1
|
van de Wetering C, Elko E, Berg M, Schiffers CHJ, Stylianidis V, van den Berge M, Nawijn MC, Wouters EFM, Janssen-Heininger YMW, Reynaert NL. Glutathione S-transferases and their implications in the lung diseases asthma and chronic obstructive pulmonary disease: Early life susceptibility? Redox Biol 2021; 43:101995. [PMID: 33979767 PMCID: PMC8131726 DOI: 10.1016/j.redox.2021.101995] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/01/2023] Open
Abstract
Our lungs are exposed daily to airborne pollutants, particulate matter, pathogens as well as lung allergens and irritants. Exposure to these substances can lead to inflammatory responses and may induce endogenous oxidant production, which can cause chronic inflammation, tissue damage and remodeling. Notably, the development of asthma and Chronic Obstructive Pulmonary Disease (COPD) is linked to the aforementioned irritants. Some inhaled foreign chemical compounds are rapidly absorbed and processed by phase I and II enzyme systems critical in the detoxification of xenobiotics including the glutathione-conjugating enzymes Glutathione S-transferases (GSTs). GSTs, and in particular genetic variants of GSTs that alter their activities, have been found to be implicated in the susceptibility to and progression of these lung diseases. Beyond their roles in phase II metabolism, evidence suggests that GSTs are also important mediators of normal lung growth. Therefore, the contribution of GSTs to the development of lung diseases in adults may already start in utero, and continues through infancy, childhood, and adult life. GSTs are also known to scavenge oxidants and affect signaling pathways by protein-protein interaction. Moreover, GSTs regulate reversible oxidative post-translational modifications of proteins, known as protein S-glutathionylation. Therefore, GSTs display an array of functions that impact the pathogenesis of asthma and COPD. In this review we will provide an overview of the specific functions of each class of mammalian cytosolic GSTs. This is followed by a comprehensive analysis of their expression profiles in the lung in healthy subjects, as well as alterations that have been described in (epithelial cells of) asthmatics and COPD patients. Particular emphasis is placed on the emerging evidence of the regulatory properties of GSTs beyond detoxification and their contribution to (un)healthy lungs throughout life. By providing a more thorough understanding, tailored therapeutic strategies can be designed to affect specific functions of particular GSTs.
Collapse
Affiliation(s)
- Cheryl van de Wetering
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Evan Elko
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Marijn Berg
- Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Caspar H J Schiffers
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Vasili Stylianidis
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Maarten van den Berge
- Pulmonology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Martijn C Nawijn
- Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Toppila-Salmi S, Luukkainen AT, Xu B, Lampi J, Auvinen J, Dhaygude K, Järvelin MR, Pekkanen J. Maternal smoking during pregnancy affects adult onset of asthma in offspring: a follow up from birth to age 46 years. Eur Respir J 2020; 55:13993003.01857-2019. [PMID: 32341110 DOI: 10.1183/13993003.01857-2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/04/2020] [Indexed: 01/17/2023]
Abstract
RATIONALE Environmental tobacco smoke (ETS) exposure increases asthma risk in children. There is limited knowledge of prenatal ETS for adult-onset asthma. OBJECTIVES To determine the association between prenatal ETS and adult onset asthma. MEASUREMENTS AND MAIN RESULTS The questionnaire and clinical data of 5200 people, free of physician-diagnosed asthma by 31 years of age, who were included in the Northern Finland Birth Cohort 1966 Study was used. The association of maternal smoking during the last 3 months of pregnancy with onset of physician-diagnosed asthma and with lung function in adult offspring was studied using adjusted multivariate regression analyses. The cumulative incidence of physician-diagnosed asthma between the ages of 31 and 46 years was 5.1% among men and 8.8% among women. Gestational smoke exposure was associated with adult-onset asthma among offspring (adjusted OR 1.54, 95% CI 1.04-2.29), namely among offspring who reported either past non-diagnosed asthma (OR 9.63, 95% CI 2.28-40.67) or past cough with wheeze (3.21, 95% CI 1.71-6.05). A significant association was detected between gestational smoke exposure and the offspring's forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio at 31 years of age. In offspring with the haplotype rs11702779-AA of RUNX1, gestational smoke exposure was associated with adult-onset asthma (5.53, 95% CI 2.11-14.52, adjusted p-value for interaction 0.10). CONCLUSION Maternal smoking during pregnancy is associated with the cumulative incidence of asthma in offspring between the ages of 31 and 46 years. The association was accentuated in offspring who at age 31, reported having past respiratory problems and/or who had haplotype rs11702779-AA. A reduction in FEV1/FVC ratio was also observed at age 31 years in offspring with gestational smoke exposure. These results could reflect the early vulnerability of offspring's airways to ETS and its putative long-term effects.
Collapse
Affiliation(s)
- Sanna Toppila-Salmi
- Medicum, Haartman Institute, University of Helsinki, Helsinki, Finland .,Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | | | - Baizhuang Xu
- Environment Health Unit, National Institute for Health and Welfare, Kuopio, Finland
| | - Jussi Lampi
- Environment Health Unit, National Institute for Health and Welfare, Kuopio, Finland
| | - Juha Auvinen
- Center for Life Course Health Research, Oulu, Finland
| | - Kishor Dhaygude
- Medicum, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Oulu, Finland.,Imperial College London, London, UK
| | - Juha Pekkanen
- Environment Health Unit, National Institute for Health and Welfare, Kuopio, Finland.,Dep of Public Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Polonikov AV, Ivanov VP, Bogomazov AD, Solodilova MA. [Genetic and biochemical mechanisms of involvement of antioxidant defense enzymes in the development of bronchial asthma]. BIOMEDITSINSKAIA KHIMIIA 2015; 61:427-439. [PMID: 26350733 DOI: 10.18097/pbmc20156104427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the present review we have analyzed and summarized recent literature data on genetic and biochemical mechanisms responsible for involvement of antioxidant defense enzymes in the etiology and pathogenesis of bronchial asthma. It has been shown that the mechanisms of asthma development are linked with genetically determined abnormalities in the functioning of antioxidant defense enzymes. These alterations are accompanied by a systemic imbalance between oxidative and anti-oxidative reactions with the shift of the redox state toward increased free radical production and oxidative stress, a key element in the pathogenesis of bronchial asthma.
Collapse
Affiliation(s)
| | - V P Ivanov
- Kursk State Medical University, Kursk, Russia
| | | | | |
Collapse
|
4
|
Gaffney A, Christiani DC. Gene-environment interaction from international cohorts: impact on development and evolution of occupational and environmental lung and airway disease. Semin Respir Crit Care Med 2015; 36:347-57. [PMID: 26024343 DOI: 10.1055/s-0035-1549450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Environmental and occupational pulmonary diseases impose a substantial burden of morbidity and mortality on the global population. However, it has been long observed that only some of those who are exposed to pulmonary toxicants go on to develop disease; increasingly, it is being recognized that genetic differences may underlie some of this person-to-person variability. Studies performed throughout the globe are demonstrating important gene-environment interactions for diseases as diverse as chronic beryllium disease, coal workers' pneumoconiosis, silicosis, asbestosis, byssinosis, occupational asthma, and pollution-associated asthma. These findings have, in many instances, elucidated the pathogenesis of these highly complex diseases. At the same time, however, translation of this research into clinical practice has, for good reasons, proceeded slowly. No genetic test has yet emerged with sufficiently robust operating characteristics to be clearly useful or practicable in an occupational or environmental setting. In addition, occupational genetic testing raises serious ethical and policy concerns. Therefore, the primary objective must remain ensuring that the workplace and the environment are safe for all.
Collapse
Affiliation(s)
- Adam Gaffney
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - David C Christiani
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Sampath V, Garland JS, Helbling D, Dimmock D, Mulrooney NP, Simpson PM, Murray JC, Dagle JM. Antioxidant response genes sequence variants and BPD susceptibility in VLBW infants. Pediatr Res 2015; 77:477-83. [PMID: 25518008 PMCID: PMC4522928 DOI: 10.1038/pr.2014.200] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/25/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lung injury resulting from oxidative stress contributes to bronchopulmonary dysplasia (BPD) pathogenesis. Nuclear factor erythroid-2 related factor-2 (NFE2L2) regulates cytoprotective responses to oxidative stress by inducing enzymes containing antioxidant response elements (ARE). We hypothesized that ARE genetic variants will modulate susceptibility or severity of BPD in very-low-birth-weight (VLBW) infants. METHODS Blood samples obtained from VLBW infants were used for genotyping variants in the SOD2, NFE2L2, GCLC, GSTP1, HMOX1, and NQO1 genes. SNPs were genotyped utilizing TaqMan probes (Applied Biosystems (ABI), Grand Island, NY), and data were analyzed using the ABI HT7900. Genetic dominance and recessive models were tested to determine associations between SNPs and BPD. RESULTS In our cohort (n = 659), 284 infants had BPD; 135 of whom developed severe BPD. Presence of the hypomorphic NQO1 SNP (rs1800566) in a homozygous state was associated with increased BPD, while presence of the NFE2L2 SNP (rs6721961) was associated with decreased severe BPD in the entire cohort and in Caucasian infants. In regression models that adjusted for epidemiological confounders, the NQO1 and the NFE2L2 SNPs were associated with BPD and severe BPD, respectively. CONCLUSION Genetic variants in NFE2L2-ARE axis may contribute to the variance in liability to BPD observed in preterm infants. These results require confirmation in independent cohorts.
Collapse
Affiliation(s)
- Venkatesh Sampath
- Department of Pediatrics, Medical College of Wisconsin, and Children’s Research Institute, Children’s Hospital and Health Systems, Milwaukee, WI, USA
| | - Jeffery S. Garland
- Department of Pediatrics, Wheaton Franciscan Health Care, Milwaukee, WI, USA
| | - Daniel Helbling
- Department of Pediatrics, Medical College of Wisconsin, and Children’s Research Institute, Children’s Hospital and Health Systems, Milwaukee, WI, USA
| | - David Dimmock
- Department of Pediatrics, Medical College of Wisconsin, and Children’s Research Institute, Children’s Hospital and Health Systems, Milwaukee, WI, USA
| | | | - Pippa M. Simpson
- Quantitative Health Sciences, Children’s Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey C. Murray
- Department of Pediatrics, Iowa Children’s Hospital, University of Iowa, Iowa City, IA
| | - John M. Dagle
- Department of Pediatrics, Iowa Children’s Hospital, University of Iowa, Iowa City, IA
| |
Collapse
|
6
|
Korytina GF, Akhmadishina LZ, Kochetova OV, Burduk YV, Aznabaeva YG, Zagidullin SZ, Victorova TV. Association of genes involved in nicotine and tobacco smoke toxicant metabolism (CHRNA3/5, CYP2A6, and NQO1) and DNA repair (XRCC1, XRCC3, XPC, and XPA) with chronic obstructive pulmonary disease. Mol Biol 2014. [DOI: 10.1134/s0026893314060090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Polonikov AV, Ivanov VP, Bogomazov AD, Solodilova MA. Genetic and biochemical mechanisms of involvement of antioxidant defense enzymes in the development of bronchial asthma: A review. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2014; 8:273-285. [DOI: 10.1134/s1990750814040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
8
|
El Rifai N, Moustafa N, Degheidy N, Wilson M. Glutathione S transferase theta1 and mu1 gene polymorphisms and phenotypic expression of asthma in Egyptian children: a case-control study. Ital J Pediatr 2014; 40:22. [PMID: 24559168 PMCID: PMC3974057 DOI: 10.1186/1824-7288-40-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/19/2014] [Indexed: 02/07/2023] Open
Abstract
Background Asthma is the result of a complex interaction between environmental factors and genetic variants that confer susceptibility. The glutathione S-transferases (GSTT1 and GSTM1) are phase II enzymes thought to protect the airways from oxidative stress. Few and contradictory data are available on the association between asthma development and GSTT1 and GSTM1 polymorphisms in different ethnic groups. The current study aimed to investigate whether these polymorphisms are associated with asthma development in the Egyptian population. Methods The cross-sectional study was performed on 94 asthmatic children 6 -12 yrs and 90 matched healthy controls. Candidates were subjected to clinical evaluation and measurement of absolute blood eosinophilic count, total serum IgE, and GSTT1 and GSTM1 genotype by multiplex PCR technique. Results The results for GSTT1 null genotype were 87.2% and 97.2% for asthmatic children and controls respectively and showed to be significantly more in controls (P =0.007, OR:0.683, CI: 0.034 -0.715). The results for GSTM1 null genotype were 50% and 61.1% for asthmatic children and controls respectively and showed to be nonsignificant (p = 0.130, OR: 1.000, CI: 0.54- 1.86). Also, no association was detected between GSTT1 and GSTM1 polymorphisms and atopic conditions or asthma severity. Conclusion The significant detection of GSTT1 null genotype more in controls than in asthmatics with no association with other atopic manifestations or asthma severity and the lack of association detected between GSTM1 polymorphism in relation to asthma, atopy or asthma severity confirm the uncertain role of those genes in the development of asthma.
Collapse
Affiliation(s)
- Nihal El Rifai
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt.
| | | | | | | |
Collapse
|
9
|
Moreno-Macías H, Dockery DW, Schwartz J, Gold DR, Laird NM, Sienra-Monge JJ, Del Río-Navarro BE, Ramírez-Aguilar M, Barraza-Villarreal A, Li H, London SJ, Romieu I. Ozone exposure, vitamin C intake, and genetic susceptibility of asthmatic children in Mexico City: a cohort study. Respir Res 2013; 14:14. [PMID: 23379631 PMCID: PMC3579760 DOI: 10.1186/1465-9921-14-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/24/2013] [Indexed: 01/13/2023] Open
Abstract
Background We previously reported that asthmatic children with GSTM1 null genotype may be more susceptible to the acute effect of ozone on the small airways and might benefit from antioxidant supplementation. This study aims to assess the acute effect of ozone on lung function (FEF25-75) in asthmatic children according to dietary intake of vitamin C and the number of putative risk alleles in three antioxidant genes: GSTM1, GSTP1 (rs1695), and NQO1 (rs1800566). Methods 257 asthmatic children from two cohort studies conducted in Mexico City were included. Stratified linear mixed models with random intercepts and random slopes on ozone were used. Potential confounding by ethnicity was assessed. Analyses were conducted under single gene and genotype score approaches. Results The change in FEF25-75 per interquartile range (60 ppb) of ozone in persistent asthmatic children with low vitamin C intake and GSTM1 null was −91.2 ml/s (p = 0.06). Persistent asthmatic children with 4 to 6 risk alleles and low vitamin C intake showed an average decrement in FEF25-75 of 97.2 ml/s per 60 ppb of ozone (p = 0.03). In contrast in children with 1 to 3 risk alleles, acute effects of ozone on FEF25-75 did not differ by vitamin C intake. Conclusions Our results provide further evidence that asthmatic children predicted to have compromised antioxidant defense by virtue of genetic susceptibility combined with deficient antioxidant intake may be at increased risk of adverse effects of ozone on pulmonary function.
Collapse
Affiliation(s)
- Hortensia Moreno-Macías
- Universidad Autónoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco 186, edificio H-001, Col. Vicentina, 09430, D F, México City, Mexico.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ouerhani S, Cherif N, Bahri I, Safra I, Menif S, Abbes S. Genetic polymorphisms of NQO1, CYP1A1 and TPMT and susceptibility to acute lymphoblastic leukemia in a Tunisian population. Mol Biol Rep 2012; 40:1307-14. [PMID: 23065291 DOI: 10.1007/s11033-012-2174-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/08/2012] [Indexed: 12/01/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the major pediatric cancer in developed countries. The etiology of ALL remains poorly understood, with few established environmental risk factors. These risks were influenced by co-inheritance of multiple low-risk genetic polymorphisms such as variants within cytochrome P450A1 (CYP1A1), NADPH: quinone oxidoreductase (NQO1) and Thiopurine methyltransferase (TPMT) genes. In this work, we conduct a case-control study to assess the impact of CYP1A1*2A (CYP1A1 T6235C); NQO1*2 (NQO1 C609T); TPMT*2 (TPMT G238C) and TPMT A719G polymorphisms on the risk of developing ALL. The frequencies of TPMT*2, TPMT A719G, NQO1*2 and CYP1A1*2 variants were examined in 100 patients with ALL and 106 healthy controls by allele specific PCR and/or PCR-RFLP methods using blood samples. We have found that NQO1 609CT genotype was overrepresented in patients and was associated with an aggravating effect compared to the reference group with NQO1 609CC genotype (p = 0.028, OR = 1.41; CI 95 %: 1.04-1.93). However, TPMT*2, TPMT 719*G and CYP1A1*2 variants did not appear to influence ALL susceptibility (p > 0.05). Moreover we have not found a significant correlation between the studied variants and Bcr-Abl transcript. In conclusion we retain that leukemogenesis of ALL is associated with carcinogens metabolism and consequently related to environmental exposures.
Collapse
Affiliation(s)
- Slah Ouerhani
- Laboratory of Molecular and Cellular Haematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| | | | | | | | | | | |
Collapse
|
11
|
Wu W, Peden D, Diaz-Sanchez D. Role of GSTM1 in resistance to lung inflammation. Free Radic Biol Med 2012; 53:721-9. [PMID: 22683820 PMCID: PMC3418458 DOI: 10.1016/j.freeradbiomed.2012.05.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 01/04/2023]
Abstract
Lung inflammation resulting from oxidant/antioxidant imbalance is a common feature of many lung diseases. In particular, the role of enzymes regulated by the NF-E2-related factor 2 transcription factor has recently received increased attention. Among these antioxidant genes, glutathione S-transferase Mu 1 (GSTM1) has been most extensively characterized because it has a null polymorphism that is highly prevalent in the population and associated with increased risk of inflammatory lung diseases. Present evidence suggests that GSTM1 acts through interactions with other genes and environmental factors, especially air pollutants. Here, we review GSTM1 gene expression and regulation and summarize the findings from epidemiological, clinical, animal, and in vitro studies on the role played by GSTM1 in lung inflammation. We discuss limitations in the existing knowledge base and future perspectives and evaluate the potential of pharmacologic and genetic manipulation of the GSTM1 gene to modulate pulmonary inflammatory responses.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Pediatrics, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC 7599, USA.
| | | | | |
Collapse
|
12
|
Taylor-Clark TE, Undem BJ. Sensing pulmonary oxidative stress by lung vagal afferents. Respir Physiol Neurobiol 2011; 178:406-13. [PMID: 21600314 DOI: 10.1016/j.resp.2011.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/06/2011] [Accepted: 05/04/2011] [Indexed: 12/30/2022]
Abstract
Oxidative stress in the bronchopulmonary airways can occur through a variety of inflammatory mechanisms and also following the inhalation of environmental pollutants. Oxidative stress causes cellular dysfunction and thus mammals (including humans) have developed mechanisms for detecting oxidative stress, such that defensive behavior and defensive biological mechanisms can be induced to lessen its potential damage. Vagal sensory nerves innervating the airways play a critical role in the detection of the microenvironment in the airways. Oxidative stress and associated compounds activate unmyelinated bronchopulmonary C-fibers, initiating action potentials in these nerves that conduct centrally to evoke unpleasant sensations (e.g. urge to cough, dyspnea, chest-tightness) and to stimulate/modulate reflexes (e.g. cough, bronchoconstriction, respiratory rate, inspiratory drive). This review will summarize the published evidence regarding the mechanisms by which oxidative stress, reactive oxygen species, environmental pollutants and lipid products of peroxidation activate bronchopulmonary C-fibers. Evidence suggests a key role for transient receptor potential ankyrin 1 (TRPA1), although transient receptor potential vanilloid 1 (TRPV1) and purinergic P2X channels may also play a role. Knowledge of these pathways greatly aids our understanding of the role of oxidative stress in health and disease and represents novel therapeutic targets for diseases of the airways.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, United States.
| | | |
Collapse
|
13
|
Golka K, Selinski S, Lehmann ML, Blaszkewicz M, Marchan R, Ickstadt K, Schwender H, Bolt HM, Hengstler JG. Genetic variants in urinary bladder cancer: collective power of the “wimp SNPs”. Arch Toxicol 2011; 85:539-54. [DOI: 10.1007/s00204-011-0676-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/09/2011] [Indexed: 02/07/2023]
|