1
|
Haque M, Binte Dayem S, Tabassum Tasnim N, Islam MR, Shakil MS. Biological impact of Chornobyl radiation: a review of recent progress. Int J Radiat Biol 2024; 100:1405-1415. [PMID: 39186765 DOI: 10.1080/09553002.2024.2391813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 06/06/2024] [Accepted: 07/06/2024] [Indexed: 08/28/2024]
Abstract
The incident of Chernobyl Nuclear Power Plant (CNPP) explosion has pioneered a plethora of studies unfolding various biological effects of radiation stress on several living systems. Determining radiation dose rates at which both acute and chronic biological effects occur in different biological systems will aid in the ex-situ generation of radiation-tolerant organisms. So far, the accumulation of data on different radiation doses from Chernobyl area demonstrating various biological impacts has not been documented altogether vastly. Therefore, this review aims to document the recorded doses in CNPP over the years at which different biological changes have been observed in plants, soil, aquatic organisms, birds, and animals. A total of 72 peer-reviewed papers obtained from PubMed, Google Scholar, Scopus, and Research4life were included in this review. A few factors have come under attention in this review. Firstly, plant and soil systems combinedly showed the most published studies after the catastrophe where plants showed a higher frequency of DNA methylation in their genome to resist radiation stress. Secondly, reduced species abundance, chromosomal aberrations, increased sterility, and mortality were mostly observed in the aftermath of Chernobyl catastrophe among plants, soil, aquatic organisms, birds, and small mammals. Furthermore, major scares of data after 2018 were prominently observed. Very few studies on radiation dose levels after 2018 are available. Hence, a major research area has emerged for radiation biologists to study present radiation levels and any genetic changes in the recent generation of the original victim species. This will help provide a standard dataset that can act as a reference resource for radiation biologists and future research on the impact of both acute and chronic radiation on the different biological systems.
Collapse
Affiliation(s)
- Munima Haque
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Shabnoor Binte Dayem
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Nazifa Tabassum Tasnim
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Md Rashadul Islam
- Physics Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Md Salman Shakil
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Hayama SI, Nakanishi S, Tanaka A, Kato T, Watanabe C, Kikuchi N, Danjo R, Matsuda A, Mori W, Kawabata Y, Akiba H, Konno F, Kawamoto Y, Omi T. Decline in the Conception Rate of Wild Japanese Monkeys after the Fukushima Daiichi Nuclear Power Plant Accident. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:325-334. [PMID: 38664243 PMCID: PMC11143026 DOI: 10.1007/s00244-024-01063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/26/2024] [Indexed: 06/02/2024]
Abstract
We examined the conception rate of wild Japanese monkeys (Macaca fuscata) in Fukushima City that were exposed to radiation as a result of the Fukushima Daiichi Nuclear Power Plant accident in March 2011. The conception rate in the year of delivery from 2009 to 2022 was estimated by dissecting individuals that were euthanized by the government for population control as a countermeasure against crop damage. To evaluate the effects of exposure, the cumulative exposure dose for each individual was calculated using the concentration of radiocesium deposited in the soil at the capture site and the concentration of radiocesium in muscle estimated from the aggregated transfer factor. There were no significant differences in conception rates across all age classes over time. In terms of conception rates by age class, there was a significant decrease post-exposure compared with pre-exposure in the age class ≥ 8 years, but no significant differences in the age class 5-7 years. The non-ovulation rate did not significantly differ between the pre- and post-exposure periods for any age class. Body fat index, which can affect fertility, was compared between the pre- and post-exposure periods, and no significant differences were found in either age class. In contrast, the median total cumulative exposure (cumulative internal exposure + cumulative external exposure) was significantly higher in the age class ≥ 8 years compared with the age class 5-7 years. These results suggest that the total cumulative exposure dose may be one of the reasons for the lower conception rate in the post-exposure period among the age class ≥ 8 years.
Collapse
Affiliation(s)
- Shin-Ichi Hayama
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan.
| | - Setsuko Nakanishi
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Aki Tanaka
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Takuya Kato
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Chinatsu Watanabe
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Nobutaka Kikuchi
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Risa Danjo
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Ayano Matsuda
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Wakako Mori
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Yuki Kawabata
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Hikari Akiba
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Fumiharu Konno
- Tohoku Wildlife Management Center, Sendai, Miyagi, 989-3212, Japan
| | - Yoshi Kawamoto
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Toshinori Omi
- School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| |
Collapse
|
3
|
Sreetharan S, Frelon S, Horemans N, Laloi P, Salomaa S, Adam-Guillermin C. Ionizing radiation exposure effects across multiple generations: evidence and lessons from non-human biota. Int J Radiat Biol 2023; 100:1312-1329. [PMID: 38079349 DOI: 10.1080/09553002.2023.2281512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 08/30/2024]
Abstract
A Task Group (TG121) of the International Commission on Radiological Protection (ICRP) Committee 1 was launched in 2021 to study the effects of ionizing radiation in offspring and next generations. In this report, we summarize the evidence of multi- and trans-generational effects in non-human biota species that was discussed at the ICRP workshop entitled "Effects of Ionizing Radiation Exposure in Offspring and Next Generations" in June 2022. Epigenetic changes, including changes in DNA methylation, have been observed in trans- and multi-generational irradiation studies in both plants and animals. There were also reports of changes in offspring survival and reproduction. The reported evidence for altered reproduction is an area of potential concern, due to possible effects at the population or ecosystem level. Different considerations are also discussed regarding non-human biota data, such as transferability of data between different species or extending knowledge to humans, differences in species radiosensitivity, the presence of adaptive responses, and dose reconstruction for exposures that occur across multiple generations. Overall, there is a diverse range of available data of the effects in non-human biota, and it will require careful consideration when incorporating this evidence into the system of radiological protection of humans and of the environment.
Collapse
Affiliation(s)
- Shayenthiran Sreetharan
- Radiation Safety, London Health Sciences Centre (LHSC), London, Ontario, Canada
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Sandrine Frelon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Biosphere Impact Studies (BIS), Mol, Belgium
- Centre of Environmental Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Patrick Laloi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Christelle Adam-Guillermin
- PSE-SANTE/SDOS/LMDN, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, Saint-Paul-lez-Durance, France
| |
Collapse
|
4
|
Hecla J, Kambarian E, Tubbs R, McKinley C, Berliner AJ, Russell K, Spatola G, Chertok J, Braun W, Hank N, Marquette C, Betz J, Paik T, Chenery M, Cagan A, Willis C, Mousseau T. Radioactive contamination in feral dogs in the Chernobyl exclusion zone: Population body-burden survey and implications for human radiation exposure. PLoS One 2023; 18:e0283206. [PMID: 37471331 PMCID: PMC10358910 DOI: 10.1371/journal.pone.0283206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/03/2023] [Indexed: 07/22/2023] Open
Abstract
This report describes a two-year effort to survey the internal 137Cs and external β-emitter contamination present in the feral dog population near the Chernobyl nuclear power plant (ChNPP) site, and to understand the potential for human radiation exposure from this contamination. This work was performed as an integral part of the radiation safety and control procedures of an animal welfare oriented trap-neuter-release (TNR) program. The measurement program focused on external contamination surveys using handheld β-sensitive probes, and internal contamination studies using a simple whole-body counter. Internal 137Cs burden was measured non-invasively during post-surgical observation and recovery. External β contamination surveys performed during intake showed that 21/288 animals had significant, removable external contamination, though not enough to pose a large hazard for incidental contact. Measurements with the whole-body counter indicated internal 137Cs body burdens ranging from undetectable (minimum detection level ∼100 Bq/kg in 2017, ∼30 Bq/kg in 2018) to approximately 30,000 Bq/kg. A total of 33 animals had 137Cs body-burdens above 1 kBq/kg, though none posed an external exposure hazard. The large variation in the 137Cs concentration in these animals is not well-understood, could be due to prey selection, access to human food scraps, or extended residence in highly contaminated areas. The small minority of animals with external contamination may pose a contamination risk allowing exposures in excess of regulatory standards.
Collapse
Affiliation(s)
- Jake Hecla
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, California, United States of America
- Clean Futures Fund, Godfrey, Illinois, United States of America
| | - Erik Kambarian
- Clean Futures Fund, Godfrey, Illinois, United States of America
| | - Robert Tubbs
- Tubbs Nuclear Consulting, Auburn, Washington, United States of America
| | - Carla McKinley
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, California, United States of America
| | - Aaron J. Berliner
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, California, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
| | - Kayla Russell
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Gabrielle Spatola
- Department of Biological Sciences, University of South Carolina, Columbia, South California, United States of America
| | - Jordan Chertok
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Weston Braun
- Department of Electrical Engineering, Stanford University, Palo Alto, California, United States of America
| | - Natalia Hank
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Courtney Marquette
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Jennifer Betz
- Clean Futures Fund, Godfrey, Illinois, United States of America
| | - Terry Paik
- Clean Futures Fund, Godfrey, Illinois, United States of America
| | - Marie Chenery
- Clean Futures Fund, Godfrey, Illinois, United States of America
| | - Alex Cagan
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Carl Willis
- Department of Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Tim Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, South California, United States of America
| |
Collapse
|
5
|
Yushkova E. Contribution of transposable elements to transgenerational effects of chronic radioactive exposure of natural populations of Drosophila melanogaster living for a long time in the zone of the Chernobyl nuclear disaster. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 251-252:106945. [PMID: 35696883 DOI: 10.1016/j.jenvrad.2022.106945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The accident at the Chernobyl Nuclear Power Plant (ChNPP) led to the negative impact of chronic radioactive contamination on populations of organisms associated with the transgenerational transmission of genome instability. When the destabilization of genome, different genetic damages occur, the accumulation of which leads to the formation of mutations, morphological anomalies, and mortality in the offspring. The mechanisms underlying the manifestation of transgenerational events in the offspring of irradiated parents are not well understood. In this study, for the first time, the features of the influence of transposable elements (TEs) on the long-term biological consequences of the ChNPP are considered. In this work, specimens of D. melanogaster obtained from natural populations in 2007 in the areas of the ChNPP with heterogeneous radioactive contamination were studied. The descendants from these populations were maintained in laboratory (inbred) conditions for 160 generations. A stable transgenerational transmission of dominant lethal mutations (DLMs) to the offspring of all studied populations was shown. The DLM frequencies strongly were correlated with the level of survival of offspring. The mean frequencies of recessive sex-linked lethal mutations varied at the level of spontaneous point mutations. The simultaneous presence of P, hobo and I elements indicates that the studied populations do not have a definite cytotype, their phenotypic status is unstable. The behavior of TEs in the genomes of offspring depends not only on parental exposure, but also on origin of population, distance to the ChNPP, and inbred conditions. The obtained results confirm the hypothesis that TEs are involved in transgenerational transmission and accumulation of mutations by the offspring of irradiated parents. The TEs pattern present in the Chernobyl genomes of D. melanogaster is a peculiar of epigenetic mechanism for the regulation of plasticity and adaptation of populations living for many generations under conditions of a technogenically caused radiation background.
Collapse
Affiliation(s)
- Elena Yushkova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Science, Syktyvkar, Russia.
| |
Collapse
|
6
|
Burrows JE, Copplestone D, Raines KE, Beresford NA, Tinsley MC. Ecologically relevant radiation exposure triggers elevated metabolic rate and nectar consumption in bumblebees. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jessica E. Burrows
- Biological and Environmental Sciences University of Stirling Stirling UK
| | - David Copplestone
- Biological and Environmental Sciences University of Stirling Stirling UK
| | | | | | - Matthew C. Tinsley
- Biological and Environmental Sciences University of Stirling Stirling UK
| |
Collapse
|
7
|
Grigorkina EB, Olenev GV, Tolkachev OV. Method for Detection of Exact Place of Birth of Small Mammals in the Studies Using Group Labeling with Rhodamine. RUSS J ECOL+ 2022. [DOI: 10.1134/s1067413622010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Mothersill C, Seymour C. Low dose radiation mechanisms: The certainty of uncertainty. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503451. [PMID: 35483782 DOI: 10.1016/j.mrgentox.2022.503451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
This paper reviews the current understanding of low dose radiobiology, and how it has evolved from classical target theory. It highlights the uncertainty around low dose effects, which is due in part to the complexity of "context" surrounding the ultimate expression of biological effects following low dose exposure. The paper makes special reference to low dose non-targeted effects which, are currently ignored in radiation protection and population level risk assessment, because it is unclear what they mean for risk. The view of the authors is that this "lack of clarity" about what the effects mean is precisely the point. It indicates the uncertainty of outcomes after a given exposure. The uncertainty stems from multiple outcome options resulting from the intrinsic uncertainty of the stochastic interaction of low dose radiation with matter. This uncertainty should be embraced rather than eschewed. The impacts of the uncertainties identified in this paper is explored and an approach to quantifying mutation probability in relation to dose is presented.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
9
|
Lypska A, Riabchenko N, Rodionova N, Burdo O. Radiation-induced effects on bone marrow of bank voles inhabiting the Chornobyl exclusion zone. Int J Radiat Biol 2022; 98:1366-1375. [PMID: 35230914 DOI: 10.1080/09553002.2022.2047823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To investigate the effects of chronic exposure to low-dose radiation on bone marrow hematopoiesis of bank voles inhabiting the radioactively contaminated territory of the Chornobyl exclusion zone. MATERIALS AND METHODS Animals were collected within the highly radioactive area of the so-called Red Forest located close to the destroyed 4th reactor of the Chornobyl Nuclear Power Plant. Radioecological investigations included evaluation of radiocontamination of soil samples by 90Sr and 137Cs, levels of incorporated radionuclides in animals' bodies and organs, as well as the absorbed dose rates. The study of peripheral blood and bone marrow parameters combined with cytogenetic analysis of bone marrow micronucleated polychromatic erythrocytes and standard metaphase test was carried out. RESULTS The blood system of the exposed animals manifested significant changes in peripheral blood parameters (anaemia and leucocyte formula left shift), ineffective differentiation and maturation of bone marrow cells, particularly relevant to the erythroid and granulocyte pools. Increased yields of bone marrow micronucleated polychromatic erythrocytes and chromosomal aberrations, including dicentrics and Robertsonian fusion-like configurations, were revealed. CONCLUSIONS Observed disturbances in the bone marrow and peripheral blood suggest functional instability and inefficient compensatory and recovery reactions of the blood system of the bank voles from the contaminated areas of the Chornobyl exclusion zone. We assume that they are the consequences both of direct radiation exposure and hereditary pathological changes that have formed in a number of generations inhabiting radioactively contaminated areas.
Collapse
Affiliation(s)
- Alla Lypska
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of NAS of Ukraine, Kyiv, Ukraine
| | - Natalia Riabchenko
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of NAS of Ukraine, Kyiv, Ukraine
| | - Natalia Rodionova
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of NAS of Ukraine, Kyiv, Ukraine
| | - Olena Burdo
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
10
|
Abstract
Environmental disasters offer the unique opportunity for landscape-scale ecological and evolutionary studies that are not possible in the laboratory or small experimental plots. The nuclear accident at Chernobyl (1986) allows for rigorous analyses of radiation effects on individuals and populations at an ecosystem scale. Here, the current state of knowledge related to populations within the Chernobyl region of Ukraine and Belarus following the largest civil nuclear accident in history is reviewed. There is now a significant literature that provides contrasting and occasionally conflicting views of the state of animals and how they are affected by this mutagenic stressor. Studies of genetic and physiological effects have largely suggested significant injuries to individuals inhabiting the more radioactive areas of the Chernobyl region. Most population censuses for most species suggest that abundances are reduced in the more radioactive areas.
Collapse
Affiliation(s)
- Timothy A. Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
11
|
Burraco P, Bonzom JM, Car C, Beaugelin-Seiller K, Gashchak S, Orizaola G. Lack of impact of radiation on blood physiology biomarkers of Chernobyl tree frogs. Front Zool 2021; 18:33. [PMID: 34187507 PMCID: PMC8240299 DOI: 10.1186/s12983-021-00416-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Human actions have altered natural ecosystems worldwide. Among the many pollutants released to the environment, ionizing radiation can cause severe damage at different molecular and functional levels. The accident in the Chernobyl Nuclear Power Plant (1986) caused the largest release of ionizing radiation to the environment in human history. Here, we examined the impact of the current exposure to ionizing radiation on blood physiology biomarkers of adult males of the Eastern tree frog (Hyla orientalis) inhabiting within and outside the Chernobyl Exclusion Zone. We measured the levels of eight blood parameters (sodium, potassium, chloride, ionized calcium, total carbon dioxide, glucose, urea nitrogen, and anion gap), physiological markers of homeostasis, as well as of liver and kidney function. RESULTS Levels of blood physiology biomarkers did not vary in function of the current exposure of tree frogs to ionizing radiation within the Chernobyl Exclusion Zone. Physiological blood levels were similar in frogs inhabiting Chernobyl (both in areas with medium-high or low radiation) than in tree frogs living outside Chernobyl exposed only to background radiation levels. CONCLUSIONS The observed lack of effects of current radiation levels on blood biomarkers can be a consequence of the low levels of radiation currently experienced by Chernobyl tree frogs, but also to the fact that our sampling was restricted to active breeding males, i.e. potentially healthy adult individuals. Despite the clear absence of effects of current radiation levels on physiological blood parameters in tree frogs, more research covering different life stages and ecological scenarios is still needed to clarify the impact of ionizing radiation on the physiology, ecology, and dynamics of wildlife inhabiting radioactive-contaminated areas.
Collapse
Affiliation(s)
- Pablo Burraco
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK.
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden.
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint Paul Lez Durance, France
| | - Clément Car
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint Paul Lez Durance, France
| | - Karine Beaugelin-Seiller
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint Paul Lez Durance, France
| | - Sergey Gashchak
- Chornobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, Slavutych, 07100, Ukraine
| | - Germán Orizaola
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden
- IMIB-Biodiversity Research Institute (Univ. Oviedo-CSIC-Princip. Asturias), University of Oviedo, 33600, Mieres, Asturias, Spain
- Zoology Unit, Department of Biology of Organisms and Systems, University of Oviedo, 33071, Oviedo, Asturias, Spain
| |
Collapse
|
12
|
Horníková M, Marková S, Lanier HC, Searle JB, Kotlík P. A dynamic history of admixture from Mediterranean and Carpathian glacial refugia drives genomic diversity in the bank vole. Ecol Evol 2021; 11:8215-8225. [PMID: 34188881 PMCID: PMC8216894 DOI: 10.1002/ece3.7652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 01/26/2023] Open
Abstract
Understanding the historical contributions of differing glacial refugia is key to evaluating the roles of microevolutionary forces, such as isolation, introgression, and selection in shaping genomic diversity in present-day populations. In Europe, where both Mediterranean and extra-Mediterranean (e.g., Carpathian) refugia of the bank vole (Clethrionomys glareolus) have been identified, mtDNA indicates that extra-Mediterranean refugia were the main source of colonization across the species range, while Mediterranean peninsulas harbor isolated, endemic lineages. Here, we critically evaluate this hypothesis using previously generated genomic data (>6,000 SNPs) for over 800 voles, focusing on genomic contributions to bank voles in central Europe, a key geographic area in considering range-wide colonization. The results provide clear evidence that both extra-Mediterranean (Carpathian) and Mediterranean (Spanish, Calabrian, and Balkan) refugia contributed to the ancestry and genomic diversity of bank vole populations across Europe. Few strong barriers to dispersal and frequent admixture events in central Europe have led to a prominent mid-latitude peak in genomic diversity. Although the genomic contribution of the centrally located Carpathian refugium predominates, populations in different parts of Europe have admixed origins from Mediterranean (28%-47%) and the Carpathian (53%-72%) sources. We suggest that the admixture from Mediterranean refugia may have provisioned adaptive southern alleles to more northern populations, facilitating the end-glacial spread of the admixed populations and contributing to increased bank vole diversity in central Europe. This study adds critical details to the complex end-glacial colonization history of this well-studied organism and underscores the importance of genomic data in phylogeographic interpretation.
Collapse
Affiliation(s)
- Michaela Horníková
- Laboratory of Molecular Ecology Institute of Animal Physiology and Genetics of the Czech Academy of Sciences Liběchov Czech Republic
- Department of Zoology, Faculty of Science Charles University Prague Czech Republic
| | - Silvia Marková
- Laboratory of Molecular Ecology Institute of Animal Physiology and Genetics of the Czech Academy of Sciences Liběchov Czech Republic
| | - Hayley C Lanier
- Department of Biology, Program in Ecology & Evolutionary Biology University of Oklahoma Norman OK USA
- Sam Noble Museum University of Oklahoma Norman OK USA
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| | - Petr Kotlík
- Laboratory of Molecular Ecology Institute of Animal Physiology and Genetics of the Czech Academy of Sciences Liběchov Czech Republic
| |
Collapse
|
13
|
Shuryak I, Brenner DJ. Quantitative modeling of multigenerational effects of chronic ionizing radiation using targeted and nontargeted effects. Sci Rep 2021; 11:4776. [PMID: 33637848 PMCID: PMC7910614 DOI: 10.1038/s41598-021-84156-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022] Open
Abstract
Stress response signals can propagate between cells damaged by targeted effects (TE) of ionizing radiation (e.g. energy depositions and ionizations in the nucleus) and undamaged "bystander" cells, sometimes over long distances. Their consequences, called non-targeted effects (NTE), can substantially contribute to radiation-induced damage (e.g. cell death, genomic instability, carcinogenesis), particularly at low doses/dose rates (e.g. space exploration, some occupational and accidental exposures). In addition to controlled laboratory experiments, analysis of observational data on wild animal and plant populations from areas contaminated by radionuclides can enhance our understanding of radiation responses because such data span wide ranges of dose rates applied over many generations. Here we used a mechanistically-motivated mathematical model of TE and NTE to analyze published embryonic mortality data for plants (Arabidopsis thaliana) and rodents (Clethrionomys glareolus) from the Chernobyl nuclear power plant accident region. Although these species differed strongly in intrinsic radiosensitivities and post-accident radiation exposure magnitudes, model-based analysis suggested that NTE rather than TE dominated the responses of both organisms to protracted low-dose-rate irradiation. TE were predicted to become dominant only above the highest dose rates in the data. These results support the concept of NTE involvement in radiation-induced health risks from chronic radiation exposures.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA.
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA
| |
Collapse
|
14
|
Gombeau K, Bonzom JM, Cavalié I, Camilleri V, Orjollet D, Dubourg N, Beaugelin-Seiller K, Bourdineaud JP, Lengagne T, Armant O, Ravanat JL, Adam-Guillermin C. Dose-dependent genomic DNA hypermethylation and mitochondrial DNA damage in Japanese tree frogs sampled in the Fukushima Daiichi area. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 225:106429. [PMID: 33059178 DOI: 10.1016/j.jenvrad.2020.106429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The long-term consequences of the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP) that occurred on March 2011, have been scarcely studied on wildlife. We sampled Japanese tree frogs (Dryophytes japonicus), in a 50 -km area around the FDNPP to test for an increase of DNA damages and variation of DNA methylation level. The ambient dose rate ranged between 0.4 and 2.8 μGy h-1 and the total estimated dose rate absorbed by frogs ranged between 0.3 and 7.7 μGy h-1. Frogs from contaminated sites exhibited a dose-dependent increase of global genomic DNA methylation level (5-mdC and 5-hmdC) and of mitochondrial DNA damages. Such DNA damages may indicate a genomic instability, which may induce physiological adaptations governed by DNA methylation changes. This study stresses the need for biological data combining targeted molecular methods and classic ecotoxicology, in order to better understand the impacts on wildlife of long term exposure to low ionizing radiation levels.
Collapse
Affiliation(s)
- Kewin Gombeau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France; University of Bordeaux, CNRS, UMR5095 CNRS, Institute for Cellular Biochemistry and Genetics, 1 Rue Camille Saint Saëns, CS 61390, 33077, Bordeaux Cedex, France
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Daniel Orjollet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LR2T, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Nicolas Dubourg
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Karine Beaugelin-Seiller
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Jean-Paul Bourdineaud
- University of Bordeaux, CNRS, UMR MFP 5234, European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607, Pessac, France
| | - Thierry Lengagne
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, INAC-SCIB, 38000, Grenoble, France; CEA, INAC-SCIB Laboratoire des Lésions des Acides Nucléiques, 38000, Grenoble, France
| | | |
Collapse
|
15
|
Fuciarelli TM, Rollo CD. Trans-Generational Impacts of Paternal Irradiation in a Cricket: Damage, Life-History Features and Hormesis in F1 Offspring. Dose Response 2020; 18:1559325820983214. [PMID: 33424519 PMCID: PMC7758660 DOI: 10.1177/1559325820983214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/20/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Animals exposed to significant stress express multi-modal responses to buffer negative impacts. Trans-generational impacts have been mainly studied in maternal lines, with paternal lines having received less attention. Here, we assessed paternal generational effects using irradiated male crickets (Acheta domesticus), and their F1 offspring (irradiated males mated to unirradiated females). Paternal transmission of radiation impacts emerged in multiple life history traits when compared to controls. Irradiated males and their F1 offspring expressed hormetic responses in survivorship and median longevity at mid-range doses. For F0 males, 7 Gy & 10 Gy doses extended F0 longevity by 39% and 34.2% respectively. F1 offspring of 7 Gy and 10 Gy sires had median lifespans 71.3% and 110.9% longer, respectively. Survivorship for both F0 7 Gy (p < 0.0001) and 10 Gy (p = 0.0055) males and F1 7 Gy and 10 Gy (p < 0.0001) offspring significantly surpassed that of controls. Irradiated F0 males and F1 offspring had significantly reduced growth rates. For F0 males, significant reductions were evident in 4Gy-12 Gy males and F1 offspring in 4 Gy (p < 0.0001), 7 Gy (p < 0.0001), and 10 Gy (p = 0.017). Our results indicate paternal effects; that irradiation directly impacted males but also mediated diverse alterations in the life history features (particularly longevity and survivorship) of F1 offspring.
Collapse
Affiliation(s)
| | - C. David Rollo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Shuryak I. Review of resistance to chronic ionizing radiation exposure under environmental conditions in multicellular organisms. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 212:106128. [PMID: 31818732 DOI: 10.1016/j.jenvrad.2019.106128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Ionizing radiation resistance occurs among many phylogenetic groups and its mechanisms remain incompletely understood. Tolerances to acute and chronic irradiation do not always correlate because different mechanisms may be involved. The radioresistance phenomenon becomes even more complex in the field than in the laboratory because the effects of radioactive contamination on natural populations are intertwined with those of other factors, such as bioaccumulation of radionuclides, interspecific competition, seasonal variations in environmental conditions, and land use changes due to evacuation of humans from contaminated areas. Previous reviews of studies performed in radioactive sites like the Kyshtym, Chernobyl, and Fukushima accident regions, and of protracted irradiation experiments, often focused on detecting radiation effects at low doses in radiosensitive organisms. Here we review the literature with a different purpose: to identify organisms with high tolerance to chronic irradiation under environmental conditions, which maintained abundant populations and/or outcompeted more radiosensitive species at high dose rates. Taxa for which consistent evidence for radioresistance came from multiple studies conducted in different locations and at different times were found among plants (e.g. willow and birch trees, sedges), invertebrate and vertebrate animals (e.g. rotifers, some insects, crustaceans and freshwater fish). These organisms are not specialized "extremophiles", but tend to tolerate broad ranges of environmental conditions and stresses, have small genomes, reproduce quickly and/or disperse effectively over long distances. Based on these findings, resistance to radioactive contamination can be examined in a more broad context of chronic stress responses.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, USA.
| |
Collapse
|
17
|
Hancock S, Vo NTK, Goncharova RI, Seymour CB, Byun SH, Mothersill CE. One-Decade-Spanning transgenerational effects of historic radiation dose in wild populations of bank voles exposed to radioactive contamination following the chernobyl nuclear disaster. ENVIRONMENTAL RESEARCH 2020; 180:108816. [PMID: 31627157 DOI: 10.1016/j.envres.2019.108816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
The concept of historic radiation doses associated with accidental radioactive releases and their role in leading to radiation-induced non-targeted effects on affected wild animals are currently being evaluated. Previous research studying Fukushima butterfly, Chernobyl bird and fruit fly populations shows that the effects are transgenerational, underlined by the principles of genomic instability, and varied from one species to another. To further expand on the responses of and their sensitivity in different taxonomically distinct groups, the present study sought to reconstruct historic radiation doses and delineate their effects on bank voles (Clethrionomys glareolus) found within a 400-km radius of the Chernobyl Nuclear Power Plant meltdown site. Historic dose reconstruction from the whole-body dose rates for the bank vole samples for their parental generation at the time of radioactive release was performed. Relationships between the historic doses and cytogenetic aberrations and embryonic lethality were examined via graphical presentations. Results suggest that genomic instability develops at the historic dose range of 20-51 mGy while a radioadaptive response develops at the historic dose range of 51-356 mGy. The Linear No-Threshold (LNT) relationship was absent at historic doses of lower than 356 mGy at all generations. However, LNT was apparent when the very high historic dose of 10.28 Gy in one sampling year was factored into the dose response curve for the bank vole generation 21-22. It is worth being reminded that natural mutation accumulation and other environmental stressors outside the realm of dose effects could contribute to the observed effects in a multiple-stressor environment. Nevertheless, the consistent development of genomic instability and radio-adaptive response across generations and sampling sites unearths the utmost fundamental radiobiological principle of transgenerational non-targeted effects. As a result, it calls for better attention and regulation from global governing bodies of environmental health protection.
Collapse
Affiliation(s)
- Samuel Hancock
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Roza I Goncharova
- Institute of Genetics and Cytology, National Academy of Sciences, Minsk, Belarus
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Soo Hyun Byun
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
18
|
Burdo ОО, Lypska АI, Riabchenko NM, Sova OA. Peculiarities of Hematopoiesis in small rodents from the Chornobyl Exclusion Zone on the background of extreme environment. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:105758. [PMID: 30033147 DOI: 10.1016/j.jenvrad.2018.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 05/02/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Radiobiological investigations of natural populations of Myodes glareolus (bank vole) from the Chornobyl Exclusion Zone, namely within a highly radioactive site of the Red Forest were carried out. The complex of hematological and cytogenetic parameters of the bank voles inhabiting the contaminated site was studied before the site was flooded, in 2012, and after it drained, in 2015. A significant increase in micronucleated polychromatic erythrocytes, alterations in bone marrow and peripheral blood cell counts were observed in the population of 2015 in comparison with the group of 2012 and animals from the reference site. It is supposed that prolonged flooding has affected the features of radionuclide contamination of the experimental site as well as population characteristics and resulted in the increase of the genotoxic effects observed in the renewed population of bank voles exposed to chronic radiation.
Collapse
Affiliation(s)
- Оlena О Burdo
- Department of Radiobiology and Radioecology, Institute for Nuclear Physics of NAS of Ukraine, 47 Nayky prospect, Kyiv, 03680, Ukraine.
| | - Аlla I Lypska
- Department of Radiobiology and Radioecology, Institute for Nuclear Physics of NAS of Ukraine, 47 Nayky prospect, Kyiv, 03680, Ukraine.
| | - Nataliia M Riabchenko
- Department of Radiobiology and Radioecology, Institute for Nuclear Physics of NAS of Ukraine, 47 Nayky prospect, Kyiv, 03680, Ukraine.
| | - Olena A Sova
- Department of Radiobiology and Radioecology, Institute for Nuclear Physics of NAS of Ukraine, 47 Nayky prospect, Kyiv, 03680, Ukraine.
| |
Collapse
|
19
|
Kotlík P, Marková S, Konczal M, Babik W, Searle JB. Genomics of end-Pleistocene population replacement in a small mammal. Proc Biol Sci 2019; 285:rspb.2017.2624. [PMID: 29436497 DOI: 10.1098/rspb.2017.2624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022] Open
Abstract
Current species distributions at high latitudes are the product of expansion from glacial refugia into previously uninhabitable areas at the end of the last glaciation. The traditional view of postglacial colonization is that southern populations expanded their ranges into unoccupied northern territories. Recent findings on mitochondrial DNA (mtDNA) of British small mammals have challenged this simple colonization scenario by demonstrating a more complex genetic turnover in Britain during the Pleistocene-Holocene transition where one mtDNA clade of each species was replaced by another mtDNA clade of the same species. Here, we provide evidence from one of those small mammals, the bank vole (Clethrionomys glareolus), that the replacement was genome-wide. Using more than 10 000 autosomal SNPs we found that similar to mtDNA, bank vole genomes in Britain form two (north and south) clusters which admix. Therefore, the genome of the original postglacial colonists (the northern cluster) was probably replaced by another wave of migration from a different continental European population (the southern cluster), and we gained support for this by modelling with approximate Bayesian computation. This finding emphasizes the importance of analysis of genome-wide diversity within species under changing climate in creating opportunities for sophisticated testing of population history scenarios.
Collapse
Affiliation(s)
- Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Silvia Marková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Mateusz Konczal
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.,Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Hancock S, Vo NTK, Omar-Nazir L, Batlle JVI, Otaki JM, Hiyama A, Byun SH, Seymour CB, Mothersill C. Transgenerational effects of historic radiation dose in pale grass blue butterflies around Fukushima following the Fukushima Dai-ichi Nuclear Power Plant meltdown accident. ENVIRONMENTAL RESEARCH 2019; 168:230-240. [PMID: 30321736 DOI: 10.1016/j.envres.2018.09.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Low dose radiation effects have been investigated in Chernobyl for many years but there is uncertainty about initial doses received by many animal species. However, the Fukushima Dai-ichi Nuclear Power Plant accident opens an opportunity to study the effects of the initial low historic dose on directly exposed species and their progeny during a time where the contaminating radionuclides are decaying. In this paper, it is proposed that historic acute exposure and its resulting non-targeted effects (NTEs) may be partially involved in the high mortality/abnormality rates seen across generations of pale grass blue butterflies (Zizeeria maha) around Fukushima. Data from Hiyama et al. (2012) on the morphological abnormality frequencies in Z. maha collected around Fukushima and their progeny were used in this paper. Two dose reconstruction methods based on the Gaussian plume model were used to determine the external absorbed dose to the first exposed generation from both ground shine and plume shine. One method involved the use of the dose rate recorded at the time of collection and only took Cs-137 into account. The other involved using release rates and atmospheric conditions to determine the doses and considered Cs-137 and Cs-134. The reconstructed doses were plotted against the mortality rates and abnormality frequencies across generations. The mortality rates of the progeny from irradiated progenitors increased linearly with the increasing historic radiation doses reconstructed using both Cs-137 and Cs-134 sources. Additionally, a higher level of morphological abnormalities was observed in progeny than in the progenitors. The mean abnormality frequencies also increased throughout generations. As these results are a sign of NTEs being involved, it can be suggested that increasing mutation levels across generations may result, in part, from NTEs induced by the initial low dose received by the first exposed generation. However, continual accumulation of mutations over generations in their natural contaminated habitats remains a likely contributor into the observed outcome.
Collapse
Affiliation(s)
- Samuel Hancock
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Laila Omar-Nazir
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | | | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0123, Japan
| | - Atsuki Hiyama
- Laboratory of Conservation Ecology, Department of Integrated Science and Engineering for Sustainable Society, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Soo Hyun Byun
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
21
|
Hayes RB. LNT May Be Lethal but ALARA Is Inherently Useful. HEALTH PHYSICS 2018; 115:391-392. [PMID: 30045122 DOI: 10.1097/hp.0000000000000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
22
|
Mustonen V, Kesäniemi J, Lavrinienko A, Tukalenko E, Mappes T, Watts PC, Jurvansuu J. Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses. BMC Cell Biol 2018; 19:17. [PMID: 30157751 PMCID: PMC6114495 DOI: 10.1186/s12860-018-0169-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/20/2018] [Indexed: 11/25/2022] Open
Abstract
Background Elevated levels of environmental ionizing radiation can be a selective pressure for wildlife by producing reactive oxygen species and DNA damage. However, the underlying molecular mechanisms that are affected are not known. Results We isolated skin fibroblasts from bank voles (Myodes glareolus) inhabiting the Chernobyl nuclear power plant accident site where background radiation levels are about 100 times greater than in uncontaminated areas. After a 10 Gy dose of gamma radiation fibroblasts from Chernobyl animals recovered faster than fibroblasts isolated from bank voles living in uncontaminated control area. The Chernobyl fibroblasts were able to sustain significantly higher doses of an oxidant and they had, on average, a higher total antioxidant capacity than the control fibroblasts. Furthermore, the Chernobyl fibroblasts were also significantly more resistant than the control fibroblasts to continuous exposure to three DNA damaging drugs. After drug treatment transcription of p53-target gene pro-apoptotic Bax was higher in the control than in the Chernobyl fibroblasts. Conclusion Fibroblasts isolated from bank voles inhabiting Chernobyl nuclear power plant accident site show elevated antioxidant levels, lower sensitivity to apoptosis, and increased resistance against oxidative and DNA stresses. These cellular qualities may help bank voles inhabiting Chernobyl to cope with environmental radioactivity. Electronic supplementary material The online version of this article (10.1186/s12860-018-0169-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Venla Mustonen
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Jenni Kesäniemi
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Anton Lavrinienko
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Eugene Tukalenko
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, UA-03022, Ukraine
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Phillip C Watts
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Jaana Jurvansuu
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland.
| |
Collapse
|
23
|
Omar-Nazir L, Shi X, Moller A, Mousseau T, Byun S, Hancock S, Seymour C, Mothersill C. Long-term effects of ionizing radiation after the Chernobyl accident: Possible contribution of historic dose. ENVIRONMENTAL RESEARCH 2018; 165:55-62. [PMID: 29665465 DOI: 10.1016/j.envres.2018.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 05/27/2023]
Abstract
The impact of the Chernobyl NPP accident on the environment is documented to be greater than expected, with higher mutation rates than expected at the current, chronic low dose rate. In this paper we suggest that the historic acute exposure and resulting non-targeted effects (NTE) such as delayed mutations and genomic instability could account at least in part for currently measured mutation rates and provide an initial test of this concept. Data from Møller and Mousseau on the phenotypic mutation rates of Chernobyl birds 9-11 generations post the Chernobyl accident were used and the reconstructed dose response for mutations was compared with delayed reproductive death dose responses (as a measure of genomic instability) in cell cultures exposed to a similar range of doses. The dose to birds present during the Chernobyl NPP accident was reconstructed through the external pathway due to Cs-137 with an estimate of the uncertainty associated with such reconstruction. The percentage of Chernobyl birds several generations after the accident without mutations followed the general shape of the clonogenic survival percentage of the progeny of irradiated cells, and it plateaued at low doses. This is the expected result if NTE of radiation are involved. We suggest therefore, that NTE induced by the historic dose may play a role in generating mutations in progeny many generations following the initial disaster.
Collapse
Affiliation(s)
| | - Xiaopei Shi
- McMaster University, Hamilton, Ontario, Canada
| | - Anders Moller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France
| | - Timothy Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
24
|
Byrne ME, Webster SC, Lance SL, Love CN, Hinton TG, Shamovich D, Beasley JC. Evidence of long-distance dispersal of a gray wolf from the Chernobyl Exclusion Zone. EUR J WILDLIFE RES 2018. [DOI: 10.1007/s10344-018-1201-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Mothersill C, Abend M, Bréchignac F, Iliakis G, Impens N, Kadhim M, Møller AP, Oughton D, Powathil G, Saenen E, Seymour C, Sutcliffe J, Tang FR, Schofield PN. When a duck is not a duck; a new interdisciplinary synthesis for environmental radiation protection. ENVIRONMENTAL RESEARCH 2018; 162:318-324. [PMID: 29407763 DOI: 10.1016/j.envres.2018.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
This consensus paper presents the results of a workshop held in Essen, Germany in September 2017, called to examine critically the current approach to radiological environmental protection. The meeting brought together participants from the field of low dose radiobiology and those working in radioecology. Both groups have a common aim of identifying radiation exposures and protecting populations and individuals from harmful effects of ionising radiation exposure, but rarely work closely together. A key question in radiobiology is to understand mechanisms triggered by low doses or dose rates, leading to adverse outcomes of individuals while in radioecology a key objective is to recognise when harm is occurring at the level of the ecosystem. The discussion provided a total of six strategic recommendations which would help to address these questions.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Neuherbergstr. 11, 80937 Munich, Germany.
| | - François Bréchignac
- Institute for Radioprotection and Nuclear Safety (IRSN) & International Union of Radioecology (IUR), Centre du Cadarache, Bldg 229, St Paul-lez-Durance, France.
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen, Medical School, Hufeland Str. 55, 45122 Essen, Germany.
| | - Nathalie Impens
- Institute of Environment, Health and Safety, Biosphere Impact Studies, SCK•CEN, Boeretang 200, 2400 Mol, Belgium.
| | - Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Equipe Diversité, Ecologie et Evolution Microbiennes Université Paris-Sud, CNRS, and AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France.
| | - Deborah Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Campus Ås, Universitetstunet 3, 1432 Ås, Norway.
| | - Gibin Powathil
- Department of Mathematics, College of Science, Swansea University, Singleton Park, Swansea Wales SA2 8PP, UK.
| | - Eline Saenen
- Institute of Environment, Health and Safety, Biosphere Impact Studies, SCK•CEN, Boeretang 200, 2400 Mol, Belgium.
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | - Jill Sutcliffe
- Low Level Radiation and Health Group, Ingrams Farm Fittleworth Road, Wisborough Green RH14 0JA, West Sussex, UK.
| | - Fen-Ru Tang
- National University of Singapore, Radiobiology Research Laboratory, Singapore Nuclear, Research and Safety Initiative, Singapore.
| | - Paul N Schofield
- Dept of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| |
Collapse
|
26
|
Kovalchuk A, Ilnytskyy Y, Woycicki R, Rodriguez-Juarez R, Metz GAS, Kovalchuk O. Adverse effects of paternal chemotherapy exposure on the progeny brain: intergenerational chemobrain. Oncotarget 2018. [PMID: 29515791 PMCID: PMC5839372 DOI: 10.18632/oncotarget.24311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent advances in cancer treatments have led to significant increases in cure rates. Most cancer patients are treated with various cytotoxic chemotherapy regimens. These treatment modalities are mutagenic and genotoxic and cause a wide array of late-occurring health problems, and even exert a deleterious influence on future offspring. The adverse effects from exposed parents on offspring are referred to as transgenerational effects, and currently little is known about chemotherapy-induced transgenerational effects. Furthermore, transgenerational effects have not been studied in the brains of progeny of exposed parents. In this study, we analyzed the existence and molecular nature of transgenerational effects in the brains of progeny of animals exposed to three common chemotherapy agents: cyclophosphamide (CPP), procarbazine (PCB) and mitomycin C (MMC). For the first time, our results show that paternal exposure to chemotherapy drugs causes transgenerational changes in the brain of unexposed progeny. Although no DNA damage was observed in terms of γH2AX levels, some alterations were found in levels of PCNA, protein involved in DNA repair, replication and profileration. Furthermore, there were changes in proliferation and apoptosis proteins BCL2 and AKT1, the proteins associated with DNA methylation, DNMT1 and MeCP2. Some altered expression trends were noted in proteins involved in myelin biogenesis, MBP and MYT1L. Moreover, global transcriptome profiling revealed changes in over 200 genes in the whole brains of progeny of animals exposed to CPP, and the changes in the levels of FOXP2 and ELK1proteins were confirmed by western blot analysis. These findings suggest that paternal chemotherapy significantly affects offspring brain development and may affect brain functioning. This research provides a key roadmap for future investigations of the novel phenomenon of transgenerational effects of chemotherapy in the brain of progeny of exposed parents.
Collapse
Affiliation(s)
- Anna Kovalchuk
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.,Department of Biology, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Yaroslav Ilnytskyy
- Department of Biology, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Rafal Woycicki
- Department of Biology, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | | | - Gerlinde A S Metz
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.,Alberta Epigenetics Network, Calgary, AB, T2L 2A6, Canada
| | - Olga Kovalchuk
- Department of Biology, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.,Alberta Epigenetics Network, Calgary, AB, T2L 2A6, Canada
| |
Collapse
|
27
|
Mothersill C, Rusin A, Seymour C. Low doses and non-targeted effects in environmental radiation protection; where are we now and where should we go? ENVIRONMENTAL RESEARCH 2017; 159:484-490. [PMID: 28863303 DOI: 10.1016/j.envres.2017.08.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
The field of low dose radiobiology has advanced considerably in the last 30 years from small indications in the 1980's that all was not simple, to a paradigm shift which occurred during the 1990's, which severely dented the dose-driven models and DNA centric theories which had dominated until then. However while the science has evolved, the application of that science in environmental health protection has not. A reason for this appears to be the uncertainties regarding the shape of the low dose response curve, which lead regulators to adopt a precautionary approach to radiation protection. Radiation protection models assume a linear relationship between dose (i.e. energy deposition) and effect (in this case probability of an adverse DNA interaction leading to a mutation). This model does not consider non-targeted effects (NTE) such as bystander effects or delayed effects, which occur in progeny cells or offspring not directly receiving energy deposition from the dose. There is huge controversy concerning the role of NTE with some saying they reflect "biology" and that repair and homeostatic mechanisms sort out the apparent damage while others consider them to be a class of damage which increases the size of the target. One thing which has recently become apparent is that NTE may be very critical for modelling long-term effects at the level of the population rather than the individual. The issue is that NTE resulting from an acute high dose such as occurred after the A-bomb or Chernobyl occur in parallel with chronic effects induced by the continuing residual effects due to radiation dose decay. This means that if ambient radiation doses are measured for example 25 years after the Chernobyl accident, they only represent a portion of the dose effect because the contribution of NTE is not included.
Collapse
Affiliation(s)
- Carmel Mothersill
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | - Andrej Rusin
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
28
|
Tang FR, Loke WK, Khoo BC. Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. JOURNAL OF RADIATION RESEARCH 2017; 58:165-182. [PMID: 28077626 PMCID: PMC5439383 DOI: 10.1093/jrr/rrw120] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/22/2016] [Indexed: 05/13/2023]
Abstract
Animal experimental studies indicate that acute or chronic low-dose ionizing radiation (LDIR) (≤100 mSv) or low-dose-rate ionizing radiation (LDRIR) (<6 mSv/h) exposures may be harmful. It induces genetic and epigenetic changes and is associated with a range of physiological disturbances that includes altered immune system, abnormal brain development with resultant cognitive impairment, cataractogenesis, abnormal embryonic development, circulatory diseases, weight gain, premature menopause in female animals, tumorigenesis and shortened lifespan. Paternal or prenatal LDIR/LDRIR exposure is associated with reduced fertility and number of live fetuses, and transgenerational genomic aberrations. On the other hand, in some experimental studies, LDIR/LDRIR exposure has also been reported to bring about beneficial effects such as reduction in tumorigenesis, prolonged lifespan and enhanced fertility. The differences in reported effects of LDIR/LDRIR exposure are dependent on animal genetic background (susceptibility), age (prenatal or postnatal days), sex, nature of radiation exposure (i.e. acute, fractionated or chronic radiation exposure), type of radiation, combination of radiation with other toxic agents (such as smoking, pesticides or other chemical toxins) or animal experimental designs. In this review paper, we aimed to update radiation researchers and radiologists on the current progress achieved in understanding the LDIR/LDRIR-induced bionegative and biopositive effects reported in the various animal models. The roles played by a variety of molecules that are implicated in LDIR/LDRIR-induced health effects will be elaborated. The review will help in future investigations of LDIR/LDRIR-induced health effects by providing clues for designing improved animal research models in order to clarify the current controversial/contradictory findings from existing studies.
Collapse
Affiliation(s)
- Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, 138602, Singapore
| | - Weng Keong Loke
- Temasek Laboratories, National University of Singapore, 5A, Engineering Drive 1, 117411,Singapore
| | - Boo Cheong Khoo
- DSO National Laboratories,Defence Medical and Environmental Research Institute, 11 Stockport Road,117605,Singapore
| |
Collapse
|
29
|
Lourenço J, Mendo S, Pereira R. Radioactively contaminated areas: Bioindicator species and biomarkers of effect in an early warning scheme for a preliminary risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:503-542. [PMID: 27343869 DOI: 10.1016/j.jhazmat.2016.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/26/2016] [Accepted: 06/08/2016] [Indexed: 05/24/2023]
Abstract
Concerns about the impacts on public health and on the natural environment have been raised regarding the full range of operational activities related to uranium mining and the rest of the nuclear fuel cycle (including nuclear accidents), nuclear tests and depleted uranium from military ammunitions. However, the environmental impacts of such activities, as well as their ecotoxicological/toxicological profile, are still poorly studied. Herein, it is discussed if organisms can be used as bioindicators of human health effects, posed by lifetime exposure to radioactively contaminated areas. To do so, information was gathered from several studies performed on vertebrates, invertebrate species and humans, living in these contaminated areas. The retrieved information was compared, to determine which are the most used bioindicators and biomarkers and also the similarities between human and non-human biota responses. The data evaluated are used to support the proposal for an early warning scheme, based on bioindicator species and on the most sensitive and commonly shared biomarkers, to perform a screening evaluation of radioactively contaminated sites. This scheme could be used to support decision-making for a deeper evaluation of risks to human health, making it possible to screen a large number of areas, without disturbing and alarming local populations.
Collapse
Affiliation(s)
- Joana Lourenço
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | - Sónia Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Ruth Pereira
- Department of Biology, Faculty of Sciences of the University of Porto & CIIMAR - Interdisciplinary Centre of Marine and Environmental Research & GreenUP/CITAB-UP, Porto, Portugal
| |
Collapse
|
30
|
Rakitin SB, Grigorkina EB, Olenev GV. Analysis of microsatellite DNA in rodents from Eastern Urals Radioactive Trace zone and contiguous territories. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416030121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Taira W, Hiyama A, Nohara C, Sakauchi K, Otaki JM. Ingestional and transgenerational effects of the Fukushima nuclear accident on the pale grass blue butterfly. JOURNAL OF RADIATION RESEARCH 2015; 56 Suppl 1:i2-i18. [PMID: 26661851 PMCID: PMC4732531 DOI: 10.1093/jrr/rrv068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/14/2015] [Accepted: 10/04/2015] [Indexed: 06/01/2023]
Abstract
One important public concern in Japan is the potential health effects on animals and humans that live in the Tohoku-Kanto districts associated with the ingestion of foods contaminated with artificial radionuclides from the collapsed Fukushima Dai-ichi Nuclear Power Plant. Additionally, transgenerational or heritable effects of radiation exposure are also important public concerns because these effects could cause long-term changes in animal and human populations. Here, we concisely review our findings and implications related to the ingestional and transgenerational effects of radiation exposure on the pale grass blue butterfly, Zizeeria maha, which coexists with humans. The butterfly larval ingestion of contaminated leaves found in areas of human habitation, even at low doses, resulted in morphological abnormalities and death for some individuals, whereas other individuals were not affected, at least morphologically. This variable sensitivity serves as a basis for the adaptive evolution of radiation resistance. The distribution of abnormality and mortality rates from low to high doses fits well with a Weibull function model or a power function model. The offspring generated by morphologically normal individuals that consumed contaminated leaves exhibited high mortality rates when fed contaminated leaves; importantly, low mortality rates were restored when they were fed non-contaminated leaves. Our field monitoring over 3 years (2011-2013) indicated that abnormality and mortality rates peaked primarily in the fall of 2011 and decreased afterwards to normal levels. These findings indicate high impacts of early exposure and transgenerationally accumulated radiation effects over a specific period; however, the population regained normality relatively quickly after ∼15 generations within 3 years.
Collapse
Affiliation(s)
- Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Atsuki Hiyama
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Chiyo Nohara
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
32
|
Hiyama A, Taira W, Nohara C, Iwasaki M, Kinjo S, Iwata M, Otaki JM. Spatiotemporal abnormality dynamics of the pale grass blue butterfly: three years of monitoring (2011-2013) after the Fukushima nuclear accident. BMC Evol Biol 2015; 15:15. [PMID: 25888050 PMCID: PMC4335452 DOI: 10.1186/s12862-015-0297-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/27/2015] [Indexed: 12/22/2022] Open
Abstract
Background Long-term monitoring of the biological impacts of the radioactive pollution caused by the Fukushima nuclear accident in March 2011 is required to understand what has occurred in organisms living in the polluted areas. Here, we investigated spatial and temporal changes of the abnormality rate (AR) in both field-caught adult populations and laboratory-reared offspring populations of the pale grass blue butterfly, Zizeeria maha, which has generation time of approximately one month. We monitored 7 localities (Fukushima, Motomiya, Hirono, Iwaki, Takahagi, Mito, and Tsukuba) every spring and fall over 3 years (2011–2013). Results The adult ARs of these localities quickly increased and peaked in the fall of 2011, which was not observed in non-contaminated localities. In the offspring generation, the total ARs, which include deaths at the larval, prepupal, and pupal stages and morphological abnormalities at the adult stage, peaked either in the fall of 2011 or in the spring of 2012, with much higher levels than those of the parent field populations, suggesting that high incidence of deaths and abnormalities might have occurred in the field populations. Importantly, the elevated ARs of the field and offspring populations settled back to a normal level by the fall of 2012 and by the spring of 2013, respectively. Similar results were obtained not only in the spatiotemporal dynamics of the number of individuals caught per minute but also in the temporal dynamics of the correlation coefficient between the adult abnormality rate and the ground radiation dose or the distance from the Power Plant. Conclusions These results demonstrated an occurrence and an accumulation of adverse physiological and genetic effects in early generations, followed by their decrease and leveling off at a normal level, providing the most comprehensive record of biological dynamics after a nuclear accident available today. This study also indicates the importance of considering generation time and adaptive evolution in evaluating the biological impacts of artificial pollution in wild organisms. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0297-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atsuki Hiyama
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213, Japan.
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213, Japan.
| | - Chiyo Nohara
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213, Japan.
| | - Mayo Iwasaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213, Japan.
| | - Seira Kinjo
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213, Japan.
| | - Masaki Iwata
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213, Japan.
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213, Japan.
| |
Collapse
|
33
|
Buisset-Goussen A, Goussen B, Della-Vedova C, Galas S, Adam-Guillermin C, Lecomte-Pradines C. Effects of chronic gamma irradiation: a multigenerational study using Caenorhabditis elegans. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2014; 137:190-197. [PMID: 25102824 DOI: 10.1016/j.jenvrad.2014.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 05/24/2023]
Abstract
The effects of chronic exposure to (137)Cs gamma radiation (dose rate ranging from 6.6 to 42.7 mGy h(-1)) on growth and reproductive ability were carried out over three generations of Caenorhabditis elegans (F0, F1, and F2). Exposure began at the egg stage for the first generation and was stopped at the end of laying of third-generation eggs (F2). At the same time, the two subsequent generations from parental exposure were returned to the control conditions (F1' and F2'). There was no radiation-induced significant effect on growth, hatchability, and cumulative number of larvae within generations. Moreover, no significant differences were found in growth parameters (hatching length, maximal length, and a constant related to growth rate) among the generations. However, a decrease in the cumulative number of larvae across exposed generations was observed between F0 and F2 at the highest dose rate (238.8 ± 15.4 and 171.2 ± 13.1 number of larvae per individual, respectively). Besides, the F1' generation was found to lay significantly fewer eggs than the F1 generation for tested dose rates 6.6, 8.1, 19.4, and 28.1 mGy h(-1). Our results confirmed that reproduction (here, cumulative number of larvae) is the most sensitive endpoint affected by chronic exposure to ionizing radiation. The results obtained revealed transgenerational effects from parental exposure in the second generation, and the second non-exposed generation was indeed more affected than the second exposed generation.
Collapse
Affiliation(s)
- Adeline Buisset-Goussen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France.
| | - Benoit Goussen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France; Unité Modèles pour l'Ecotoxicologie et la Toxicologie (METO), Institut National de l'Environnement Industriel et des Risques (INERIS), BP2, F-60550 Verneuil en Halatte, France
| | | | - Simon Galas
- Université Montpellier1, Faculté de Pharmacie, Laboratoire de Toxicologie, 15, Avenue Charles Flahault BP 14491, 34093 Montpellier Cedex 5, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| |
Collapse
|
34
|
Møller AP, Bonisoli-Alquati A, Mousseau TA, Rudolfsen G. Aspermy, sperm quality and radiation in Chernobyl birds. PLoS One 2014; 9:e100296. [PMID: 24963711 PMCID: PMC4070951 DOI: 10.1371/journal.pone.0100296] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/22/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Following the Chernobyl nuclear power plant accident, large amounts of radionuclides were emitted and spread in the environment. Animals living in such contaminated areas are predicted to suffer fitness costs including reductions in the quality and quantity of gametes. METHODOLOGY/PRINCIPAL FINDINGS We studied whether aspermy and sperm quality were affected by radioactive contamination by examining ejaculates from wild caught birds breeding in areas varying in background radiation level by more than three orders of magnitude around Chernobyl, Ukraine. The frequency of males with aspermy increased logarithmically with radiation level. While 18.4% of males from contaminated areas had no sperm that was only the case for 3.0% of males from uncontaminated control areas. Furthermore, there were negative relationships between sperm quality as reflected by reduced sperm velocity and motility, respectively, and radiation. CONCLUSIONS/SIGNIFICANCE Our results suggest that radioactive contamination around Chernobyl affects sperm production and quality. We are the first to report an interspecific difference in sperm quality in relation to radioactive contamination.
Collapse
Affiliation(s)
- Anders Pape Møller
- Laboratoire d’Ecologie, Systématique et Evolution, CNRS Unité Mixte de Recherche 8079, Université Paris-Sud, Bâtiment 362, Orsay Cedex, France
| | - Andrea Bonisoli-Alquati
- University of South Carolina, Department of Biological Sciences, Columbia, South Carolina, United States of America
| | - Timothy A. Mousseau
- University of South Carolina, Department of Biological Sciences, Columbia, South Carolina, United States of America
| | - Geir Rudolfsen
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway
| |
Collapse
|
35
|
Malinovsky GP, Yarmoshenko IV, Zhukovsky MV, Starichenko VI, Chibiryak MV. Contemporary radiation doses to murine rodents inhabiting the most contaminated part of the EURT. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2014; 129:27-32. [PMID: 24333639 DOI: 10.1016/j.jenvrad.2013.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
The contemporary radiation doses to the organs and tissues of murine rodents inhabiting the most contaminated part of the EURT were estimated. The bones of animals trapped in 2005 at territories with a surface (90)Sr contamination of 24-40 MBq/m(2) were used for dose reconstruction. The concentration of (90)Sr in the animals' skulls was measured using the nondestructive method of bone radiometry. The dose estimation procedure included application of the published values of absorbed fractions of beta-radiation energy for different combinations of source and target organs, accounting for the distribution of radionuclide by organs and tissues. Twelve conversion coefficients were obtained to link the skeleton (90)Sr concentration and doses to eleven organs and the whole body. The whole-body dose rate on the 45th day after the beginning of exposure normalised to whole-body activity is 0.015 (mGy day(-1))/(Bq g(-1)). The estimation yields the following values of doses for Microtus agrestis, Sylvaemus uralensis and Clethrionomys rutilus, respectively: maximum absorbed doses in the skeleton: 267, 121 and 160 mGy; mean whole body internal doses: 37, 14 and 23 mGy; mean internal dose rates on the last day before trapping: 1.2; 0.44 and 0.75 mGy/day. Approaches to the assessment of doses to foetuses and to offspring before weaning were also developed.
Collapse
Affiliation(s)
- G P Malinovsky
- Institute of Industrial Ecology UB RAS, S. Kovalevskoy St., 20, Ekaterinburg 620219, Russia.
| | - I V Yarmoshenko
- Institute of Industrial Ecology UB RAS, S. Kovalevskoy St., 20, Ekaterinburg 620219, Russia
| | - M V Zhukovsky
- Institute of Industrial Ecology UB RAS, S. Kovalevskoy St., 20, Ekaterinburg 620219, Russia
| | - V I Starichenko
- Institute of Plants and Animal Ecology UB RAS, Vos'mogo Marta St., 202, Ekaterinburg 620144, Russia
| | - M V Chibiryak
- Institute of Plants and Animal Ecology UB RAS, Vos'mogo Marta St., 202, Ekaterinburg 620144, Russia
| |
Collapse
|
36
|
Caffrey EA, Leonard ME, Napier JB, Neville DR, Higley KA. Radioecology: Why Bother? ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jep.2014.53022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
High frequency of albinism and tumours in free-living birds around Chernobyl. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 757:52-9. [DOI: 10.1016/j.mrgentox.2013.04.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/22/2012] [Accepted: 04/15/2013] [Indexed: 11/22/2022]
|
38
|
Grygoryev D, Moskalenko O, Hinton TG, Zimbrick JD. DNA damage caused by chronic transgenerational exposure to low dose gamma radiation in Medaka fish ( Oryzias latipes ). Radiat Res 2013; 180:235-46. [PMID: 23919310 DOI: 10.1667/rr3190.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The effect of transgenerational exposure to low dose rate (2.4 and 21 mGy/day) gamma irradiation on the yield of DNA double-strand breaks and oxidized guanine (8-hydroxyguanine) has been studied in the muscle and liver tissue of a model organism, the Japanese medaka fish. We found the level of unrepaired 8-hydroxyguanine in muscle tissue increased nonlinearly over four generations and the pattern of this change depended on the radiation dose rate, suggesting that our treatment protocols initiated genomic instability and an adaptive response as the generations progressed. The yield of unrepaired double-strand breaks did not vary significantly among successive generations in muscle tissue in contrast to liver tissue in which it varied in a nonlinear manner. The 8-hydroxyguanine and DSB radiation yields were significantly higher at 2.4 mGy/day than at 21 mGy/day in both muscle and liver tissue in all generations. These data are consistent with the hypothesis of a threshold for radiation-induced activation of DNA repair systems below which tissue levels of DNA repair enzymes remain unchanged, leading to the accumulation of unrepaired damage at very low doses and dose rates.
Collapse
Affiliation(s)
- D Grygoryev
- a Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239
| | | | | | | |
Collapse
|
39
|
Bonduriansky R, Day T. Nongenetic inheritance and the evolution of costly female preference. J Evol Biol 2012; 26:76-87. [DOI: 10.1111/jeb.12028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 09/23/2012] [Accepted: 09/24/2012] [Indexed: 01/08/2023]
Affiliation(s)
- R. Bonduriansky
- Evolution & Ecology Research Centre; School of Biological, Earth and Environmental Sciences; University of New South Wales; Sydney NSW Australia
| | - T. Day
- Departments of Mathematics and Biology; Queen's University; Kingston ON Canada
| |
Collapse
|
40
|
Savina NV, Smal MP, Kuzhir TD, Ershova-Pavlova AA, Goncharova RI. DNA-damage response associated with occupational exposure, age and chronic inflammation in workers in the automotive industry. Mutat Res 2012; 748:21-8. [PMID: 22772077 DOI: 10.1016/j.mrgentox.2012.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/08/2012] [Accepted: 06/20/2012] [Indexed: 12/15/2022]
Abstract
The evaluation of genome integrity in populations occupationally exposed to combine industrial factors is of medical importance. In the present study, the DNA-damage response was estimated by means of the alkaline comet assay in a sizeable cohort of volunteers recruited among workers in the automotive industry. For this purpose, freshly collected lymphocytes were treated with hydrogen peroxide (100μM, 1min, 4°C) in vitro, and the levels of basal and H(2)O(2)-induced DNA damage, and the kinetics and efficiency of DNA repair were measured during a 180-min interval after exposure. The parameters studied in the total cohort of workers were in a range of values prescribed for healthy adult residents of Belarus. Based on the 95th percentiles, individuals possessing enhanced cellular sensitivity to DNA damage were present in different groups, but the frequency was significantly higher among elderly persons and among individuals with chronic inflammatory diseases. The results indicate that the inter-individual variations in DNA-damage response should be taken into account to estimate adequately the environmental genotoxic effects and to identify individuals with an enhanced DNA-damage response due to the influence of some external factors or intrinsic properties of the organism. Underling mechanisms need to be further explored.
Collapse
Affiliation(s)
- Natalya V Savina
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | | | | | | | | |
Collapse
|
41
|
Beasley DE, Bonisoli-Alquati A, Welch SM, Møller AP, Mousseau TA. Effects of parental radiation exposure on developmental instability in grasshoppers. J Evol Biol 2012; 25:1149-62. [PMID: 22507690 PMCID: PMC3964017 DOI: 10.1111/j.1420-9101.2012.02502.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutagenic and epigenetic effects of environmental stressors and their transgenerational consequences are of interest to evolutionary biologists because they can amplify natural genetic variation. We studied the effect of parental exposure to radioactive contamination on offspring development in lesser marsh grasshopper Chorthippus albomarginatus. We used a geometric morphometric approach to measure fluctuating asymmetry (FA), wing shape and wing size. We measured time to sexual maturity to check whether parental exposure to radiation influenced offspring developmental trajectory and tested effects of radiation on hatching success and parental fecundity. Wings were larger in early maturing individuals born to parents from high radiation sites compared to early maturing individuals from low radiation sites. As time to sexual maturity increased, wing size decreased but more sharply in individuals from high radiation sites. Radiation exposure did not significantly affect FA or shape in wings nor did it significantly affect hatching success and fecundity. Overall, parental radiation exposure can adversely affect offspring development and fitness depending on developmental trajectories although the cause of this effect remains unclear. We suggest more direct measures of fitness and the inclusion of replication in future studies to help further our understanding of the relationship between developmental instability, fitness and environmental stress.
Collapse
Affiliation(s)
- D E Beasley
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
42
|
Grigorkina EB, Olenev GV. Heterogeneity of wintering animals as a basis for transgenerational transmission of radiation-induced effects in rodents. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2012; 443:91-93. [PMID: 22562677 DOI: 10.1134/s0012496612020032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 05/31/2023]
Affiliation(s)
- E B Grigorkina
- Institute of Plant and Animal Ecology, Russian Academy of Sciences, Yekaterinburg, Russia
| | | |
Collapse
|
43
|
Wehrden HV, Fischer J, Brandt P, Wagner V, Kümmerer K, Kuemmerle T, Nagel A, Olsson O, Hostert P. Consequences of nuclear accidents for biodiversity and ecosystem services. Conserv Lett 2012. [DOI: 10.1111/j.1755-263x.2011.00217.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
44
|
Hertel-Aas T, Brunborg G, Jaworska A, Salbu B, Oughton DH. Effects of different gamma exposure regimes on reproduction in the earthworm Eisenia fetida (Oligochaeta). THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 412-413:138-147. [PMID: 22033357 DOI: 10.1016/j.scitotenv.2011.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 09/06/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
Ecological risk assessment of ionising radiation requires knowledge about the responses of individuals and populations to chronic exposures, including situations when exposure levels change over time. The present study investigated processes such as recovery and the adaptive response with respect to reproduction endpoints in the earthworm Eisenia fetida exposed to (60)Co γ-radiation. Furthermore, a crossed experiment was performed to investigate the influence of F0 parental and F1 embryonic irradiation history on the response of irradiated or non-irradiated F1 offspring. Recovery: The sterility induced by sub-chronic exposure at 17 m Gy/h (accumulated dose: 25 Gy) was temporary, and 8 weeks after irradiation the worms had regained their reproductive capacity (number of viable offspring produced per adult per week). Adaptive response: Adult worms were continuously exposed at a low priming dose rate of 0.14 mGy/h for 12 weeks (accumulated dose: 0.24 Gy), followed by 14 weeks exposure at a challenge dose rate of 11 mGy/h. The results suggest a lack of adaptive response, since there were no significant differences in the effects on reproduction capacity between the primed and the unprimed groups after challenge doses ranging from 7.6 to 27 Gy. Crossed experiment: The effects of exposure at 11 mGy/h for 21 weeks on growth, sexual maturation and reproduction of offspring, derived either from parent worms and cocoons both exposed at 11 mGy/h, or from non-irradiated parents and cocoons (total accumulated dose 44 and 38 Gy, respectively) were compared. There were no significant differences between the two exposed offspring groups for any of the endpoints. The reproduction capacity was very low for both groups compared to the controls, but the reproduction seemed to be maintained at the reduced level, which could indicate acclimatisation or stabilisation. Finally, parental and embryonic exposures at 11 mGy/h did not affect reproduction in the F1 offspring as adults.
Collapse
Affiliation(s)
- Turid Hertel-Aas
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway.
| | | | | | | | | |
Collapse
|
45
|
Beresford NA, Copplestone D. Effects of ionizing radiation on wildlife: what knowledge have we gained between the Chernobyl and Fukushima accidents? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2011; 7:371-373. [PMID: 21608117 DOI: 10.1002/ieam.238] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The recent events at the Fukushima Daiichi nuclear power plant in Japan have raised questions over the effects of radiation in the environment. This article considers what we have learned about the radiological consequences for the environment from the Chernobyl accident, Ukraine, in April 1986. The literature offers mixed opinions of the long-term impacts on wildlife close to the Chernobyl plant, with some articles reporting significant effects at very low dose rates (below natural background dose rate levels in, for example, the United Kingdom). The lack of agreement highlights the need for further research to establish whether current radiological protection criteria for wildlife are adequate (and to determine if there are any implications for human radiological protection).
Collapse
Affiliation(s)
- Nicholas A Beresford
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, United Kingdom.
| | | |
Collapse
|
46
|
Yalkovskaya LE, Grigorkina EB, Tarasov OV. Cytogenetic consequences of chronic irradiation in rodent populations inhabiting the Eastern Ural Radioactive Trace zone. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911010258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
47
|
Smolich II, Savina NV, Ryabokon NI. Time-course of micronucleated erythrocytes in response to whole-body gamma irradiation in a model mammalian species, the bank vole (Clethrionomys glareolus, Schreber). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:50-57. [PMID: 20839216 DOI: 10.1002/em.20580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The time course of the formation of micronucleated polychromatic (MNPCEs) and normochromatic erythrocytes (MNNCEs) in the bone marrow of the bank vole (Clethrionomys glareolus, Schreber), a model mouse-like species, was studied using the standard micronucleus test at 0, 6, 12, 18, 24, 30, 36 and 48 hr following whole-body acute γ-irradiation at a dose of 0.5 Gy. Based on the existing literature on laboratory mice, it was suggested that such a dose will not have significant effect on erythroid cell proliferation in the bank vole and hence on the time course of the rise of micronucleated cells. In total, ∼905,000 polychromatic (PCEs) and normochromatic erythrocytes (NCEs) from 82 adult bank voles were analyzed. Although the mean frequencies of MNNCEs were too low to allow for the correct assessment of their time course, an analysis of PCEs showed an increasing rate of MNPCE appearance at 6 hr that reached a maximum at 18-24 hr after irradiation and subsequently decreased. Because the kinetics of MNPCEs reflects the process of erythropoiesis, the current results regarding the time points of appearance of radiation-induced MNPCEs provide the first information on the prolongation of one of the terminal stages of erythrocyte formation in bank vole specimens, namely the stage of maturation of PCEs from erythroblasts. Moreover, the observed time-course data, as well as the low-background frequencies of MNPCEs and characteristic level of PCEs response to radiation, showed similarities between the two model species: bank vole (this study) and laboratory mice (literature data).
Collapse
Affiliation(s)
- Igor I Smolich
- Laboratory of Genetic Safety, Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | | | | |
Collapse
|
48
|
Environmental Influences on Male Reproductive Health. Andrology 2010. [DOI: 10.1007/978-3-540-78355-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Yablokov AV, Nesterenko VB, Nesterenko AV. Chapter III. Consequences of the Chernobyl Catastrophe for the Environment. Ann N Y Acad Sci 2009; 1181:221-2. [DOI: 10.1111/j.1749-6632.2009.04830.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Geras'kin SA, Fesenko SV, Alexakhin RM. Effects of non-human species irradiation after the Chernobyl NPP accident. ENVIRONMENT INTERNATIONAL 2008; 34:880-97. [PMID: 18234336 DOI: 10.1016/j.envint.2007.12.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 12/07/2007] [Accepted: 12/14/2007] [Indexed: 05/24/2023]
Abstract
The area affected by the Chernobyl Nuclear Power Plant accident in 1986 has become a unique test site where long-term ecological and biological consequences of a drastic change in a range of environmental factors as well as trends and intensity of selection are studied in natural settings. The consequences of the Chernobyl accident for biota varied from an enhanced rate of mutagenesis to damage at the ecosystem level. The review comprehensively brings together key data of the long-term studies of biological effects in plants and animals inhabiting over 20 years the Chernobyl NPP zone. The severity of radiation effects was strongly dependent on the dose received in the early period after the accident. The most exposed phytocenoses and soil animals' communities exhibited dose dependent alterations in the species composition and reduction in biological diversity. On the other hand, no decrease in numbers or taxonomic diversity of small mammals even in the most radioactive habitat was shown. In a majority of the studies, in both plant and animal populations from the Chernobyl zone, in the first years after the accident high increases in mutation rates were documented. In most cases the dose-effect relationships were nonlinear and the mutation rates per unit dose were higher at low doses and dose rates. In subsequent years a decline in the radiation background rate occurred faster than reduction in the mutation rate. Plant and animal populations have shown signs of adaptation to chronic exposure. In adaptation to the enhanced level of exposure an essential role of epigenetic mechanisms of gene expression regulation was shown. Based on the Chernobyl NPP accident studies, in the present review attempts were made to assess minimum doses at which ecological and biological effects were observed.
Collapse
Affiliation(s)
- S A Geras'kin
- Russian Institute of Agricultural Radiology and Agroecology, Obninsk, Russia.
| | | | | |
Collapse
|