1
|
Czifrus E, Berlau DJ. Corticosteroids for the treatment of Duchenne muscular dystrophy: a safety review. Expert Opin Drug Saf 2024; 23:1237-1247. [PMID: 39152782 DOI: 10.1080/14740338.2024.2394578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration and weakness, caused by mutations in the dystrophin gene. DMD has effects in early age with significantly shortened lifespan and deteriorated quality of life in the second decade, creating an urgent need to develop better therapeutic options. Corticosteroid medication therapy is an integral tool for the management of DMD and several therapeutic options have been recently approved for use. AREAS COVERED A comprehensive literature search was completed to examine efficacy and safety profiles of the three corticosteroid medications available for use in DMD patients. The review presents information about the three agents through clinical trials, significant preclinical trials, and comparative studies. EXPERT OPINION Managing DMD takes a multidisciplinary approach, although long-term corticosteroid therapy remains a significant therapeutic tool. Based on the available published studies, unequivocal comparison between the benefits of the three medications cannot yet be made. When selecting a medication for a patient, the decision-making process will most likely rely on the minor differences in the adverse effect profiles. Whichever medication is utilized will surely be a part of a larger regimen that includes other novel therapeutic agents.
Collapse
Affiliation(s)
- Eszter Czifrus
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Daniel J Berlau
- Department of Pharmaceutical Sciences, School of Pharmacy, Regis University, Denver, CO
| |
Collapse
|
2
|
Kiperman T, Ma K. Circadian Clock in Muscle Disease Etiology and Therapeutic Potential for Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:4767. [PMID: 38731986 PMCID: PMC11083552 DOI: 10.3390/ijms25094767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Circadian clock and clock-controlled output pathways exert temporal control in diverse aspects of skeletal muscle physiology, including the maintenance of muscle mass, structure, function, and metabolism. They have emerged as significant players in understanding muscle disease etiology and potential therapeutic avenues, particularly in Duchenne muscular dystrophy (DMD). This review examines the intricate interplay between circadian rhythms and muscle physiology, highlighting how disruptions of circadian regulation may contribute to muscle pathophysiology and the specific mechanisms linking circadian clock dysregulation with DMD. Moreover, we discuss recent advancements in chronobiological research that have shed light on the circadian control of muscle function and its relevance to DMD. Understanding clock output pathways involved in muscle mass and function offers novel insights into the pathogenesis of DMD and unveils promising avenues for therapeutic interventions. We further explore potential chronotherapeutic strategies targeting the circadian clock to ameliorate muscle degeneration which may inform drug development efforts for muscular dystrophy.
Collapse
Affiliation(s)
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| |
Collapse
|
3
|
Czifrus E, Berlau DJ. Viltolarsen: a treatment option for Duchenne muscular dystrophy patients who are amenable to exon 53 skipping therapy. Expert Rev Neurother 2023; 23:853-858. [PMID: 37572081 DOI: 10.1080/14737175.2023.2246658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a progressive genetic disease leading to muscular weakness. DMD is caused by mutations of the dystrophin gene on the X chromosome that is responsible for production of dystrophin protein. Dystrophin contributes to structural support in muscle cells and mutations result in dystrophin protein deficiency which causes muscle damage and the associated clinical presentation. Exon skipping medications, including the exon 53 targeting viltolarsen, are the first agents with the ability to partially restore dystrophin protein. AREAS COVERED Herein, the authors profile viltolarsen for the DMD patients who are amenable to exon 53 skipping therapy and provide their expert perspectives on this subject. EXPERT OPINION Current findings suggest that viltolarsen could play a role in the current and possible future treatment of DMD. Viltolarsen seems to be safe and restores dystrophin protein to around 6% of the normal level. Due to orphan drug status, after the completion of the phase 2 clinical trial, viltolarsen was granted accelerated approval in Japan and in the US. A phase 3 trial is currently in progress and needs to earn full approval. Although a multidisciplinary approach continues to be critical, the addition of exon skipping agents like viltolarsen may improve the quality of patients' lives. However, data on the long-term safety and efficacy of this medication are not yet available due to its recent accelerated approval.
Collapse
Affiliation(s)
- Eszter Czifrus
- Semmelweis University Faculty of Medicine, Budapest, Hungary
| | - Daniel J Berlau
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, CO, USA
| |
Collapse
|
4
|
Mareedu S, Million ED, Duan D, Babu GJ. Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. Front Physiol 2021; 12:647010. [PMID: 33897454 PMCID: PMC8063049 DOI: 10.3389/fphys.2021.647010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by the loss of dystrophin. DMD is associated with muscle degeneration, necrosis, inflammation, fatty replacement, and fibrosis, resulting in muscle weakness, respiratory and cardiac failure, and premature death. There is no curative treatment. Investigations on disease-causing mechanisms offer an opportunity to identify new therapeutic targets to treat DMD. An abnormal elevation of the intracellular calcium (Cai2+) concentration in the dystrophin-deficient muscle is a major secondary event, which contributes to disease progression in DMD. Emerging studies have suggested that targeting Ca2+-handling proteins and/or mechanisms could be a promising therapeutic strategy for DMD. Here, we provide an updated overview of the mechanistic roles the sarcolemma, sarcoplasmic/endoplasmic reticulum, and mitochondria play in the abnormal and sustained elevation of Cai2+ levels and their involvement in DMD pathogenesis. We also discuss current approaches aimed at restoring Ca2+ homeostasis as potential therapies for DMD.
Collapse
Affiliation(s)
- Satvik Mareedu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Emily D Million
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, United States
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, United States.,Department of Biomedical, Biological & Chemical Engineering, The University of Missouri, Columbia, MO, United States
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
5
|
Abstract
BACKGROUND Duchenne muscular dystrophy is associated with progressive cardiorespiratory failure, including left ventricular dysfunction. METHODS AND RESULTS Males with probable or definite diagnosis of Duchenne muscular dystrophy, diagnosed between 1 January, 1982 and 31 December, 2011, were identified from the Muscular Dystrophy Surveillance Tracking and Research Network database. Two non-mutually exclusive groups were created: patients with ≥2 echocardiograms and non-invasive positive pressure ventilation-compliant patients with ≥1 recorded ejection fraction. Quantitative left ventricular dysfunction was defined as an ejection fraction <55%. Qualitative dysfunction was defined as mild, moderate, or severe. Progression of quantitative left ventricular dysfunction was modelled as a continuous time-varying outcome. Change in qualitative left ventricle function was assessed by the percentage of patients within each category at each age. Forty-one percent (n = 403) had ≥2 ejection fractions containing 998 qualitative assessments with a mean age at first echo of 10.8 ± 4.6 years, with an average first ejection fraction of 63.1 ± 12.6%. Mean age at first echo with an ejection fraction <55 was 15.2 ± 3.9 years. Thirty-five percent (140/403) were non-invasive positive pressure ventilation-compliant and had ejection fraction information. The estimated rate of decline in ejection fraction from first ejection fraction was 1.6% per year and initiation of non-invasive positive pressure ventilation did not change this rate. CONCLUSIONS In our cohort, we observed that left ventricle function in patients with Duchenne muscular dystrophy declined over time, independent of non-invasive positive pressure ventilation use. Future studies are needed to examine the impact of respiratory support on cardiac function.
Collapse
|
6
|
Leyva-Leyva M, Sandoval A, Felix R, González-Ramírez R. Biochemical and Functional Interplay Between Ion Channels and the Components of the Dystrophin-Associated Glycoprotein Complex. J Membr Biol 2018; 251:535-550. [PMID: 29779049 DOI: 10.1007/s00232-018-0036-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
Dystrophin is a cytoskeleton-linked membrane protein that binds to a larger multiprotein assembly called the dystrophin-associated glycoprotein complex (DGC). The deficiency of dystrophin or the components of the DGC results in the loss of connection between the cytoskeleton and the extracellular matrix with significant pathophysiological implications in skeletal and cardiac muscle as well as in the nervous system. Although the DGC plays an important role in maintaining membrane stability, it can also be considered as a versatile and flexible molecular complex that contribute to the cellular organization and dynamics of a variety of proteins at specific locations in the plasma membrane. This review deals with the role of the DGC in transmembrane signaling by forming supramolecular assemblies for regulating ion channel localization and activity. These interactions are relevant for cell homeostasis, and its alterations may play a significant role in the etiology and pathogenesis of various disorders affecting muscle and nerve function.
Collapse
Affiliation(s)
- Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Alejandro Sandoval
- Faculty of Superior Studies Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| | - Ricardo Felix
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico.
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico.
| |
Collapse
|
7
|
Abstract
This review aims to explain the inevitable imbalance between respiratory load, drive, and muscular force that occurs in the natural aging of Duchenne muscular dystrophy and that predisposes these patients to sleep disordered breathing (SDB). In DMD, SDB is characterized by oxygen desaturation, apneas, hypercapnia, and hypoventilation during sleep and ultimately develops into respiratory failure during wakefulness. It can be present in all age groups. Young patients risk obstructive apneas because of weight gain, secondary to progressive physical inactivity and prolonged corticosteroid therapy; older patients hypoventilate and desaturate because of respiratory muscle weakness, in particular the diaphragm. These conditions are further exacerbated during REM sleep, the phase of maximal muscle hypotonia during which the diaphragm has to provide most of the ventilation. Evidence is given to the daytime predictors of early symptoms of SDB, important indicators for the proper time to initiate mechanical ventilation.
Collapse
|
8
|
Salehi F, Zeinaloo A, Riasi HR, Shamloo AS. Effectiveness of Coenzyme Q10 on echocardiographic parameters of patients with Duchenne muscular dystrophy. Electron Physician 2017; 9:3896-3904. [PMID: 28461862 PMCID: PMC5407220 DOI: 10.19082/3896] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/23/2016] [Indexed: 02/02/2023] Open
Abstract
Background Myocardial damage is a common complication in patients with Duchenne muscular dystrophy (DMD) that occurs due to myocardial replacement by fat and fibrosis. In recent years, efforts have been made toward finding new pharmacological agents with fewer complications which can be used as prophylactic before the symptoms. Coenzyme Q10 plays a central role in production of bioenergy in heart muscle and antioxidant in reperfusion condition of myocardial damaged muscle and leads to membrane stability and prevents cell death. Objective This study aimed at comparing the Effectiveness of coenzyme Q10 on echocardiographic parameters of pediatric patients with Duchenne muscular dystrophy. Methods This randomized clinical trial study (RCT) was carried out on 25 pediatric patients with pre-diagnosed DMD who attended the Children’s Medical Center (CMC), Tehran, Iran from February 2013 to 2015. The patients were randomly divided into two groups. Group-1; (n=12) was treated with coenzyme Q10 for six months and group-2 ;(n=13) received placebo for the same time. The primary aim was to compare the myocardial performance index (MPI), between the two groups at the end of six months. Data were analyzed by SPSS software (ver-16) and using T-Test. Results Twenty-five patients under study were divided into two groups of (Q10=12) and (placebo=13). Mean ages were 8.9±1.7 and 8.6±1.4 in Q10 and placebo groups (P=0.66). No significant difference was detected in MPI at all three views of mitral and tricuspid and septum respectively in two groups after the end of treatment (0.41±0.13, and 0.43±0.6; P=0.59), (0.45±0.12, and 0.46±0.1; P=0.05), and (0.45±0.06, and 0.45±0.1; P=0.31). Conclusion According to the results obtained from this study, coenzyme Q10 had no significant effect on improving the performance of echocardiographic parameters in patients with DMD. Trial registration The trial is registered at the Iranian Clinical Trial Registry (IRCT.ir) with the IRCT identification number IRCT2015070223018N1. Funding This research has been financially supported by the Research Council of Tehran University of Medical Sciences.
Collapse
Affiliation(s)
- Forod Salehi
- M.D., Pediatric Cardiologist, Assistant Professor, Birjand CardioVascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Aliakbar Zeinaloo
- M.D., Pediatric Cardiologist, Professor, Pediatric Cardiology Department, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Riasi
- M.D., Neurologist, Associate Professor, Birjand University of Medical Sciences, Birjand, Iran
| | | |
Collapse
|
9
|
McDonald CM, Meier T, Voit T, Schara U, Straathof CSM, D'Angelo MG, Bernert G, Cuisset JM, Finkel RS, Goemans N, Rummey C, Leinonen M, Spagnolo P, Buyse GM. Idebenone reduces respiratory complications in patients with Duchenne muscular dystrophy. Neuromuscul Disord 2016; 26:473-80. [PMID: 27238057 DOI: 10.1016/j.nmd.2016.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 02/02/2023]
Abstract
In Duchenne muscular dystrophy (DMD), progressive loss of respiratory function leads to restrictive pulmonary disease and places patients at significant risk for severe respiratory complications. Of particular concern are ineffective cough, secretion retention and recurrent respiratory tract infections. In a Phase 3 randomized controlled study (DMD Long-term Idebenone Study, DELOS) in DMD patients 10-18 years of age and not taking concomitant glucocorticoid steroids, idebenone (900 mg/day) reduced significantly the loss of respiratory function over a 1-year study period. In a post-hoc analysis of DELOS we found that more patients in the placebo group compared to the idebenone group experienced bronchopulmonary adverse events (BAEs): placebo: 17 of 33 patients, 28 events; idebenone: 6 of 31 patients, 7 events. The hazard ratios (HR) calculated "by patient" (HR 0.33, p = 0.0187) and for "all BAEs" (HR 0.28, p = 0.0026) indicated a clear idebenone treatment effect. The overall duration of BAEs was 222 days (placebo) vs. 82 days (idebenone). In addition, there was also a difference in the use of systemic antibiotics utilized for the treatment of BAEs. In the placebo group, 13 patients (39.4%) reported 17 episodes of antibiotic use compared to 7 patients (22.6%) reporting 8 episodes of antibiotic use in the idebenone group. Furthermore, patients in the placebo group used systemic antibiotics for longer (105 days) compared to patients in the idebenone group (65 days). This post-hoc analysis of DELOS indicates that the protective effect of idebenone on respiratory function is associated with a reduced risk of bronchopulmonary complications and a reduced need for systemic antibiotics.
Collapse
Affiliation(s)
- Craig M McDonald
- University of California Davis Medical Center, Sacramento, CA, USA
| | | | - Thomas Voit
- Institut de Myologie, UPMC INSERM UMR 974, CNRS FRE 3617, Groupe Hospitalier de la Pitié Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
LoMauro A, D'Angelo MG, Aliverti A. Assessment and management of respiratory function in patients with Duchenne muscular dystrophy: current and emerging options. Ther Clin Risk Manag 2015; 11:1475-88. [PMID: 26451113 PMCID: PMC4592047 DOI: 10.2147/tcrm.s55889] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked myopathy resulting in progressive weakness and wasting of all the striated muscles including the respiratory muscles. The consequences are loss of ambulation before teen ages, cardiac involvement and breathing difficulties, the main cause of death. A cure for DMD is not currently available. In the last decades the survival of patients with DMD has improved because the natural history of the disease can be changed thanks to a more comprehensive therapeutic approach. This comprises interventions targeted to the manifestations and complications of the disease, particularly in the respiratory care. These include: 1) pharmacological intervention, namely corticosteroids and idebenone that significantly reduce the decline of spirometric parameters; 2) rehabilitative intervention, namely lung volume recruitment techniques that help prevent atelectasis and slows the rate of decline of pulmonary function; 3) scoliosis treatment, namely steroid therapy that is used to reduce muscle inflammation/degeneration and prolong ambulation in order to delay the onset of scoliosis, being an additional contribution to the restrictive lung pattern; 4) cough assisted devices that improve airway clearance thus reducing the risk of pulmonary infections; and 5) non-invasive mechanical ventilation that is essential to treat nocturnal hypoventilation, sleep disordered breathing, and ultimately respiratory failure. Without any intervention death occurs within the first 2 decades, however, thanks to this multidisciplinary therapeutic approach life expectancy of a newborn with DMD nowadays can be significantly prolonged up to his fourth decade. This review is aimed at providing state-of-the-art methods and techniques for the assessment and management of respiratory function in DMD patients.
Collapse
Affiliation(s)
- Antonella LoMauro
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - Andrea Aliverti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
11
|
van Westering TLE, Betts CA, Wood MJA. Current understanding of molecular pathology and treatment of cardiomyopathy in duchenne muscular dystrophy. Molecules 2015; 20:8823-55. [PMID: 25988613 PMCID: PMC6272314 DOI: 10.3390/molecules20058823] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic muscle disorder caused by mutations in the Dmd gene resulting in the loss of the protein dystrophin. Patients do not only experience skeletal muscle degeneration, but also develop severe cardiomyopathy by their second decade, one of the main causes of death. The absence of dystrophin in the heart renders cardiomyocytes more sensitive to stretch-induced damage. Moreover, it pathologically alters intracellular calcium (Ca2+) concentration, neuronal nitric oxide synthase (nNOS) localization and mitochondrial function and leads to inflammation and necrosis, all contributing to the development of cardiomyopathy. Current therapies only treat symptoms and therefore the need for targeting the genetic defect is immense. Several preclinical therapies are undergoing development, including utrophin up-regulation, stop codon read-through therapy, viral gene therapy, cell-based therapy and exon skipping. Some of these therapies are undergoing clinical trials, but these have predominantly focused on skeletal muscle correction. However, improving skeletal muscle function without addressing cardiac aspects of the disease may aggravate cardiomyopathy and therefore it is essential that preclinical and clinical focus include improving heart function. This review consolidates what is known regarding molecular pathology of the DMD heart, specifically focusing on intracellular Ca2+, nNOS and mitochondrial dysregulation. It briefly discusses the current treatment options and then elaborates on the preclinical therapeutic approaches currently under development to restore dystrophin thereby improving pathology, with a focus on the heart.
Collapse
Affiliation(s)
- Tirsa L E van Westering
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
12
|
Barnabei MS, Martindale JM, Townsend D, Metzger JM. Exercise and muscular dystrophy: implications and analysis of effects on musculoskeletal and cardiovascular systems. Compr Physiol 2013; 1:1353-63. [PMID: 23733645 DOI: 10.1002/cphy.c100062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The muscular dystrophies are a heterogeneous collection of progressive, inherited diseases of muscle weakness and degeneration. Although these diseases can vary widely in their etiology and presentation, nearly all muscular dystrophies cause exercise intolerance to some degree. Here, we focus on Duchenne muscular dystrophy (DMD), the most common form of muscular dystrophy, as a paradigm for the effects of muscle disease on exercise capacity. First described in the mid-1800s, DMD is a rapidly progressive and lethal muscular dystrophy caused by mutations in the dystrophin gene. Dystrophin is a membrane-associated cytoskeletal protein, the loss of which causes numerous cellular defects including mechanical instability of the sarcolemma, increased influx of extracellular calcium, and cell signaling defects. Here, we discuss the physiological basis for exercise intolerance in DMD, focusing on the molecular and cellular defects caused by loss of dystrophin and how these manifest as organ-level dysfunction and reduced exercise capacity. The main focus of this article is the defects present in dystrophin-deficient striated muscle. However, discussion regarding the effects of dystrophin loss on other tissues, including vascular smooth muscle is also included. Collectively, the goal of this article is to summarize the current state of knowledge regarding the mechanistic basis for exercise intolerance in DMD, which may serve as an archetype for other muscular dystrophies and diseases of muscle wasting.
Collapse
Affiliation(s)
- Matthew S Barnabei
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
13
|
Merrell AJ, Kardon G. Development of the diaphragm -- a skeletal muscle essential for mammalian respiration. FEBS J 2013; 280:4026-4035. [PMID: 23586979 PMCID: PMC3879042 DOI: 10.1111/febs.12274 10.1111/febs.12274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 01/07/2025]
Abstract
The mammalian diaphragm muscle is essential for respiration, and thus is one of the most critical skeletal muscles in the human body. Defects in diaphragm development leading to congenital diaphragmatic hernias (CDH) are common birth defects and result in severe morbidity or mortality. Given its functional importance and the frequency of congenital defects, an understanding of diaphragm development, both normally and during herniation, is important. We review current knowledge of the embryological origins of the diaphragm, diaphragm development and morphogenesis, as well as the genetic and developmental aetiology of diaphragm birth defects.
Collapse
Affiliation(s)
- Allyson J Merrell
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
14
|
Ferguson E, Wright M, Carter T, Van Halderen C, Vaughan R, Otter M. Communication regarding breathing support options for youth with Duchenne muscular dystrophy. Paediatr Child Health 2013; 16:395-8. [PMID: 22851892 DOI: 10.1093/pch/16.7.395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2010] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ventilators for home use, manual and mechanically assisted coughing techniques, and the services of in-home respiratory therapists are options for youth with Duchenne muscular dystrophy (DMD). Evidence supports the use of these modalities, but there seems to be few youth who are receiving these therapies. Is there a knowledge transfer issue? Is there a lack of resources? What is the best way to discuss the issues? What do youth and parents want? OBJECTIVE To determine practices, attitudes and beliefs regarding the timing and content of client/family communication related to ventilatory support decisions for individuals with DMD. METHODS A questionnaire was sent to all 19 children's treatment centres in Ontario. The lead clinician responded on behalf of his or her centre. Another questionnaire was given to 11 families who attended a parent support meeting. RESULTS Respondents from the treatment centres who provide services for youth with DMD indicated that there are resources in terms of personnel and an obligation to provide information about ventilatory support, but provision of information is often late and/or inconsistent. The family respondents wanted more information and they wanted it earlier than they are currently receiving it. CONCLUSIONS Parents and youth dealing with DMD have many resources at their disposal in Ontario. The evidence is clear that there are long-term health benefits to providing ventilatory support as well as instruction in coughing assistance. Due to the classical nature of disease progression in DMD, information should be provided within reasonable timelines.
Collapse
Affiliation(s)
- Eric Ferguson
- Children's Developmental Rehabilitation Programme, McMaster Children's Hospital, Hamilton
| | | | | | | | | | | |
Collapse
|
15
|
Merrell AJ, Kardon G. Development of the diaphragm -- a skeletal muscle essential for mammalian respiration. FEBS J 2013; 280:4026-35. [PMID: 23586979 DOI: 10.1111/febs.12274] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 12/26/2022]
Abstract
The mammalian diaphragm muscle is essential for respiration, and thus is one of the most critical skeletal muscles in the human body. Defects in diaphragm development leading to congenital diaphragmatic hernias (CDH) are common birth defects and result in severe morbidity or mortality. Given its functional importance and the frequency of congenital defects, an understanding of diaphragm development, both normally and during herniation, is important. We review current knowledge of the embryological origins of the diaphragm, diaphragm development and morphogenesis, as well as the genetic and developmental aetiology of diaphragm birth defects.
Collapse
Affiliation(s)
- Allyson J Merrell
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
16
|
Smallwood CD, Mehta NM. Accuracy of Gas Exchange Monitoring During Noninvasive Ventilation. JPEN J Parenter Enteral Nutr 2013; 38:86-91. [DOI: 10.1177/0148607113483179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | - Nilesh M. Mehta
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine at Children’s Hospital
- Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature 2012; 484:394-8. [PMID: 22495301 DOI: 10.1038/nature10980] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/21/2012] [Indexed: 11/08/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca(2+), which activates inflammatory and muscle degenerative pathways. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca(2+)) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.
Collapse
|
18
|
Jung IY, Chae JH, Park SK, Kim JH, Kim JY, Kim SJ, Bang MS. The correlation analysis of functional factors and age with duchenne muscular dystrophy. Ann Rehabil Med 2012; 36:22-32. [PMID: 22506232 PMCID: PMC3309314 DOI: 10.5535/arm.2012.36.1.22] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 10/14/2011] [Indexed: 01/16/2023] Open
Abstract
Objective To correlate existing evaluation tools with clinical information on Duchenne muscular dystrophy (DMD) patients following age and to investigate genetic mutation and its relationship with clinical function. Method The medical records of 121 children with DMD who had visited the pediatric rehabilitation clinic from 2006 to 2009 were reviewed. The mean patient age was 9.9±3.4 years and all subjects were male. Collected data included Brooke scale, Vignos scale, bilateral shoulder abductor and knee extensor muscles power, passive range of motion (PROM) of ankle dorsi-flexion, angle of scoliosis, peak cough flow (PCF), fractional shortening (FS), genetic abnormalities, and use of steroid. Results The Brooke and Vignos scales were linearly increased with age (Brooke (y1), Vignos (y2), age (x), y1=0.345x-1.221, RBrooke2=0.435, y2=0.813x-3.079, RVignos2=0.558, p<0.001). In relation to the PROM of ankle dorsi-flexion, there was a linear decrease in both ankles (right and left R2=0.364, 0.372, p<0.001). Muscle power, Cobb angle, PCF, and FS showed diversity in their degrees, irrespective of age. The genetic test for dystrophin identified exon deletions in 58.0% (69/119), duplications in 9.2% (11/119), and no deletions or duplications in 32.8% (39/119). Statistically, the genetic abnormalities and use of steroid were not definitely associated with functional scale. Conclusion The Brooke scale, Vignos scale and PROM of ankle dorsi-flexion were partially available to assess DMD patients. However, this study demonstrates the limitations of preexisting scales and clinical parameters incomprehensively reflecting functional changes of DMD patients.
Collapse
Affiliation(s)
- Il-Young Jung
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul 110-744, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Graciotti L, Becker J, Granata AL, Procopio AD, Tessarollo L, Fulgenzi G. Dystrophin is required for the normal function of the cardio-protective K(ATP) channel in cardiomyocytes. PLoS One 2011; 6:e27034. [PMID: 22066028 PMCID: PMC3205025 DOI: 10.1371/journal.pone.0027034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/09/2011] [Indexed: 12/19/2022] Open
Abstract
Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx), which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC). In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (KATP) complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including KATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm) is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of KATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the KATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective KATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients.
Collapse
Affiliation(s)
- Laura Graciotti
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Jodi Becker
- Neural Development Group, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Anna Luisa Granata
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, INRCA, Ancona, Italy
| | - Lino Tessarollo
- Neural Development Group, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail: (GF); (LT)
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Neural Development Group, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail: (GF); (LT)
| |
Collapse
|
20
|
Shabanian R, Aboozari M, Kiani A, Seifirad S, Zamani G, Nahalimoghaddam A, Kocharian A. Myocardial Performance Index and Atrial Ejection Force in Patients with Duchenne's Muscular Dystrophy. Echocardiography 2011; 28:1088-94. [DOI: 10.1111/j.1540-8175.2011.01515.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
21
|
Genotype and phenotype characterization in a large dystrophinopathic cohort with extended follow-up. J Neurol 2011; 258:1610-23. [PMID: 21399986 DOI: 10.1007/s00415-011-5979-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 01/11/2023]
Abstract
Duchenne and Becker muscular dystrophy (DMD and BMD, respectively) are allelic disorders with different clinical presentations and severity determined by mutations in the gene DMD, which encodes the sarcolemmal protein dystrophin. Diagnosis is based on clinical aspects and muscle protein analysis, followed by molecular confirmation. We revised the main aspects of the natural history of dystrophinopathies to define genotype-phenotype correlations in large patient cohorts with extended follow-up. We also specifically explored subjects carrying nucleotide substitutions in the DMD gene, a comparatively less investigated DMD/BMD subgroup. We studied 320 dystrophinopathic patients (205 DMD and 115 BMD), defining muscular, cardiac, respiratory, and cognitive involvement. We also subdivided patients according to the kind of molecular defect (deletions, duplications, nucleotide substitutions or other microrearrangements) and the mutation sites (proximal/distal to exon 45), studying phenotype-genotype correlations for each group. In DMD, mutation type did not influence clinical evolution; mutations located in distal regions (irrespective of their nature) are more likely to be associated with lower IQ levels (p = 0.005). BMD carrying proximal deletions showed a higher degree of cardiac impairment than BMD with distal deletions (p = 0.0046). In the BMD population, there was a strong correlation between the entity of muscle dystrophin deficiency and clinical course (p = 0.002). An accurate knowledge of natural history may help in the clinical management of patients. Furthermore, several clinical trials are ongoing or are currently planned, some of which aim to target specific DMD mutations: a robust natural history is therefore essential to correctly design these experimental trials.
Collapse
|
22
|
Hoshijima M, Hayashi T, Jeon YE, Fu Z, Gu Y, Dalton ND, Ellisman MH, Xiao X, Powell FL, Ross J. Delta-sarcoglycan gene therapy halts progression of cardiac dysfunction, improves respiratory failure, and prolongs life in myopathic hamsters. Circ Heart Fail 2010; 4:89-97. [PMID: 21036890 DOI: 10.1161/circheartfailure.110.957258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The BIO14.6 hamster provides a useful model of hereditary cardiomyopathies and muscular dystrophy. Previous δ-sarcoglycan (δSG) gene therapy (GT) studies were limited to neonatal and young adult animals and prevented the development of cardiac and skeletal muscle dysfunction. GT of a pseudophosphorylated mutant of phospholamban (S16EPLN) moderately alleviated the progression of cardiomyopathy. METHODS AND RESULTS We treated 4-month-old BIO14.6 hamsters with established cardiac and skeletal muscle diseases intravenously with a serotype-9 adeno-associated viral vector carrying δSG alone or in combination with S16EPLN. Before treatment at age 14 weeks, the left ventricular fractional shortening by echocardiography was 31.3% versus 45.8% in normal hamsters. In a randomized trial, GT halted progression of left ventricular dilation and left ventricular dysfunction. Also, respiratory function improved. Addition of S16EPLN had no significant additional effects. δSG-GT prevented severe degeneration of the transverse tubular system in cardiomyocytes (electron tomography) and restored distribution of dystrophin and caveolin-3. All placebo-treated hamsters, except animals removed for the hemodynamic study, died with heart failure between 34 and 67 weeks of age. In the GT group, signs of cardiac and respiratory failure did not develop, and animals lived for 92 weeks or longer, an age comparable to that reported in normal hamsters. CONCLUSION GT was highly effective in BIO14.6 hamsters even when given in late-stage disease, a finding that may carry implications for the future treatment of hereditary cardiac and muscle diseases in humans.
Collapse
Affiliation(s)
- Masahiko Hoshijima
- Center for Research in Biological Systems, the Department of Medicine, National Center for Microscopy and Imaging Research, University of California-San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
A wide variety of mechanisms can lead to the hypoventilation associated with various medical disorders, including derangements in central ventilatory control, mechanical impediments to breathing, and abnormalities in gas exchange leading to increased dead space ventilation. The pathogenesis of hypercapnia in obesity hypoventilation syndrome remains somewhat obscure, although in many patients comorbid obstructive sleep apnea appears to play an important role. Hypoventilation in neurologic or neuromuscular disorders is primarily explained by weakness of respiratory muscles, although some central nervous system diseases may affect control of breathing. In other chest wall disorders, obstructive airways disease, and cystic fibrosis, much of the pathogenesis is explained by mechanical impediments to breathing, but an element of increased dead space ventilation also often occurs. Central alveolar hypoventilation syndrome involves a genetically determined defect in central respiratory control. Treatment in all of these disorders involves coordinated management of the primary disorder (when possible) and, increasingly, the use of noninvasive positive pressure ventilation.
Collapse
Affiliation(s)
- Lee K Brown
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, 1101 Medical Arts Avenue NE, Building #2, Albuquerque, NM 87102, USA.
| |
Collapse
|
24
|
Geng J, Dong J, Jiang K, Shen L, Wu T, Ni H, Shi LL, Wang G, Wu H. Idebenone for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev 2010. [DOI: 10.1002/14651858.cd008647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Alter J, Sennoga CA, Lopes DM, Eckersley RJ, Wells DJ. Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:976-84. [PMID: 19285783 DOI: 10.1016/j.ultrasmedbio.2008.12.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/04/2008] [Accepted: 12/10/2008] [Indexed: 05/12/2023]
Abstract
In the search for an efficient nonviral gene therapy approach for the treatment of genetic disorders of cardiac and skeletal muscle such as Duchenne muscular dystrophy, ultrasound in combination with contrast enhancing microbubbles has emerged as a promising tool for safe and site-specific enhancement of gene delivery. Indeed, microbubble-enhanced gene transfer (MBGT) has been investigated for a wide variety of target sites using both reporter and therapeutic genes. Although a range of different microbubbles have been used for MBGT studies, comparison of their efficiencies is difficult because microbubble concentration and the ultrasound settings used for the application vary considerably. Only two studies to date have attempted a direct comparison of commercially available microbubbles, and both concluded that not all microbubbles show the same efficiencies with MBGT. Thus far, the reason for this is unclear. Here, the efficiency of three commercially available microbubbles--Optison, SonoVue and Sonazoid--was analyzed to understand the microbubble properties that are important for their function as an effective enhancer for gene transfer in vivo. In this study, plasmid DNA or antisense oligonucleotides were delivered by systemic injection with MBGT, focused on the heart. Gene delivery to the heart with equalized concentrations of the three microbubbles showed that Optison and Sonazoid are more efficient in MBGT compared with SonoVue, which showed the weakest gene transfer to the myocardium. Investigations into the properties of these microbubbles showed that size and shell composition did not directly influence MBGT, whereas the microbubbles with increased stability in an ultrasound field showed better MBGT results than those degrading faster. Moreover, the microbubble concentration used for MBGT was also found to be an important factor influencing the efficiency of MBGT. In conclusion, the stability of a microbubble was shown to be a major influential factor for its performance in MBGT, as is the concentration of the microbubbles used. These findings emphasize the importance of detailed investigations into the properties of microbubbles to allow the production of a microbubble specifically designed for optimum performance with MBGT.
Collapse
Affiliation(s)
- Julia Alter
- Imaging Sciences Department, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, UK
| | | | | | | | | |
Collapse
|
26
|
Leroy PLJM, Knoester H, Cobben NAM. Screening en follow-up van kinderen die voor thuisbeademing in aanmerking komen. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/bf03086371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Abstract
This is a summary of the presentation on airway clearance in neuromuscular disorders presented as part of the program on airway clearance in Duchenne muscular dystrophy at the 30th annual Carrell-Krusen Neuromuscular Symposium on February 20, 2008.
Collapse
Affiliation(s)
- Richard M Kravitz
- Duke University Medical Center, Division of Pediatric Pulmonary and Sleep Medicine, DUMC Box 2994, 302-F Bell Building, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Corticosteroid treatment retards development of ventricular dysfunction in Duchenne muscular dystrophy. Neuromuscul Disord 2008; 18:365-70. [DOI: 10.1016/j.nmd.2008.03.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 02/17/2008] [Accepted: 03/04/2008] [Indexed: 01/16/2023]
|
29
|
Brambrink AM, Kirsch JR. Perioperative care of patients with neuromuscular disease and dysfunction. Anesthesiol Clin 2007; 25:483-509, viii-ix. [PMID: 17884705 DOI: 10.1016/j.anclin.2007.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A variety of different pathologies result in disease phenotypes that are summarized as neuromuscular diseases because they share commonalty in their clinical consequences for the patient: a progressive weakening of the skeletal muscles. Distinct caution and appropriate changes to the anesthetic plan are advised when care is provided during the perioperative period. The choice of anesthetic technique, anesthetic drugs, and neuromuscular blockade always depends on the type of neuromuscular disease and the surgical procedure planned. A clear diagnosis of the underlying disease and sufficient knowledge and understanding of the pathophysiology are of paramount importance to the practitioner and guide optimal perioperative management of affected patients.
Collapse
Affiliation(s)
- Ansgar M Brambrink
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Sciences University, 3181 Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| | | |
Collapse
|