1
|
Gaspar LS, Pyakurel S, Xu N, D'Souza SP, Koritala BSC. Circadian Biology in Obstructive Sleep Apnea-Associated Cardiovascular Disease. J Mol Cell Cardiol 2025; 202:116-132. [PMID: 40107345 DOI: 10.1016/j.yjmcc.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/16/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
A dysregulated circadian system is independently associated with both Obstructive Sleep Apnea (OSA) and cardiovascular disease (CVD). OSA and CVD coexistence is often seen in patients with prolonged untreated OSA. However, the role of circadian dysregulation in their relationship is unclear. Half of the human genes, associated biological pathways, and physiological functions exhibit circadian rhythms, including blood pressure and heart rate regulation. Mechanisms related to circadian dysregulation and heart function are potentially involved in the coexistence of OSA and CVD. In this article, we provide a comprehensive overview of circadian dysregulation in OSA and associated CVD. We also discuss feasible animal models and new avenues for future research to understand their relationship. Oxygen-sensing pathways, inflammation, dysregulation of cardiovascular processes, oxidative stress, metabolic regulation, hormone signaling, and epigenetics are potential clock-regulated mechanisms connecting OSA and CVD.
Collapse
Affiliation(s)
- Laetitia S Gaspar
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Santoshi Pyakurel
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Na Xu
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Shane P D'Souza
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Bala S C Koritala
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America.
| |
Collapse
|
2
|
Potential Diagnostic and Monitoring Biomarkers of Obstructive Sleep Apnea-Umbrella Review of Meta-Analyses. J Clin Med 2022; 12:jcm12010060. [PMID: 36614858 PMCID: PMC9821668 DOI: 10.3390/jcm12010060] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a prevalent, underdiagnosed disease that imposes a significant impact on the health and wellbeing of patients and a financial burden on individuals, their families, and society. Development of new methods of testing other than an overnight sleep study, such as measurement of serum or plasma biomarkers, may provide an easier diagnostic process to identify patients with OSA and allow earlier initiation of treatment, which might prevent serious comorbidities. We conducted a systematic review and quality assessment of available meta-analyses regarding potential diagnostic and monitoring biomarkers of obstructive sleep apnea. A total of 14 sets of candidate biomarkers displayed differences in levels or concentrations in OSA patients compared to non-OSA controls, and decreased after OSA treatment: CRP, IL-6, TNF-α, Il-8, HCY, ICAM-1, VCAM-1, VEGF, TC, LDLc, HDLc, TG, leptin, MDA, ALT, AST, IGF-1, adiponectin, and cortisol. This review summarizes the evidence for OSA-associated potential biomarkers and demonstrates that the quality of available studies, as measured by AMSTAR2, is often low and associated with a high risk of bias.
Collapse
|
3
|
Choi BY, Kim JK, Cho JH. A Review of a Recent Meta-Analysis Study on Obstructive Sleep Apnea. JOURNAL OF RHINOLOGY 2022; 29:134-140. [PMID: 39664309 PMCID: PMC11524374 DOI: 10.18787/jr.2022.00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022] Open
Abstract
This paper summarizes a recent meta-analysis of various topics in obstructive sleep apnea (OSA). In addition to cardiovascular disease and neurocognitive dysfunction, a wide variety of diseases have been associated with OSA, and associations with cancer have also been reported. Although continuous positive airway pressure is a very effective treatment, the results have shown that it does not reduce the incidence of various complications. It has been reported that uvulopalatopharyngoplasty was effective, and robotic surgery for the tongue root and hypoglossal nerve stimulation were also effective. The effectiveness of various medications to reduce daytime sleepiness has also been demonstrated. Although exercise lowered the apnea-hypopnea index, it was not related to changes in body composition, and it was also reported that exercise combined with weight control were effective. Additionally, interesting and clinically meaningful meta-analysis results were summarized and presented.
Collapse
Affiliation(s)
- Bo Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine Konkuk University, Seoul, Republic of Korea
| | - Jin Kook Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine Konkuk University, Seoul, Republic of Korea
| | - Jae Hoon Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Evaluation of Blood Intercellular Adhesion Molecule-1 (ICAM-1) Level in Obstructive Sleep Apnea: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58101499. [PMID: 36295659 PMCID: PMC9607021 DOI: 10.3390/medicina58101499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022]
Abstract
Background and objective: Intercellular adhesion molecule-1 (ICAM-1) appears to be an active and important biomarker for decreasing the risk of cardiovascular issues among individuals with obstructive sleep apnea (OSA). Herein, a systematic review and meta-analysis was designed to probe whether plasma/serum ICAM-1levels are different in adults with OSA compared to adults with no OSA, as well as adults with severe OSA compared to adults with mild/moderate OSA. Materials and methods: A thorough and systematic literature search was performed in four databases (PubMed/Medline, Web of Science, Scopus, and Cochrane Library) until 17 July 2022, without any age and sample size restrictions to retrieve the relevant articles. The standardized mean difference (SMD) along with a 95% confidence interval (CI) of plasma/serum of ICAM-1 levels was reported. Analyses, including sensitivity analysis, subgroup analysis, trial sequential analysis, meta-regression, and a funnel plot analysis, were performed in the pooled analysis. Results: A total of 414 records were identified in the databases, and 17 articles including 22 studies were entered into the meta-analysis. The pooled SMD of serum/plasma ICAM-1 levels in adults with OSA compared to controls was 2.00 (95%CI: 1.41, 2.59; p < 0.00001). The pooled SMD of serum/plasma ICAM-1 levels in adults with severe compared to mild/moderate OSA was 3.62 (95%CI: 1.74, 5.51; p = 0.0002). Higher serum/plasma ICAM-1 levels were associated with a higher mean age of controls, higher scores for the apnea-hypopnea index, and with a lower mean age of adults with OSA and with smaller sample sizes. Conclusions: Th results of the present meta-analysis showed that serum/plasma ICAM-1 levels in adults with OSA was higher than serum/plasma ICAM-1 levels in controls. Similarly, serum/plasma ICAM-1 levels in adults with severe OSA were higher compared to serum/plasma ICAM-1 levels of adults with mild or moderate OSA. Therefore, ICAM-1 may be used as an additional diagnostic and therapeutic biomarker in adults with OSA.
Collapse
|
5
|
Cederberg KLJ, Hanif U, Peris Sempere V, Hédou J, Leary EB, Schneider LD, Lin L, Zhang J, Morse AM, Blackman A, Schweitzer PK, Kotagal S, Bogan R, Kushida CA, Ju YES, Petousi N, Turnbull CD, Mignot E, The STAGES Cohort Investigator Group. Proteomic Biomarkers of the Apnea Hypopnea Index and Obstructive Sleep Apnea: Insights into the Pathophysiology of Presence, Severity, and Treatment Response. Int J Mol Sci 2022; 23:7983. [PMID: 35887329 PMCID: PMC9317550 DOI: 10.3390/ijms23147983] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/16/2022] Open
Abstract
Obstructive sleep apnea (OSA), a disease associated with excessive sleepiness and increased cardiovascular risk, affects an estimated 1 billion people worldwide. The present study examined proteomic biomarkers indicative of presence, severity, and treatment response in OSA. Participants (n = 1391) of the Stanford Technology Analytics and Genomics in Sleep study had blood collected and completed an overnight polysomnography for scoring the apnea−hypopnea index (AHI). A highly multiplexed aptamer-based array (SomaScan) was used to quantify 5000 proteins in all plasma samples. Two separate intervention-based cohorts with sleep apnea (n = 41) provided samples pre- and post-continuous/positive airway pressure (CPAP/PAP). Multivariate analyses identified 84 proteins (47 positively, 37 negatively) associated with AHI after correction for multiple testing. Of the top 15 features from a machine learning classifier for AHI ≥ 15 vs. AHI < 15 (Area Under the Curve (AUC) = 0.74), 8 were significant markers of both AHI and OSA from multivariate analyses. Exploration of pre- and post-intervention analysis identified 5 of the 84 proteins to be significantly decreased following CPAP/PAP treatment, with pathways involving endothelial function, blood coagulation, and inflammatory response. The present study identified PAI-1, tPA, and sE-Selectin as key biomarkers and suggests that endothelial dysfunction and increased coagulopathy are important consequences of OSA, which may explain the association with cardiovascular disease and stroke.
Collapse
Affiliation(s)
- Katie L. J. Cederberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (K.L.J.C.); (U.H.); (V.P.S.); (J.H.); (E.B.L.); (L.D.S.); (L.L.); (J.Z.); (C.A.K.)
| | - Umaer Hanif
- Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (K.L.J.C.); (U.H.); (V.P.S.); (J.H.); (E.B.L.); (L.D.S.); (L.L.); (J.Z.); (C.A.K.)
- Biomedical Signal Processing & AI Research Group, Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, 2600 Glostrup, Denmark
| | - Vicente Peris Sempere
- Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (K.L.J.C.); (U.H.); (V.P.S.); (J.H.); (E.B.L.); (L.D.S.); (L.L.); (J.Z.); (C.A.K.)
| | - Julien Hédou
- Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (K.L.J.C.); (U.H.); (V.P.S.); (J.H.); (E.B.L.); (L.D.S.); (L.L.); (J.Z.); (C.A.K.)
| | - Eileen B. Leary
- Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (K.L.J.C.); (U.H.); (V.P.S.); (J.H.); (E.B.L.); (L.D.S.); (L.L.); (J.Z.); (C.A.K.)
- Jazz Pharmaceuticals, 3170 Porter Drive, Palo Alto, CA 94304, USA
| | - Logan D. Schneider
- Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (K.L.J.C.); (U.H.); (V.P.S.); (J.H.); (E.B.L.); (L.D.S.); (L.L.); (J.Z.); (C.A.K.)
- Alphabet, Inc., 1600 Amphitheater Parkway Mountain View, Palo Alto, CA 94043, USA
- Stanford/VA Alzheimer’s Research Center, 3801 Miranda Ave, Building 4, C-141, Mail Code 116F-PAD, Palo Alto, CA 94304, USA
| | - Ling Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (K.L.J.C.); (U.H.); (V.P.S.); (J.H.); (E.B.L.); (L.D.S.); (L.L.); (J.Z.); (C.A.K.)
| | - Jing Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (K.L.J.C.); (U.H.); (V.P.S.); (J.H.); (E.B.L.); (L.D.S.); (L.L.); (J.Z.); (C.A.K.)
| | - Anne M. Morse
- Division of Child Neurology and Pediatric Sleep Medicine, Geisinger, Janet Weis Children’s Hospital, 100 N Academy Ave, Danville, PA 17822, USA;
| | - Adam Blackman
- Department of Psychiatry, University of Toronto, Toronto, ON M5G 1L5, Canada;
| | - Paula K. Schweitzer
- Sleep Medicine & Research Center, St. Lukes Hospital, 232 S. Woods Mill Road, Chesterfield, MO 63017, USA;
| | - Suresh Kotagal
- Department of Neurology, Mayo Clinic, 200 First St., Rochester, MN 55905, USA;
| | - Richard Bogan
- College of Medicine, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC 29425, USA;
| | - Clete A. Kushida
- Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (K.L.J.C.); (U.H.); (V.P.S.); (J.H.); (E.B.L.); (L.D.S.); (L.L.); (J.Z.); (C.A.K.)
| | - Yo-El S. Ju
- Department of Neurology, Washington University, St. Louis, MO 63110, USA;
- Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110, USA
- Center on Biological Rhythms and Sleep (COBRAS), Washington University, 1600 S. Brentwood Blvd, St. Louis, MO 63144, USA
| | - Nayia Petousi
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Headley Way, Headington, Oxford OX3 9DU, UK;
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Headley Way, Headington, Oxford OX3 9DU, UK;
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Chris D. Turnbull
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Headley Way, Headington, Oxford OX3 9DU, UK;
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Emmanuel Mignot
- Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (K.L.J.C.); (U.H.); (V.P.S.); (J.H.); (E.B.L.); (L.D.S.); (L.L.); (J.Z.); (C.A.K.)
| | | |
Collapse
|