1
|
Gkikoudi A, Manda G, Beinke C, Giesen U, Al-Qaaod A, Dragnea EM, Dobre M, Neagoe IV, Sangsuwan T, Haghdoost S, Vasilopoulos SN, Triantopoulou S, Georgakopoulou A, Tremi I, Koutsoudaki PN, Havaki S, Gorgoulis VG, Kokkoris M, Krasniqi F, Terzoudi GI, Georgakilas AG. Synergistic Effects of UVB and Ionizing Radiation on Human Non-Malignant Cells: Implications for Ozone Depletion and Secondary Cosmic Radiation Exposure. Biomolecules 2025; 15:536. [PMID: 40305266 PMCID: PMC12024869 DOI: 10.3390/biom15040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
The ozone layer in the Earth's atmosphere filters solar radiation and limits the unwanted effects on humans. A depletion of this ozone shield would permit hazardous levels of UV solar radiation, especially in the UVB range, to bombard Earth's surface, resulting in potentially significant effects on human health. The concern for these adverse effects intensifies if we consider that the UVB solar radiation is combined with secondary cosmic radiation (SCR) components, such as protons and muons, as well as terrestrial gamma rays. This research aims to delve into the intricate interplay between cosmic and solar radiation on earth at the cellular level, focusing on their synergistic effects on human cell biology. Through a multidisciplinary approach integrating radiobiology and physics, we aim to explore key aspects of biological responses, including cell viability, DNA damage, stress gene expression, and finally, genomic instability. To assess the impact of the combined exposure, normal i.e., non-malignant human cells (skin fibroblasts, keratinocytes, monocytes, and lymphocytes) were exposed to high-energy protons or gamma rays in combination with UVB. Cellular molecular and cytogenetic biomarkers of radiation exposure, such as DNA damage (γH2AΧ histone protein and dicentric chromosomes), as well as the expression pattern of various stress genes, were analyzed. In parallel, the MTS reduction and lactate dehydrogenase assays were used as indicators of cell viability, proliferation, and cytotoxicity. Results reveal remaining DNA damage for the co-exposed samples compared to samples exposed to only one type of radiation in all types of cells, accompanied by increased genomic instability and distinct stress gene expression patterns detected at 24-48 h post-exposure. Understanding the impact of combined radiation exposures is crucial for assessing the health risks posed to humans if the ozone layer is partially depleted, with structural and functional damages inflicted by combined cosmic and UVB exposure.
Collapse
Affiliation(s)
- Angeliki Gkikoudi
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (S.T.); (G.I.T.)
| | - Gina Manda
- Radiobiology Laboratory, “Victor Babeș” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (G.M.); (E.-M.D.); (M.D.); (I.V.N.)
| | - Christina Beinke
- Bundeswehr Institute of Radiobiology, University of Ulm, Neuherbergstraβe 11, 80937 Munich, Germany;
| | - Ulrich Giesen
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany (A.A.-Q.); (F.K.)
| | - Amer Al-Qaaod
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany (A.A.-Q.); (F.K.)
| | - Elena-Mihaela Dragnea
- Radiobiology Laboratory, “Victor Babeș” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (G.M.); (E.-M.D.); (M.D.); (I.V.N.)
| | - Maria Dobre
- Radiobiology Laboratory, “Victor Babeș” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (G.M.); (E.-M.D.); (M.D.); (I.V.N.)
| | - Ionela Victoria Neagoe
- Radiobiology Laboratory, “Victor Babeș” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (G.M.); (E.-M.D.); (M.D.); (I.V.N.)
| | - Traimate Sangsuwan
- ABTE/ToxEMAC Laboratory, University of Caen Normandy, F-14050 Caen, France; (T.S.); (S.H.)
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Siamak Haghdoost
- ABTE/ToxEMAC Laboratory, University of Caen Normandy, F-14050 Caen, France; (T.S.); (S.H.)
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Spyridon N. Vasilopoulos
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
| | - Sotiria Triantopoulou
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (S.T.); (G.I.T.)
| | - Anna Georgakopoulou
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
| | - Ioanna Tremi
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.K.); (S.H.); (V.G.G.)
| | - Paraskevi N. Koutsoudaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.K.); (S.H.); (V.G.G.)
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.K.); (S.H.); (V.G.G.)
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.K.); (S.H.); (V.G.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD2 1SG, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Michael Kokkoris
- Group of Nuclear Physics, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Zografou, Greece;
| | - Faton Krasniqi
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany (A.A.-Q.); (F.K.)
| | - Georgia I. Terzoudi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (S.T.); (G.I.T.)
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
| |
Collapse
|
2
|
Riego ML, Meher PK, Brzozowska B, Akuwudike P, Bucher M, Oestreicher U, Lundholm L, Wojcik A. Chromosomal damage, gene expression and alternative transcription in human lymphocytes exposed to mixed ionizing radiation as encountered in space. Sci Rep 2024; 14:11502. [PMID: 38769353 PMCID: PMC11106305 DOI: 10.1038/s41598-024-62313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
Astronauts travelling in space will be exposed to mixed beams of particle radiation and photons. Exposure limits that correspond to defined cancer risk are calculated by multiplying absorbed doses by a radiation-type specific quality factor that reflects the biological effectiveness of the particle without considering possible interaction with photons. We have shown previously that alpha radiation and X-rays may interact resulting in synergistic DNA damage responses in human peripheral blood lymphocytes but the level of intra-individual variability was high. In order to assess the variability and validate the synergism, blood from two male donors was drawn at 9 time points during 3 seasons of the year and exposed to 0-2 Gy of X-rays, alpha particles or 1:1 mixture of both (half the dose each). DNA damage response was quantified by chromosomal aberrations and by mRNA levels of 3 radiation-responsive genes FDXR, CDKN1A and MDM2 measured 24 h post exposure. The quality of response in terms of differential expression of alternative transcripts was assessed by using two primer pairs per gene. A consistently higher than expected effect of mixed beams was found in both donors for chromosomal aberrations and gene expression with some seasonal variability for the latter. No synergy was detected for alternative transcription.
Collapse
Affiliation(s)
- Milagrosa López Riego
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
| | - Prabodha Kumar Meher
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
| | - Beata Brzozowska
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Pamela Akuwudike
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
| | - Martin Bucher
- Federal Office for Radiation Protection, Oberschleissheim, Germany
| | | | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden.
- Institute of Biology, Jan Kochanowski University, Kielce, Poland.
| |
Collapse
|
3
|
Leerson J, Tulloh A, Lopez FT, Gregory S, Buscher H, Rosengarten G. Detecting Oxygenator Thrombosis in ECMO: A Review of Current Techniques and an Exploration of Future Directions. Semin Thromb Hemost 2024; 50:253-270. [PMID: 37640048 DOI: 10.1055/s-0043-1772843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-support technique used to treat cardiac and pulmonary failure, including severe cases of COVID-19 (coronavirus disease 2019) involving acute respiratory distress syndrome. Blood clot formation in the circuit is one of the most common complications in ECMO, having potentially harmful and even fatal consequences. It is therefore essential to regularly monitor for clots within the circuit and take appropriate measures to prevent or treat them. A review of the various methods used by hospital units for detecting blood clots is presented. The benefits and limitations of each method are discussed, specifically concerning detecting blood clots in the oxygenator, as it is concluded that this is the most critical and challenging ECMO component to assess. We investigate the feasibility of solutions proposed in the surrounding literature and explore two areas that hold promise for future research: the analysis of small-scale pressure fluctuations in the circuit, and real-time imaging of the oxygenator. It is concluded that the current methods of detecting blood clots cannot reliably predict clot volume, and their inability to predict clot location puts patients at risk of thromboembolism. It is posited that a more in-depth analysis of pressure readings using machine learning could better provide this information, and that purpose-built imaging could allow for accurate, real-time clotting analysis in ECMO components.
Collapse
Affiliation(s)
- Jack Leerson
- Department is Manufacturing, Materials and Mechatronics Engineering, School of Engineering, RMIT University, Melbourne, Victoria, Australia
- Department of Manufacturing, CSIRO, Research Way, Clayton, Victoria, Australia
| | - Andrew Tulloh
- Department of Manufacturing, CSIRO, Research Way, Clayton, Victoria, Australia
| | - Francisco Tovar Lopez
- Department is Manufacturing, Materials and Mechatronics Engineering, School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Shaun Gregory
- Department of Mechanical and Aerospace Engineering, Cardiorespiratory Engineering and Technology Laboratory, Monash University, Melbourne, Victoria, Australia
| | - Hergen Buscher
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, Australia
| | - Gary Rosengarten
- Department is Manufacturing, Materials and Mechatronics Engineering, School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Akuwudike P, López-Riego M, Ginter J, Cheng L, Wieczorek A, Życieńska K, Łysek-Gładysińska M, Wojcik A, Brzozowska B, Lundholm L. Mechanistic insights from high resolution DNA damage analysis to understand mixed radiation exposure. DNA Repair (Amst) 2023; 130:103554. [PMID: 37595330 DOI: 10.1016/j.dnarep.2023.103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Cells exposed to densely ionising high and scattered low linear energy transfer (LET) radiation (50 % dose of each) react more strongly than to the same dose of each separately. The relationship between DNA double strand break location inside the nucleus and chromatin structure was evaluated, using high-resolution transmission electron microscopy (TEM) in breast cancer MDA-MB-231 cells at 30 min post 5 Gy. Additionally, response to high and/or low LET radiation was assessed using single (1 ×1.5 Gy) versus fractionated dose delivery (5 ×0.3 Gy). By TEM analysis, the highest total number of γH2AX nanobeads were found in cells irradiated with alpha radiation just prior to gamma radiation (called mixed beam), followed by alpha, then gamma radiation. γH2AX foci induced by mixed beam radiation tended to be surrounded by open chromatin (lighter TEM regions), yet foci containing the highest number of beads, i.e. larger foci representing complex damage, remained in the heterochromatic areas. The γH2AX large focus area was also greater in mixed beam-treated cells when analysed by immunofluorescence. Fractionated mixed beams given daily induced the strongest reduction in cell viability and colony formation in MDA-MB-231 and osteosarcoma U2OS cells compared to the other radiation qualities, as well as versus acute exposure. This may partially be explained by recurring low LET oxidative DNA damage by every fraction together with a delay in recompaction of chromatin after high LET, demonstrated by low levels of heterochromatin marker H3K9me3 at 2 h after the last mixed beam fraction in MDA-MB-231. In conclusion, early differences in response to complex DNA damage may lead to a stronger cell kill induced by fractionated exposure, which suggest a therapeutic potential of combined high and low LET irradiation.
Collapse
Affiliation(s)
- Pamela Akuwudike
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Milagrosa López-Riego
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Józef Ginter
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Lei Cheng
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Anna Wieczorek
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Katarzyna Życieńska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Beata Brzozowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Lovisa Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
5
|
Guerra Liberal FDC, Thompson SJ, Prise KM, McMahon SJ. High-LET radiation induces large amounts of rapidly-repaired sublethal damage. Sci Rep 2023; 13:11198. [PMID: 37433844 PMCID: PMC10336062 DOI: 10.1038/s41598-023-38295-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
There is agreement that high-LET radiation has a high Relative Biological Effectiveness (RBE) when delivered as a single treatment, but how it interacts with radiations of different qualities, such as X-rays, is less clear. We sought to clarify these effects by quantifying and modelling responses to X-ray and alpha particle combinations. Cells were exposed to X-rays, alpha particles, or combinations, with different doses and temporal separations. DNA damage was assessed by 53BP1 immunofluorescence, and radiosensitivity assessed using the clonogenic assay. Mechanistic models were then applied to understand trends in repair and survival. 53BP1 foci yields were significantly reduced in alpha particle exposures compared to X-rays, but these foci were slow to repair. Although alpha particles alone showed no inter-track interactions, substantial interactions were seen between X-rays and alpha particles. Mechanistic modelling suggested that sublethal damage (SLD) repair was independent of radiation quality, but that alpha particles generated substantially more sublethal damage than a similar dose of X-rays, [Formula: see text]. This high RBE may lead to unexpected synergies for combinations of different radiation qualities which must be taken into account in treatment design, and the rapid repair of this damage may impact on mechanistic modelling of radiation responses to high LETs.
Collapse
Affiliation(s)
- Francisco D C Guerra Liberal
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
6
|
Tartas A, Lundholm L, Scherthan H, Wojcik A, Brzozowska B. The order of sequential exposure of U2OS cells to gamma and alpha radiation influences the formation and decay dynamics of NBS1 foci. PLoS One 2023; 18:e0286902. [PMID: 37307266 DOI: 10.1371/journal.pone.0286902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
DNA double strand breaks (DSBs) are a deleterious form of DNA damage. Densely ionising alpha radiation predominantly induces complex DSBs and sparsely ionising gamma radiation-simple DSBs. We have shown that alphas and gammas, when applied simultaneously, interact in producing a higher DNA damage response (DDR) than predicted by additivity. The mechanisms of the interaction remain obscure. The present study aimed at testing whether the sequence of exposure to alphas and gammas has an impact on the DDR, visualised by live NBS1-GFP (green fluorescent protein) focus dynamics in U2OS cells. Focus formation, decay, intensity and mobility were analysed up to 5 h post exposure. Focus frequencies directly after sequential alpha → gamma and gamma → alpha exposure were similar to gamma alone, but gamma → alpha foci quickly declined below the expected values. Focus intensities and areas following alpha alone and alpha → gamma were larger than after gamma alone and gamma → alpha. Focus movement was most strongly attenuated by alpha → gamma. Overall, sequential alpha → gamma exposure induced the strongest change in characteristics and dynamics of NBS1-GFP foci. Possible explanation is that activation of the DDR is stronger when alpha-induced DNA damage precedes gamma-induced DNA damage.
Collapse
Affiliation(s)
- Adrianna Tartas
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lovisa Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to the Univ. of Ulm, Munich, Germany
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Beata Brzozowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Tang H, Cai L, He X, Niu Z, Huang H, Hu W, Bian H, Huang H. Radiation-induced bystander effect and its clinical implications. Front Oncol 2023; 13:1124412. [PMID: 37091174 PMCID: PMC10113613 DOI: 10.3389/fonc.2023.1124412] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
For many years, targeted DNA damage caused by radiation has been considered the main cause of various biological effects. Based on this paradigm, any small amount of radiation is harmful to the organism. Epidemiological studies of Japanese atomic bomb survivors have proposed the linear-non-threshold model as the dominant standard in the field of radiation protection. However, there is increasing evidence that the linear-non-threshold model is not fully applicable to the biological effects caused by low dose radiation, and theories related to low dose radiation require further investigation. In addition to the cell damage caused by direct exposure, non-targeted effects, which are sometimes referred to as bystander effects, abscopal effects, genetic instability, etc., are another kind of significant effect related to low dose radiation. An understanding of this phenomenon is crucial for both basic biomedical research and clinical application. This article reviews recent studies on the bystander effect and summarizes the key findings in the field. Additionally, it offers a cross-sectional comparison of bystander effects caused by various radiation sources in different cell types, as well as an in-depth analysis of studies on the potential biological mechanisms of bystander effects. This review aims to present valuable information and provide new insights on the bystander effect to enlighten both radiobiologists and clinical radiologists searching for new ways to improve clinical treatments.
Collapse
Affiliation(s)
- Haoyi Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Luwei Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zihe Niu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Haitong Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| | - Huahui Bian
- Nuclear and Radiation Incident Medical Emergency Office, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| | - Hao Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| |
Collapse
|
8
|
Royba E, Repin M, Balajee AS, Shuryak I, Pampou S, Karan C, Wang YF, Lemus OD, Obaid R, Deoli N, Wuu CS, Brenner DJ, Garty G. Validation of a High-Throughput Dicentric Chromosome Assay Using Complex Radiation Exposures. Radiat Res 2023; 199:1-16. [PMID: 35994701 PMCID: PMC9947868 DOI: 10.1667/rade-22-00007.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/24/2022] [Indexed: 01/12/2023]
Abstract
Validation of biodosimetry assays is routinely performed using primarily orthovoltage irradiators at a conventional dose rate of approximately 1 Gy/min. However, incidental/ accidental exposures caused by nuclear weapons can be more complex. The aim of this work was to simulate the DNA damage effects mimicking those caused by the detonation of a several kilotons improvised nuclear device (IND). For this, we modeled complex exposures to: 1. a mixed (photons + IND-neutrons) field and 2. different dose rates that may come from the blast, nuclear fallout, or ground deposition of radionuclides (ground shine). Additionally, we assessed whether myeloid cytokines affect the precision of radiation dose estimation by modulating the frequency of dicentric chromosomes. To mimic different exposure scenarios, several irradiation systems were used. In a mixed field study, human blood samples were exposed to a photon field enriched with neutrons (ranging from 10% to 37%) from a source that mimics Hiroshima's A-bomb's energy spectrum (0.2-9 MeV). Using statistical analysis, we assessed whether photons and neutrons act in an additive or synergistic way to form dicentrics. For the dose rates study, human blood was exposed to photons or electrons at dose rates ranging from low (where the dose was spread over 32 h) to extremely high (where the dose was delivered in a fraction of a microsecond). Potential effects of cytokine treatment on biodosimetry dose predictions were analyzed in irradiated blood subjected to Neupogen or Neulasta for 24 or 48 h at the concentration recommended to forestall manifestation of an acute radiation syndrome in bomb survivors. All measurements were performed using a robotic station, the Rapid Automated Biodosimetry Tool II, programmed to culture lymphocytes and score dicentrics in multiwell plates (the RABiT-II DCA). In agreement with classical concepts of radiation biology, the RABiT-II DCA calibration curves suggested that the frequency of dicentrics depends on the type of radiation and is modulated by changes in the dose rate. The resulting dose-response curves suggested an intermediate dicentric yields and additive effects of photons and IND-neutrons in the mixed field. At ultra-high dose rate (600 Gy/s), affected lymphocytes exhibited significantly fewer dicentrics (P < 0.004, t test). In contrast, we did not find the dose-response modification effects of radiomitigators on the yields of dicentrics (Bonferroni corrected P > 0.006, ANOVA test). This result suggests no bias in the dose predictions should be expected after emergency cytokine treatment initiated up to 48 h prior to blood collection for dicentric analysis.
Collapse
Affiliation(s)
- Ekaterina Royba
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Adayabalam S. Balajee
- Radiation Emergency Assistance Center/Training Site (REAC/TS), Cytogenetic Biodosimetry Laboratory (CBL), Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Sergey Pampou
- Columbia Genome Center High-Throughput Screening facility, Columbia University Irving Medical Center, New York, New York
| | - Charles Karan
- Columbia Genome Center High-Throughput Screening facility, Columbia University Irving Medical Center, New York, New York
| | - Yi-Fang Wang
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Olga Dona Lemus
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Razib Obaid
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
- Currently at Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, California
| | - Naresh Deoli
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
| | - Cheng-Shie Wuu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
| |
Collapse
|
9
|
Characterization of γ-H2AX foci formation under alpha particle and X-ray exposures for dose estimation. Sci Rep 2022; 12:3761. [PMID: 35260639 PMCID: PMC8904799 DOI: 10.1038/s41598-022-07653-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
DNA double-strand break (DSB) induction is one of the phenotypes of cellular damage from radiation exposure and is commonly quantified by γ-H2AX assay with the number of excess fluorescent foci per cell as the main component. However, the number of foci alone may not fully characterize the state of DNA damage following exposures to different radiation qualities. This study investigated the feasibility of utilizing the focus size distribution and dephosphorylation rate of γ-H2AX to identify the type of causative radiation and dose. Human lung epithelial cells and mouse vascular endothelial cells were used to observe the expression changes of γ-H2AX foci due to alpha particle and X-ray exposures. Results showed that the average number of excess foci per cell linearly increased with the dose. The focus size distribution showed a consistent pattern depending on the causative radiation type. Three criteria for the identification of causative radiation type were derived from experimental focus size distributions and were validated in blind testing with correct identification of 27 out of 32 samples. The dose could be estimated based on the proportionality constant specific to the identified radiation type with a difference of less than 15% from the actual value. The different dephosphorylation rates of γ-H2AX produced from alpha particle and X-ray exposures were effectively utilized to determine the individual dose contributions of alpha particles and X-rays under mixed beam exposure. Individual doses were estimated to have differences of less than ~ 12% from actual values.
Collapse
|
10
|
Cortés-Sánchez JL, Callant J, Krüger M, Sahana J, Kraus A, Baselet B, Infanger M, Baatout S, Grimm D. Cancer Studies under Space Conditions: Finding Answers Abroad. Biomedicines 2021; 10:biomedicines10010025. [PMID: 35052703 PMCID: PMC8773191 DOI: 10.3390/biomedicines10010025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
In this review article, we discuss the current state of knowledge in cancer research under real and simulated microgravity conditions and point out further research directions in this field. Outer space is an extremely hostile environment for human life, with radiation, microgravity, and vacuum posing significant hazards. Although the risk for cancer in astronauts is not clear, microgravity plays a thought-provoking role in the carcinogenesis of normal and cancer cells, causing such effects as multicellular spheroid formation, cytoskeleton rearrangement, alteration of gene expression and protein synthesis, and apoptosis. Furthermore, deleterious effects of radiation on cells seem to be accentuated under microgravity. Ground-based facilities have been used to study microgravity effects in addition to laborious experiments during parabolic flights or on space stations. Some potential 'gravisensors' have already been detected, and further identification of these mechanisms of mechanosensitivity could open up ways for therapeutic influence on cancer growth and apoptosis. These novel findings may help to find new effective cancer treatments and to provide health protection for humans on future long-term spaceflights and exploration of outer space.
Collapse
Affiliation(s)
- José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
| | - Jonas Callant
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Armin Kraus
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
- Department Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Correspondence: ; Tel.: +45-21379702
| |
Collapse
|
11
|
Bannik K, Madas B, Jarke S, Sutter A, Siemeister G, Schatz C, Mumberg D, Zitzmann-Kolbe S. DNA repair inhibitors sensitize cells differently to high and low LET radiation. Sci Rep 2021; 11:23257. [PMID: 34853427 PMCID: PMC8636489 DOI: 10.1038/s41598-021-02719-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to investigate effects of high LET α-radiation in combination with inhibitors of DDR (DNA-PK and ATM) and to compare the effect with the radiosensitizing effect of low LET X-ray radiation. The various cell lines were irradiated with α-radiation and with X-ray. Clonogenic survival, the formation of micronuclei and cell cycle distribution were studied after combining of radiation with DDR inhibitors. The inhibitors sensitized different cancer cell lines to radiation. DNA-PKi affected survival rates in combination with α-radiation in selected cell lines. The sensitization enhancement ratios were in the range of 1.6–1.85 in cancer cells. ATMi sensitized H460 cells and significantly increased the micronucleus frequency for both radiation qualities. ATMi in combination with α-radiation reduced survival of HEK293. A significantly elicited cell cycle arrest in G2/M phase after co-treatment of ATMi with α-radiation and X-ray. The most prominent treatment effect was observed in the HEK293 by combining α-radiation and inhibitions. ATMi preferentially sensitized cancer cells and normal HEK293 cells to α-radiation. DNA-PKi and ATMi can sensitize cancer cells to X-ray, but the effectiveness was dependent on cancer cells itself. α-radiation reduced proliferation in primary fibroblast without G2/M arrest.
Collapse
Affiliation(s)
- Kristina Bannik
- Pharmaceuticals Division, Bayer AG, Berlin, Germany.,, Berlin, Germany
| | | | - Sabrina Jarke
- Pharmaceuticals Division, Bayer AG, Berlin, Germany.,Nuvisan-ICB GmbH, Berlin, Germany
| | | | - Gerhard Siemeister
- Pharmaceuticals Division, Bayer AG, Berlin, Germany.,Nuvisan-ICB GmbH, Berlin, Germany
| | | | | | | |
Collapse
|
12
|
Maliszewska-Olejniczak K, Kaniowski D, Araszkiewicz M, Tymińska K, Korgul A. Molecular Mechanisms of Specific Cellular DNA Damage Response and Repair Induced by the Mixed Radiation Field During Boron Neutron Capture Therapy. Front Oncol 2021; 11:676575. [PMID: 34094980 PMCID: PMC8170402 DOI: 10.3389/fonc.2021.676575] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 01/04/2023] Open
Abstract
The impact of a mixed neutron-gamma beam on the activation of DNA damage response (DDR) proteins and non-coding RNAs (ncRNAs) is poorly understood. Ionizing radiation is characterized by its biological effectiveness and is related to linear energy transfer (LET). Neutron-gamma mixed beam used in boron neutron capture therapy (BNCT) can induce another type of DNA damage such as clustered DNA or multiple damaged sites, as indicated for high LET particles, such as alpha particles, carbon ions, and protons. We speculate that after exposure to a mixed radiation field, the repair capacity might reduce, leading to unrepaired complex DNA damage for a long period and may promote genome instability and cell death. This review will focus on the poorly studied impact of neutron-gamma mixed beams with an emphasis on DNA damage and molecular mechanisms of repair. In case of BNCT, it is not clear which repair pathway is involved, and recent experimental work will be presented. Further understanding of BNCT-induced DDR mechanisms may lead to improved therapeutic efficiency against different tumors.
Collapse
Affiliation(s)
| | - Damian Kaniowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Martyna Araszkiewicz
- Faculty of Physics, University of Warsaw, Warsaw, Poland.,Nuclear Facilities Operations Department, National Centre for Nuclear Research, Otwock, Poland
| | - Katarzyna Tymińska
- Nuclear Facilities Operations Department, National Centre for Nuclear Research, Otwock, Poland
| | | |
Collapse
|
13
|
Hashemi SA, Mousavi SM, Faghihi R, Arjmand M, Rahsepar M, Bahrani S, Ramakrishna S, Lai CW. Superior X-ray Radiation Shielding Effectiveness of Biocompatible Polyaniline Reinforced with Hybrid Graphene Oxide-Iron Tungsten Nitride Flakes. Polymers (Basel) 2020; 12:E1407. [PMID: 32585991 PMCID: PMC7361692 DOI: 10.3390/polym12061407] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/17/2023] Open
Abstract
X-ray radiation is a harmful carcinogenic electromagnetic source that can adversely affect the health of living species and deteriorate the DNA of cells, thus it's vital to protect vulnerable sources from them. To address this flaw, the conductive polymeric structure of polyaniline (PANi) was reinforced with diverse filler loadings (i.e., 25 wt % and 50 wt %) of hybrid graphene oxide-iron tungsten nitride (ITN) flakes toward attenuation of X-ray beams and inhabitation of microorganisms' growth. Primary characterizations confirmed the successful decoration of graphene oxide (GO) with interconnected and highly dense structure of iron tungsten nitride with a density of about 24.21 g.cm⁻3 and reinforcement of PANi with GO-ITN. Additionally, the outcome of evaluations showed the superior performance of developed shields, where a shield with 1.2 mm thickness containing 50 wt % GO-ITN showed 131.73 % increase in the electrical conductivity (compared with neat PANi) along with 78.07%, 57.12%, and 44.99% decrease in the amplitude of the total irradiated X-ray waves at 30, 40, and 60 kVp tube voltages, respectively, compared with control X-ray dosage. More importantly, the developed shields not only showed non-toxic nature and improved the viability of cells, but also completely removed the selected microorganisms at a concentration of 1000 µg.mL-1.
Collapse
Affiliation(s)
- Seyyed Alireza Hashemi
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 119077, Singapore;
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (S.M.M.); (S.B.)
| | - Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (S.M.M.); (S.B.)
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Reza Faghihi
- Nuclear Engineering Department, Shiraz University, Shiraz 71936-16548, Iran;
- Radiation Research Center, Shiraz University, Shiraz 71936-16548, Iran
| | - Mohammad Arjmand
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Mansour Rahsepar
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz 71348-51154, Iran;
| | - Sonia Bahrani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (S.M.M.); (S.B.)
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 119077, Singapore;
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Center, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
14
|
Impact of ATM and DNA-PK Inhibition on Gene Expression and Individual Response of Human Lymphocytes to Mixed Beams of Alpha Particles and X-Rays. Cancers (Basel) 2019; 11:cancers11122013. [PMID: 31847107 PMCID: PMC6966634 DOI: 10.3390/cancers11122013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/06/2023] Open
Abstract
Accumulating evidence suggests a synergistic effect in cells simultaneously exposed to different types of clustered and dispersed DNA damage. We aimed to analyse the effect of mixed beams of alpha particles and X-rays (1:1 dose of each) on DNA damage response genes in human peripheral blood lymphocytes isolated from four donors. Two donors were compared upon inhibition of ATM or DNA-PK and at different sampling times. qPCR was used to measure mRNA levels of FDXR, GADD45A, BBC3, MDM2, CDKN1A, and XPC 24 h following exposure. Generally, alpha particles and mixed beams were stronger inducers of gene expression compared to X-rays, displaying saturated versus linear dose–response curves, respectively. Three out of four donors responded synergistically to mixed beams. When two donors were sampled again one year later, the former additive effect in one donor was now synergistic and no significant difference in intrinsic radiosensitivity was displayed, as determined by gamma-radiation-induced micronuclei. ATM, but not DNA-PK inhibition, reduced the radiation-induced gene expression, but differently for alpha radiation between the two donors. In conclusion, synergy was present for all donors, but the results suggest individual variability in the response to mixed beams, most likely due to lifestyle changes.
Collapse
|
15
|
Mukherjee S, Grilj V, Broustas CG, Ghandhi SA, Harken AD, Garty G, Amundson SA. Human Transcriptomic Response to Mixed Neutron-Photon Exposures Relevant to an Improvised Nuclear Device. Radiat Res 2019; 192:189-199. [PMID: 31237816 PMCID: PMC7450517 DOI: 10.1667/rr15281.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the possible event of a detonation of an improvised nuclear device (IND), the immediate radiation would consist of both photons (gamma rays) and neutrons. Since neutrons generally have a high relative biological effectiveness (RBE) for most physiological end points, it is important to understand the effect that neutrons would have on the biodosimetry methods that are being developed for medical triage purposes. We previously compared the transcriptomic response in human blood after neutron and photon irradiation. In this study, we analyzed the effect of mixed-field-neutron-photon radiation on gene expression responses in human peripheral blood, to elucidate the neutron contribution in the setting of a radiation exposure from an IND detonation. We used four combinations of mixed neutron-photon exposures, with increasing percentages of neutrons, to a cumulative dose of 3 Gy. The mixed-field exposures consisted of 0%, 5%, 15% and 25% of neutrons, where 0% corresponds to 3 Gy of pure X rays. A maximum neutron exposure, corresponding to 83% neutrons (0.75 Gy) was also used in the study. Increases were observed in both the number and expression level of genes, with increasing percentages of neutrons from 0% to 25% in the mixed-field exposures. Gene ontology analysis showed an overall predominance of TP53 signaling among upregulated genes across all exposures. Some TP53 regulated genes, such as EDA2R, GDF15 and VWCE, demonstrated increased expression with increasing neutron percentages in mixed-field exposures. Immune response, specifically natural-killer-cell mediated signaling, was the most significant biological process associated with downregulated genes. We observed significant suppression of T-cell-mediated signaling in mixed-field exposures, which was absent in the response to pure photons. In this first study investigating gene expression in human blood cells exposed to mixed neutron-photon fields similar to an actual IND explosion, we have identified a number of genes responding to the 3 Gy dose that showed increasing expression as the neutron percentage increased. Such genes may serve as better indicators of the expected biological damage than a report of total physical dose, and thus provide more relevant information for treating physicians.
Collapse
Affiliation(s)
- Sanjay Mukherjee
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032; and
| | - Veljko Grilj
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032; and
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032; and
| | - Andrew D. Harken
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032; and
| |
Collapse
|
16
|
Cheng L, Brzozowska B, Sollazzo A, Lundholm L, Lisowska H, Haghdoost S, Wojcik A. Simultaneous induction of dispersed and clustered DNA lesions compromises DNA damage response in human peripheral blood lymphocytes. PLoS One 2018; 13:e0204068. [PMID: 30379881 PMCID: PMC6209146 DOI: 10.1371/journal.pone.0204068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/31/2018] [Indexed: 11/18/2022] Open
Abstract
Due to its ability to induce DNA damage in a space and time controlled manner, ionising radiation is a unique tool for studying the mechanisms of DNA repair. The biological effectiveness of ionising radiation is related to the ionisation density which is defined by the linear energy transfer (LET). Alpha particles are characterised by high LET, while X-rays by low LET values. An interesting question is how cells react when exposed to a mixed beam of high and low LET radiation. In an earlier study carried out with human peripheral blood lymphocytes (PBL) we could demonstrate that alpha radiation X-rays interact in producing more chromosomal aberrations than expected based on additivity. The aim of the present investigation was to look at the mechanism of the interaction, especially with respect to the question if it is due to an augmented level of initial damage or impaired DNA repair. PBL were exposed to various doses of alpha particles, X-rays and mixed beams. DNA damage and the kinetics of damage repair was quantified by the alkaline comet assay. The levels of phosphorylated, key DNA damage response (DDR) proteins ATM, p53 and DNA-PK were measured by Western blotting and mRNA levels of 6 damage-responsive genes were measured by qPCR. Alpha particles and X-rays interact in inducing DNA damage above the level predicted by assuming additivity and that the repair of damage occurs with a delay. The activation levels of DDR proteins and mRNA levels of the studied genes were highest in cells exposed to mixed beams. The results substantiate the idea that exposure to mixed beams presents a challenge for the cellular DDR system.
Collapse
Affiliation(s)
- Lei Cheng
- Centre for Radiation Protection Research, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Beata Brzozowska
- Centre for Radiation Protection Research, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warszawa, Poland
| | - Alice Sollazzo
- Centre for Radiation Protection Research, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Halina Lisowska
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
17
|
Biological effects of mixed-ion beams. Part 1: Effect of irradiation of the CHO-K1 cells with a mixed-ion beam containing the carbon and oxygen ions. Appl Radiat Isot 2018; 139:304-309. [PMID: 29883949 DOI: 10.1016/j.apradiso.2018.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 11/23/2022]
Abstract
Carbon and oxygen ions were accelerated simultaneously to estimate the effect of irradiation of living cells with the two different ions. This mixed ion beam was used to irradiate the CHO-K1 cells, and a survival test was performed. The type of the effect of the mixed ion beam on the cells was determined with the isobologram method, whereby survival curves for irradiations with individual ion beams were also used. An additive effect of irradiation with the two ions was found.
Collapse
|
18
|
Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.01.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Live Dynamics of 53BP1 Foci Following Simultaneous Induction of Clustered and Dispersed DNA Damage in U2OS Cells. Int J Mol Sci 2018; 19:ijms19020519. [PMID: 29419809 PMCID: PMC5855741 DOI: 10.3390/ijms19020519] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/18/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
Cells react differently to clustered and dispersed DNA double strand breaks (DSB). Little is known about the initial reaction to simultaneous induction of DSBs with different complexities. Here, we used live cell microscopy to analyse the behaviour of 53BP1-GFP (green fluorescence protein) foci formation at DSBs induced in U2OS cells by alpha particles, X-rays or mixed beams over a 75 min period post irradiation. X-ray-induced foci rapidly increased and declined over the observation interval. After an initial increase, mixed beam-induced foci remained at a constant level over the observation interval, similarly as alpha-induced foci. The average areas of radiation-induced foci were similar for mixed beams and X-rays, being significantly smaller than those induced by alpha particles. Pixel intensities were highest for mixed beam-induced foci and showed the lowest level of variability over time as compared to foci induced by alphas and X-rays alone. Finally, mixed beam-exposed foci showed the lowest level of mobility as compared to alpha and X-ray exposure. The results suggest paralysation of chromatin around foci containing clustered DNA damage.
Collapse
|
20
|
Sollazzo A, Brzozowska B, Cheng L, Lundholm L, Haghdoost S, Scherthan H, Wojcik A. Alpha Particles and X Rays Interact in Inducing DNA Damage in U2OS Cells. Radiat Res 2017; 188:400-411. [DOI: 10.1667/rr14803.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Alice Sollazzo
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Beata Brzozowska
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lei Cheng
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology, D-80937 Munich, Germany
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
21
|
Wang H, Chen Q, Liu G, Tian Y, Zhang F, Qu J, Lim D, Feng Z. The Comparison of Health Status Between Male and Female Medical Radiation Workers in China. RADIATION PROTECTION DOSIMETRY 2017; 175:508-516. [PMID: 28096311 DOI: 10.1093/rpd/ncw380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
To assess the health statue of chronically exposed Chinese medical radiation workers. A cross-sectional study of 530 medical radiation workers in a city of China was conducted to document the health status and the monitored annually absorbed doses. Long-term and low-dose radiation exposure can affect a number of health indicators in the individuals, which covered the cardiovascular system, hematologic system, ophthalmology, liver and kidney's functions, chromosome aberration and micronucleus. The differences in the health status between male and female individuals were associated with job types and exposed years of service. The monitored doses of individuals were lower than the limit value of the national standard. The health status in chronically exposed individuals demonstrated some gender difference associated with length of exposure and work type. This study provides some evidence to understand the health status of medical radiation workers in China and have the potentially to inform screening and clinical diagnosis.
Collapse
Affiliation(s)
- Hui Wang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Shandong University, Jinan, Shandong Province250012, China
| | - Qianshu Chen
- Dezhou Center for Disease Control and Prevention, Shandong253000, China
| | - Guochao Liu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Shandong University, Jinan, Shandong Province250012, China
| | - Youjia Tian
- Department of Occupational Health and Occupational Medicine, School of Public Health, Shandong University, Jinan, Shandong Province250012, China
| | - Fengmei Zhang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Shandong University, Jinan, Shandong Province250012, China
| | - Jianying Qu
- Qingdao Center for Disease Control and Prevention, Qingdao 266033, China
| | - David Lim
- Flinders Rural Health South Australia, Victor Harbor, South Australia 5211, Australia
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Shandong University, Jinan, Shandong Province250012, China
| |
Collapse
|
22
|
Nakamura A, Itaki C, Saito A, Yonezawa T, Aizawa K, Hirai A, Suganuma H, Miura T, Mariya Y, Haghdoost S. Possible benefits of tomato juice consumption: a pilot study on irradiated human lymphocytes from healthy donors. Nutr J 2017; 16:27. [PMID: 28494764 PMCID: PMC5427617 DOI: 10.1186/s12937-017-0248-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 05/01/2017] [Indexed: 12/11/2022] Open
Abstract
Background Reactive oxygen species (ROS) mediate much of the DNA damage caused by ionizing radiation. Among carotenoids, lycopene and β-carotene, present in tomato juice, are known to be strong radical scavengers. The aim of the study was to investigate the effect of tomato juice intake on the levels of DNA damage and oxidative stress in human whole blood induced by in vitro exposure to X-rays. Methods Ten healthy adults were asked to drink 190 g of tomato juice, containing 17 mg lycopene and 0.25 mg β-carotene, per day for 3 weeks and then refrain from drinking it for 3 weeks. Peripheral whole blood samples were collected before and after the intake period of tomato juice and after the washout period. The blood samples were exposed in vitro to X-ray doses of 0, 0.1, 0.5, and 2 Gy. Cytogenetic damage was measured using the cytokinesis-block micronucleus (CBMN) assay and the dicentrics (DIC) assay. The level of oxidative stress was determined using serum 8-oxo-7, 8-dihydro-2-deoxyguanosine (8-oxo-dG) and plasma reactive oxygen metabolite-derived compounds (d-ROMs). The concentration of carotenoids in plasma was measured at the three time points. Results The levels of 8-oxo-dG tended to decrease during the intake period and increase during the washout period. A non-significant inverse correlation was noted between the plasma concentration of lycopene plus β-carotene and the level of 8-oxo-dG (P = 0.064). The radiation-induced MN and DIC frequencies increased in a dose-dependent manner, and when compared at the same dose, the MN and DIC frequencies decreased during the intake period compared with those at baseline and then increased during the washout period. The results suggest that continuous tomato juice consumption non-significantly decreases extracellular 8-oxo-dG, d-ROMs, and MN. Tomato juice intake had minimal or no effect on radiation-induced 8-oxo-dG and d-ROMs. For most radiation doses, continuously tomato juice intake lowered the levels of MN and DIC. Conclusion Tomato juice consumption may suppress human lymphocyte DNA damage caused by radiation, but further examination is required. Trial registration 2014-001 and 2014-R06.
Collapse
Affiliation(s)
- Ayumi Nakamura
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Aomori, 036-8564, Japan
| | - Chieko Itaki
- Department of Disability and Health, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Aomori, 036-8564, Japan
| | - Ayako Saito
- Department of Clinical Laboratory Medicine, Hirosaki Central Hospital, Aomori, 036-8188, Japan
| | - Toko Yonezawa
- Department of Clinical Laboratory Medicine, Hirosaki Central Hospital, Aomori, 036-8188, Japan
| | - Koichi Aizawa
- Nature and Wellness Research Department, Innovation Division, KAGOME CO., LTD., Tochigi, 329-2762, Japan
| | - Ayumi Hirai
- Nature and Wellness Research Department, Innovation Division, KAGOME CO., LTD., Tochigi, 329-2762, Japan
| | - Hiroyuki Suganuma
- Nature and Wellness Research Department, Innovation Division, KAGOME CO., LTD., Tochigi, 329-2762, Japan
| | - Tomisato Miura
- Department of Pathologic Analysis, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Aomori, 036-8564, Japan
| | - Yasushi Mariya
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Aomori, 036-8564, Japan.
| | - Siamak Haghdoost
- Center for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, SE-106 91, Sweden
| |
Collapse
|
23
|
Sollazzo A, Shakeri-Manesh S, Fotouhi A, Czub J, Haghdoost S, Wojcik A. Interaction of low and high LET radiation in TK6 cells-mechanistic aspects and significance for radiation protection. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:721-735. [PMID: 27631423 DOI: 10.1088/0952-4746/36/4/721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Most environmental, occupational and medical exposures to ionising radiation are associated with a simultaneous action of different radiation types. An open question remains whether radiations of different qualities interact with each other to yield effects stronger than expected based on the assumption of additivity. It is possible that DNA damage induced by high linear energy transfer (LET) radiation will lead to an opening of the chromatin structure making the DNA more susceptible to attack by reactive oxygen species (ROS) generated by the low LET radiation. In such case, the effect of mixed beams should be strongly expressed in cells that are sensitive to ROS. The present investigation was carried out to test if cells with an impaired capacity to handle oxidative stress are particularly sensitive to the effect of mixed beams of alpha particles and x-rays. Clonogenic cell survival curves and mutant frequencies were analysed in TK6 wild type (wt) cells and in TK6 cells with a knocked down hMYH glycosylase. The results showed a synergistic effect of mixed beams on clonogenic cell survival of TK6wt but not TK6MYH- cells. The frequencies of mutants showed a high degree of interexperimental variability without any indications for synergistic effects of mixed beams. TK6MYH- cells were generally more tolerant to radiation exposure with respect to clonogenic cell survival but showed a strong increase in mutant frequency. The results demonstrate that exposure of wt cells to a mixed beam of alpha particles and x-rays leads to a detrimental effect which is stronger than expected based on the assumption of additivity. The role of oxidative stress in the reaction of cells to mixed beams remains unclear.
Collapse
Affiliation(s)
- Alice Sollazzo
- MBW Department, Centre for Radiation Protection Research, Stockholm University, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Terzic S, Milovanovic A, Dotlic J, Rakic B, Terzic M. New models for prediction of micronuclei formation in nuclear medicine department workers. J Occup Med Toxicol 2015. [PMID: 26213558 PMCID: PMC4513963 DOI: 10.1186/s12995-015-0066-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Ionizing radiation causes detrimental health effects such as cancer and genetic damage. The study aim was to determine predictors for micronuclei (MN) occurrence and frequency in peripheral blood lymphocytes of health workers professionally exposed to radiation. Methods Health workers, age matched, selected for the study on regular check-ups, were divided according to the radiation exposure. The exposed group involved nuclear medicine department employees (54) and the control group comprised workers from other departments (36). Data about workers characteristics and habits, received annual doses (AD), total years of service (TYS) and exposed years of service (EYS) were taken from each subject. Blood samples were taken and micronuclei (MN) number in peripheral blood lymphocytes was calculated using CBMN assay according to standard protocols. Results Most workers were female, technicians, with mean age of 45.67 years and EYS about 15 years. Health workers exposed to radiation had significantly more MN than controls (p = 0.001). Female gender, older age, higher received annual doses, longer EYS and TYS increased the MN number. Technicians and laboratory workers have higher risk for MN occurrence. Significant predictors of MN formation according to constructed model were workers age, sex, AD and EYS. One EYS year increases MN frequency 1.017 times, while receiving 0.1 mSy raises MN frequency by 26 %. EYS accurately predicts 86.30 % of MN frequencies and AD 64.60 %. Conclusions The model, developed for the first time in this study, showed that received annual doses and duration of exposure to radiation can be used for prediction of MN numbers.
Collapse
Affiliation(s)
- Sanja Terzic
- Occupational Health Department, General Health Center "Savski Venac", Pasterova 1, Belgrade, Serbia
| | - Aleksandar Milovanovic
- Institute of Occupational Medicine and Radiological Protection, Deligradska 29, Belgrade, Serbia ; School of Medicine, University of Belgrade, Dr Subotica 8, Belgrade, Serbia
| | - Jelena Dotlic
- School of Medicine, University of Belgrade, Dr Subotica 8, Belgrade, Serbia ; Clinic of Obstetrics and Gynecology, Clinical Center of Serbia, Dr Koste Todorovica 26, Belgrade, Serbia
| | - Boban Rakic
- Institute of Occupational Medicine and Radiological Protection, Deligradska 29, Belgrade, Serbia
| | - Milan Terzic
- School of Medicine, University of Belgrade, Dr Subotica 8, Belgrade, Serbia ; Clinic of Obstetrics and Gynecology, Clinical Center of Serbia, Dr Koste Todorovica 26, Belgrade, Serbia
| |
Collapse
|
25
|
Brehwens K, Bajinskis A, Haghdoost S, Wojcik A. Micronucleus frequencies and clonogenic cell survival in TK6 cells exposed to changing dose rates under controlled temperature conditions. Int J Radiat Biol 2013; 90:241-7. [PMID: 24350915 DOI: 10.3109/09553002.2014.873831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE In most exposure scenarios the dose rate of exposure is not constant. Despite this, very little information exists on the possible biological effects of exposing cells to radiation under the conditions of a changing dose rate. The current study highlights interesting effects following exposure under these conditions. MATERIALS AND METHODS We constructed a new exposure facility that allows exposing cells inside an incubator and used it to irradiate human lymphoblastoid TK6 cells both after a moderate (0.48 Gy) and a high (1.1 Gy) dose, where the change in dose rate was, respectively, ≈ 17-fold (2.2-37 mGy/min) and ≈ 39-fold (2.7-106 mGy/min). Clonogenic survival and micronuclei (MN) induction were the chosen endpoints. RESULTS The obtained results confirm the outcome of our first study that TK6 cells exposed to a decreasing dose rate express more MN than cells exposed to an increasing or constant dose rate. The effect was not seen after the moderate dose of 0.48 Gy or detectable at the level of clonogenic cell survival. CONCLUSIONS We speculate that the high level of MN is probably related to a delayed elimination of damaged cells by interphase death, as opposed to mechanisms relating to DNA damage and repair.
Collapse
Affiliation(s)
- Karl Brehwens
- Centre for Radiation Protection Research, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | | | | | | |
Collapse
|
26
|
Staaf E, Deperas-Kaminska M, Brehwens K, Haghdoost S, Czub J, Wojcik A. Complex aberrations in lymphocytes exposed to mixed beams of (241)Am alpha particles and X-rays. Mutat Res 2013; 756:95-100. [PMID: 23669292 DOI: 10.1016/j.mrgentox.2013.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
Modern radiotherapy treatment modalities are associated with undesired out-of-field exposure to complex mixed beams of high and low energy transfer (LET) radiation that can give rise to secondary cancers. The biological effectiveness of mixed beams is not known. The aim of the investigation was the analysis of chromosomal damage in human peripheral blood lymphocytes (PBL) exposed to a mixed beam of X-rays and alpha particles. Using a dedicated exposure facility PBL were exposed to increasing doses of alpha particles (from (241)Am), X-rays and a mixture of both. Chromosomal aberrations were analysed in chromosomes 2, 8 and 14 using fluorescence in situ hybridisation. The found and expected frequencies of simple and complex aberrations were compared. Simple aberrations showed linear dose-response relationships with doses. A higher than expected frequency of simple aberrations was only observed after the highest mixed beam dose. A linear-quadratic dose response curve for complex aberrations was observed after mixed-beam exposure. Higher than expected frequencies of complex aberrations were observed for the two highest doses. Both the linear-quadratic dose-response relationship and the calculation of expected frequencies show that exposure of PBL to mixed beams of high and low LET radiation leads to a higher than expected frequency of complex-type aberrations. Because chromosomal changes are associated with cancer induction this result may imply that the cancer risk of exposure to mixed beams in radiation oncology may be higher than expected based on the additive action of the individual dose components.
Collapse
Affiliation(s)
- Elina Staaf
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Staaf E, Brehwens K, Haghdoost S, Czub J, Wojcik A. Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha particles. Genome Integr 2012; 3:8. [PMID: 23121736 PMCID: PMC3531250 DOI: 10.1186/2041-9414-3-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/30/2012] [Indexed: 12/16/2022] Open
Abstract
Background Little is known about the cellular effects of exposure to mixed beams of high and low linear energy transfer radiation. So far, the effects of combined exposures have mainly been assessed with clonogenic survival or cytogenetic methods, and the results are contradictory. The gamma-H2AX assay has up to now not been applied in this context, and it is a promising tool for investigating the early cellular response to mixed beam irradiation. Purpose To determine the dose response and repair kinetics of gamma-H2AX ionizing radiation-induced foci in VH10 human fibroblasts exposed to mixed beams of 241Am alpha particles and X-rays. Results VH10 human fibroblasts were irradiated with each radiation type individually or both in combination at 37°C. Foci were scored for repair kinetics 0.5, 1, 3 and 24 h after irradiation (one dose per irradiation type), and for dose response at the 1 h time point. The dose response effect of mixed beam was additive, and the relative biological effectiveness for alpha particles (as compared to X-rays) was of 0.76 ± 0.52 for the total number of foci, and 2.54 ± 1.11 for large foci. The repair kinetics for total number of foci in cells exposed to mixed beam irradiation was intermediate to that of cells exposed to alpha particles and X-rays. However, for mixed beam-irradiated cells the frequency and area of large foci were initially lower than predicted and increased during the first 3 hours of repair (while the predicted number and area did not). Conclusions The repair kinetics of large foci after mixed beam exposure was significantly different from predicted based on the effect of the single dose components. The formation of large foci was delayed and they did not reach their maximum area until 1 h after irradiation. We hypothesize that the presence of low X-ray-induced damage engages the DNA repair machinery leading to a delayed DNA damage response to the more complex DNA damage induced by alpha particles.
Collapse
Affiliation(s)
- Elina Staaf
- Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 106 91, Sweden.
| | | | | | | | | |
Collapse
|