sessions. Encephale 2019. [DOI: 10.1016/j.encep.2019.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Zhang Y, Wang H, Yan C, Wang L, Cheung EFC, Chan RC. Working memory training can improve anhedonia in college students with subsyndromal depressive symptoms. Psych J 2019; 8:401-410. [DOI: 10.1002/pchj.271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Yi‐Jing Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of PsychologyChinese Academy of Sciences Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Hao‐Yu Wang
- School of Psychological and Cognitive SciencesPeking University Beijing China
| | - Chao Yan
- School of Psychology and Cognitive ScienceEast China Normal University Shanghai China
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (MOE & STCSM)East China Normal University Shanghai China
| | - Ling‐Ling Wang
- School of Psychology and Cognitive ScienceEast China Normal University Shanghai China
| | | | - Raymond C.K. Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of PsychologyChinese Academy of Sciences Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| |
Collapse
|
23
|
Bares M, Brunovsky M, Stopkova P, Hejzlar M, Novak T. Transcranial Direct-Current Stimulation (tDCS) Versus Venlafaxine ER In The Treatment Of Depression: A Randomized, Double-Blind, Single-Center Study With Open-Label, Follow-Up. Neuropsychiatr Dis Treat 2019; 15:3003-3014. [PMID: 31695391 PMCID: PMC6815763 DOI: 10.2147/ndt.s226577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Transcranial direct-current stimulation (tDCS), a relatively new neuromodulation approach, provides some evidence of an antidepressant effect. This randomized, 4-week, double-blind study with 8-week, open-label, follow-up compared the efficacy and tolerability of left anodal tDCS with venlafaxine ER (VNF) in the treatment of depression and prevention of early relapse. METHODS Subjects (n = 57) received tDCS (2 mA, 20 sessions, 30 mins) plus placebo (n = 29) or VNF plus sham tDCS (n = 28). Responders to both interventions entered the open-label follow-up. The primary outcome was score change in the Montgomery-Åsberg Depression Rating Scale (MADRS) at week 4 of the study. Secondary outcomes were response, remission, dropout rates and relapse rates within the follow-up. UNLABELLED The mean change in the MADRS score from baseline to week for patients treated with tDCS was 7.69 (95% CI, 5.09-10.29) points and 9.64 (95% CI, 6.20-13.09) points for patients from the VNF group, a nonsignificant difference (1.95, 95% CI -2.25-6.16; t (55) = 0.93, p= 0.36, Cohen´s d = 0.24). There were no significant between-group differences in the MADRS scores from baseline to endpoint (intention-to-treat analysis). The response/remission rate for tDCS (24%/17%) and VNF (43%/32%) as well as the dropout rate (tDCS/VNF; 6/6) did not differ significantly between groups. In the follow-up, relapse (tDCS/VNF; 1/2) and dropout (tDCS/VNF; 2/3) rates were low and comparable. LIMITATIONS A relatively small sample size and short duration of the antidepressant treatment; no placebo arm. CONCLUSION Overall, this study found a similar efficacy of tDCS and VNF in the acute treatment of depression and prevention of early relapse. The real clinical usefulness of tDCS and its optimal parameters in the treatment of depression should be further validated.
Collapse
Affiliation(s)
- Martin Bares
- NIMH Clinical Center, National Institute of Mental Health Czech Republic, Topolova 748, Klecany, Czech Republic.,The Department of Psychiatry and Medical Psychology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Brunovsky
- NIMH Clinical Center, National Institute of Mental Health Czech Republic, Topolova 748, Klecany, Czech Republic.,The Department of Psychiatry and Medical Psychology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavla Stopkova
- NIMH Clinical Center, National Institute of Mental Health Czech Republic, Topolova 748, Klecany, Czech Republic.,The Department of Psychiatry and Medical Psychology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Hejzlar
- NIMH Clinical Center, National Institute of Mental Health Czech Republic, Topolova 748, Klecany, Czech Republic.,The Department of Psychiatry and Medical Psychology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Novak
- NIMH Clinical Center, National Institute of Mental Health Czech Republic, Topolova 748, Klecany, Czech Republic.,The Department of Psychiatry and Medical Psychology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
24
|
PsychotherapyPlus: augmentation of cognitive behavioral therapy (CBT) with prefrontal transcranial direct current stimulation (tDCS) in major depressive disorder-study design and methodology of a multicenter double-blind randomized placebo-controlled trial. Eur Arch Psychiatry Clin Neurosci 2018; 268:797-808. [PMID: 29214483 DOI: 10.1007/s00406-017-0859-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/02/2017] [Indexed: 01/20/2023]
Abstract
Major Depressive Disorder (MDD) is one of the most prevalent psychiatric disorders worldwide. About 20-30% of patients do not respond to the standard psychopharmacological and/or psychotherapeutic interventions. Mounting evidence from neuroimaging studies in MDD patients reveal altered activation patterns in lateral prefrontal brain areas. Successful cognitive behavioral therapy (CBT) is associated with a recovery of these neural alterations. Moreover, it has been demonstrated that transcranial direct current stimulation (tDCS) is capable of influencing prefrontal cortex activity and cognitive functions such as working memory and emotion regulation. Thus, a clinical trial investigating the effects of an antidepressant intervention combining CBT with tDCS seems promising. The present study investigates the antidepressant efficacy of a combined CBT-tDCS intervention as compared to CBT with sham-tDCS or CBT alone. A total of 192 patients (age range 20-65 years) with MDD (Hamilton Depression Rating Scale Score ≥ 15, 21-item version) will be recruited at four study sites across Germany (Berlin, Munich, Tuebingen, and Freiburg) and randomly assigned to one of the following three treatment arms: (1) CBT + active tDCS; (2) CBT + sham-tDCS; and (3) CBT alone. All participants will attend a 6-week psychotherapeutic intervention comprising 12 sessions of CBT each lasting 100 min in a closed group setting. tDCS will be applied simultaneously with CBT. Active tDCS includes stimulation with an intensity of 2 mA for 30 min with the anode placed over F3 and the cathode over F4 according to the EEG 10-20 system, if assigned. The primary outcome measure is the change in Montgomery-Åsberg Depression Rating Scale scores from baseline to 6, 18, and 30 weeks after the first session. Participants also undergo pre- and post-treatment neuropsychological testing and functional magnetic resonance imaging (fMRI) to assess changes in prefrontal functioning and connectivity. The study investigates whether CBT can be augmented by non-invasive brain stimulation techniques such as tDCS in the treatment of MDD. It is designed as a proof-of-principle trial for the combined tDCS-CBT treatment, but also allows the investigation of the neurobiological underpinnings of the interaction between both interventions in MDD. Trial registration ClinicalTrials.gov Identifier NCT02633449.
Collapse
|
25
|
Sauvaget A, Tostivint A, Etcheverrigaray F, Pichot A, Dert C, Schirr-Bonnais S, Clouet J, Sellal O, Mauduit N, Leux C, Cabelguen C, Bulteau S, Riche VP. Hospital production cost of transcranial direct current stimulation (tDCS) in the treatment of depression. Neurophysiol Clin 2018; 49:11-18. [PMID: 30502122 DOI: 10.1016/j.neucli.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Due to its ease of use, tolerance, and cost of acquisition, transcranial direct current stimulation (tDCS) could constitute a credible therapeutic option for non-resistant depression in primary care, when combined with drug management. This indication has yet to receive official recognition in France. The objective of this study is to evaluate the production cost of tDCS for the treatment of depression in hospitals, under realistic conditions. METHODS The methodology adopted is based on cost accounting and was validated by a multidisciplinary working group. It includes equipment, staff, and structural costs to obtain the most realistic estimate possible. We first estimated the cost of producing a tDCS session, based on our annual activity objective, and then estimated the cost of a 15-session treatment program. This was followed up with a sensitivity analysis applying appropriate parameters. RESULTS The hospital production cost of a tDCS depression treatment program for a single patient was estimated at €1555.60 euros: €99 in equipment costs, €1076.95 in staff costs, and €379.65 in structural costs. CONCLUSION This cost analysis should make it possible to draw up pricing proposals in compliance with regulations and health policy choices and to develop health-economic studies. This would ultimately lead to official recognition of tDCS treatment for depression in France and pave the way for studying various scenarios of coverage by the French national health insurance system.
Collapse
Affiliation(s)
- Anne Sauvaget
- Addictology and liaison psychiatry department, Nantes university hospital, CHU de Nantes, Nantes, France; Laboratory "movement, interactions, performance" (EA 4334), faculty of sport sciences, university of Nantes, Nantes, France.
| | - Agathe Tostivint
- Addictology and liaison psychiatry department, Nantes university hospital, CHU de Nantes, Nantes, France
| | | | - Anne Pichot
- Addictology and liaison psychiatry department, Nantes university hospital, CHU de Nantes, Nantes, France
| | - Cécile Dert
- Innovation cell, partnership and innovation department, directorate of medical affairs and research, CHU de Nantes, Nantes, France
| | - Solène Schirr-Bonnais
- Innovation cell, partnership and innovation department, directorate of medical affairs and research, CHU de Nantes, Nantes, France
| | - Johann Clouet
- INSERM, UMR 1229, RMeS, regenerative medicine and skeleton, université de Nantes, ONIRIS, 44042 Nantes, France; Pharmacie Centrale, CHU Nantes, PHU 11, 44093 Nantes, France; UFR sciences biologiques et pharmaceutiques, université de Nantes, 44035 Nantes, France; UFR odontologie, université de Nantes, 44042 Nantes, France
| | - Olivier Sellal
- Pharmacie Centrale, CHU Nantes, PHU 11, 44093 Nantes, France
| | - Nicolas Mauduit
- Department of medical information, CHU de Nantes, Nantes, France
| | - Christophe Leux
- Department of medical information, CHU de Nantes, Nantes, France
| | - Clémence Cabelguen
- Addictology and liaison psychiatry department, Nantes university hospital, CHU de Nantes, Nantes, France
| | - Samuel Bulteau
- Addictology and liaison psychiatry department, Nantes university hospital, CHU de Nantes, Nantes, France; Inserm U1246 Sphere "methodS in Patient-centered outcomes and HEalth ResEarch", Nantes university, institute of health research IRS, 44200 Nantes, France
| | - Valéry-Pierre Riche
- Innovation cell, partnership and innovation department, directorate of medical affairs and research, CHU de Nantes, Nantes, France
| |
Collapse
|
26
|
Shahsavar Y, Ghoshuni M, Talaei A. Quantifying clinical improvements in patients with depression under the treatment of transcranial direct current stimulation using event related potentials. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 41:973-983. [PMID: 30390213 DOI: 10.1007/s13246-018-0696-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 10/09/2018] [Indexed: 01/17/2023]
Abstract
The main goal of this study was to assess the changes in brain activities of patients with severe depression by applying transcranial direct current stimulation (tDCS) using event related potentials (ERPs). Seven patients (four males, with the mean age 34.85 ± 4.25) were asked to fill out Beck's depression questionnaires. EEG signals of subjects were recorded during Stroop test. This test entailed 360 stimulations, which included 120 congruent, 120 incongruent, and 120 neutral stimulations lasting for 12 min. Subsequently, the dorso lateral prefrontal cortex in patients' left hemisphere was stimulated for six sessions using tDCS. At the end of tDCS treatment period, subjects filled out Beck's depression questionnaires again and EEG signal recordings were repeated simultaneously with Stroop test. Wavelet coefficients of EEG frequency bands in every stimulation type were extracted from ERP components. The changes in Beck score before and after tDCS were estimated using neural network model. The ERP results showed that the latency period of N400 component after applying tDCS decreased significantly. Moreover, a significant correlation was observed between percentage changes of congruent and incongruent accuracy and the increase in the average energy of wavelet coefficients in alpha band in Pz electrode with p = 0.0128, r = 0.9060 and p = 0.0037, r = 0.95, respectively. Additionally, the results of neural network model revealed that the changes in Beck score were estimated with an average error of 0.0519. Consequently, the improvement of depressed patients treated with tDCS could be estimated with good accuracy using average energy of wavelet coefficients in alpha band.
Collapse
Affiliation(s)
- Yeganeh Shahsavar
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Majid Ghoshuni
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ali Talaei
- Medical and Behavioral Sciences Research Center, University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Testing assumptions on prefrontal transcranial direct current stimulation: Comparison of electrode montages using multimodal fMRI. Brain Stimul 2018; 11:998-1007. [DOI: 10.1016/j.brs.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/25/2018] [Accepted: 05/01/2018] [Indexed: 11/19/2022] Open
|
28
|
Schmitt A, Falkai P. On the search of new treatment strategies in patients with affective disorders. Eur Arch Psychiatry Clin Neurosci 2017; 267:709-710. [PMID: 29071371 DOI: 10.1007/s00406-017-0844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Nußbaumstr. 7, 80336, Munich, Germany.
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Nußbaumstr. 7, 80336, Munich, Germany
| |
Collapse
|
29
|
Increased left prefrontal brain perfusion after MRI compatible tDCS attenuates momentary ruminative self-referential thoughts. Brain Stimul 2017; 10:1088-1095. [PMID: 28917591 DOI: 10.1016/j.brs.2017.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/05/2017] [Accepted: 09/04/2017] [Indexed: 02/08/2023] Open
|
30
|
Palm U, Kumpf U, Behler N, Wulf L, Kirsch B, Wörsching J, Keeser D, Hasan A, Padberg F. Home Use, Remotely Supervised, and Remotely Controlled Transcranial Direct Current Stimulation: A Systematic Review of the Available Evidence. Neuromodulation 2017; 21:323-333. [DOI: 10.1111/ner.12686] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/07/2017] [Accepted: 07/23/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Ulrich Palm
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Ulrike Kumpf
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Nora Behler
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Linda Wulf
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Beatrice Kirsch
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Jana Wörsching
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| |
Collapse
|