1
|
Cherednichenko O, Pilyugina A, Nuraliev S, Azizbekova D. Persons chronically exposed to low doses of ionizing radiation: A cytogenetic dosimetry study. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 894:503728. [PMID: 38432778 DOI: 10.1016/j.mrgentox.2024.503728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 03/05/2024]
Abstract
The dosimetry and control of exposure for individuals chronically exposed to ionizing radiation are important and complex issues. Assessment may be optimized by evaluating individual adaptation and radiosensitivity, but it is not possible for a single model to account for all relevant parameters. Our goal was to develop approaches for the calculation of doses for persons chronically exposed to ionizing radiation, taking their radiosensitivities into consideration. On the basis of ex vivo radiation of blood samples, dose-effect models were constructed for dose ranges 0.01-2.0 and 0.01-0.4 Gy, using different cytogenetic criteria. The frequencies of "dicentric chromosomes and rings" at low doses are too low to have predictive value. The different responses of subjects to radiation made it possible to categorize them according to their radiosensitivities and to generate separate dose-effect curves for radiosensitive, average, and radioresistant individuals, reducing the amount of error in retrospective dosimetry.
Collapse
Affiliation(s)
- Oksana Cherednichenko
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan.
| | - Anastassiya Pilyugina
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | - Serikbai Nuraliev
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | - Dinara Azizbekova
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| |
Collapse
|
2
|
Ohtaki M, Otani K, Yasuda H. Contribution of radioactive particles to the post-explosion exposure of atomic bomb survivors implied from their stable chromosome aberration rates. Front Public Health 2024; 12:1335097. [PMID: 38299079 PMCID: PMC10827992 DOI: 10.3389/fpubh.2024.1335097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Even today when nearly 80 years have passed after the atomic bomb (A-bomb) was dropped, there are still debates about the exact doses received by the A-bomb survivors. While initial airborne kerma radiation (or energy spectrum of emitted radiation) can be measured with sufficient accuracy to assess the radiation dose to A-bomb survivors, it is not easy to accurately assess the neutron dose including appropriate weighting of neutron absorbed dose. Particularly, possible post-explosion exposure due to the radioactive particles generated through neutron activation have been almost neglected so far, mainly because of a large uncertainty associated to the behavior of those particles. However, it has been supposed that contribution of such non-initial radiation exposure from the neutron-induced radioactive particles could be significant, according to the findings that the stable chromosomal aberration rates which indicate average whole-body radiation doses were found to be more than 30% higher for those exposed indoors than for those outdoors even at the same initial dose estimated for the Life Span Study. In this Mini Review article, the authors explain that such apparently controversial observations can be reasonably explained by assuming a higher production rate of neutron-induced radioactive particles in the indoor environment near the hypocenter.
Collapse
Affiliation(s)
- Megu Ohtaki
- Emeritus, The Center for Peace, Hiroshima University, Hiroshima, Japan
- The Center for Peace, Hiroshima University, Hiroshima, Japan
| | - Keiko Otani
- The Center for Peace, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Cytogenetic Effects in Patients after Computed Tomography Examination. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121983. [PMID: 36556348 PMCID: PMC9784585 DOI: 10.3390/life12121983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Millions of people around the world are exposed to low doses of ionizing radiation from diagnostic computed tomography (CT) scans. Currently available data on the potential cancer risk after CT scans are contradictory and therefore demand further investigations. The aim of the current study was to obtain estimations of genome damage after CT scans in 42 non-cancer patients and to conduct a comparison of the results with 22 control subjects. The frequency of dicentric ring chromosomes and chromosome breaks was significantly increased in irradiated patients compared to the controls. The distribution of dicentrics among the cells demonstrated non-Poisson distribution that reflected non-uniform and partial-body radiation exposure. A fraction of patients followed Poisson distribution, which is typical for uniform whole-body exposures. Some patients demonstrated a level of dicentrics similar to the control subjects. The individual variations in the frequency and dicentric distribution suggested complex mechanisms of chromosome aberration induction and elimination that could be associated with individual radiosensitivity, as well as previous diagnostics that used ionizing radiation or the redistribution of small fractions of irradiated lymphocytes within the circulatory pull. In conclusion, CT scans may cause genome damage and possible increases in cancer risk. The introduction of a specific follow-up of such patients, especially in the case of repeated CT scans, is suggested.
Collapse
|
4
|
Ewing LE, Pathak R, Landes RD, Skinner CM, Binz R, Young SG, Riklon S, Stahr S, Su J, Boerma M, McElfish PA, Hauer-Jensen M, Koturbash I. Cytogenetic and epigenetic aberrations in peripheral lymphocytes of northwest Arkansas Marshallese. Int J Radiat Biol 2022; 99:644-655. [PMID: 35939319 PMCID: PMC9929030 DOI: 10.1080/09553002.2022.2110319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Nuclear weapons testing in the northern Marshall Islands between 1946 and 1958 resulted in ionizing radiation (IR) exposure of the thousands of Marshallese. Furthermore, numerous islands were contaminated by radioactive fallout. Significant increases in cancer and metabolic syndrome incidences have been reported among Marshallese, and potential for further increases looms due to the latency of radiation-induced health effects. The purpose of this study was to investigate the genetic and epigenetic effects of exposure to IR that could be associated with radiation-induced disease among the Northwest Arkansas (NWA) Marshallese. MATERIALS AND METHODS We performed analysis of chromosomal aberrations and DNA methylation based on residential and exposure history of NWA Marshallese. RESULTS Analysis of chromosomal aberrations demonstrated higher incidence of genetic rearrangements in women with self-reported history of radiation exposure (95% CI: 0.10, 1.22; p=.022). Further clustering of study participants based on their residential history demonstrated that participants who spent substantial amounts of time (≥6 months) in the northern atolls (thus, in the proximity of nuclear tests) before 1980 had more chromosomal aberrations than their peers who lived only in the southern atolls (95% CI: 0.08, -0.95; p=.021), and that this difference was driven by women. A relationship between the time spent in the northern atolls and increase in chromosomal aberrations was observed: 0.31 increase in chromosomal aberrations for every 10 years spent at northern atolls (95% CI: 0.06, 0.57; p=.020). Finally, significant inverse correlations between the chromosomal aberrations and the extent of DNA methylation of four LINE-1 elements L1PA2, L1PA16, L1PREC1, and L1P4B were identified. CONCLUSIONS The results of this study provide first evidence of the presence of stable genetic and epigenetic rearrangements in peripheral lymphocytes of NWA Marshallese and warrant further studies to analyze the role of radiation exposure in health disparities experienced by this Pacific Island nation.
Collapse
Affiliation(s)
- Laura E. Ewing
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W Markham Str, Little Rock, Arkansas, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W Markham Str, Little Rock, Arkansas, USA
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 W Markham Str, Little Rock, AR, USA
| | - Reid D. Landes
- Department of Biostatistics, College of Medicine, University of Arkansas for Medical Sciences, 4301 W Markham Str, Little Rock, Arkansas, USA
| | - Charles M. Skinner
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W Markham Str, Little Rock, Arkansas, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W Markham Str, Little Rock, Arkansas, USA
| | - Regina Binz
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 W Markham Str, Little Rock, AR, USA
| | - Sean G. Young
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W Markham Str, Little Rock, Arkansas, USA
| | - Sheldon Riklon
- College of Medicine, University of Arkansas for Medical Sciences Northwest, Fayetteville, AR, USA
| | - Shelbie Stahr
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W Markham Str, Little Rock, Arkansas, USA
| | - Joseph Su
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W Markham Str, Little Rock, Arkansas, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 W Markham Str, Little Rock, AR, USA
| | - Pearl A. McElfish
- College of Medicine, University of Arkansas for Medical Sciences Northwest, Fayetteville, AR, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 W Markham Str, Little Rock, AR, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W Markham Str, Little Rock, Arkansas, USA
| |
Collapse
|
5
|
Herate C, Sabatier L. Retrospective biodosimetry techniques: Focus on cytogenetics assays for individuals exposed to ionizing radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 783:108287. [PMID: 32192645 DOI: 10.1016/j.mrrev.2019.108287] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 01/28/2023]
Abstract
In the absence of physical data, biodosimetry tools are required for fast dose and risk assessment in the event of radiological or nuclear mass accidents or attacks to triage exposed humans and take immediate medical countermeasures. Biodosimetry tools have mostly been developed for retrospective dose assessment and the follow-up of victims of irradiation. Among them, cytogenetics analyses, to reveal chromosome damage, are the most developed and allow the determination of doses from blood samples as low as 100 mGy. Various cytogenetic tests have already allowed retrospective dose assessment of Chernobyl liquidators and military personnel exposed to nuclear tests after decades. In this review, we discuss the properties of various biodosimetry techniques, such as their sensitivity and limitations as a function of the time from exposure, using multiple examples of nuclear catastrophes or working exposure. Among them, chromosome FISH hybridization, which reveals chromosome translocations, is the most reliable due to the persistence of translocations for decades, whereas dicentric chromosome and micronuclei assays allow rapid and accurate dose assessment a short time after exposure. Both need to be adjusted through mathematical algorithms for retrospective analyses, accounting for the time since exposure and the victims' age. The goal for the future will be to better model chromosome damage, reduce the time to result, and develop new complementary biodosimetry approaches, such as mutation signatures.
Collapse
Affiliation(s)
- C Herate
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), University Paris-Saclay, Fontenay-aux-Roses, France
| | - L Sabatier
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), University Paris-Saclay, Fontenay-aux-Roses, France.
| |
Collapse
|
6
|
McKenna MJ, Robinson E, Taylor L, Tompkins C, Cornforth MN, Simon SL, Bailey SM. Chromosome Translocations, Inversions and Telomere Length for Retrospective Biodosimetry on Exposed U.S. Atomic Veterans. Radiat Res 2019; 191:311-322. [PMID: 30714852 PMCID: PMC6492561 DOI: 10.1667/rr15240.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It has now been over 60 years since U.S. nuclear testing was conducted in the Pacific islands and Nevada, exposing military personnel to varying levels of ionizing radiation. Actual doses are not well-established, as film badges in the 1950s had many limitations. We sought a means of independently assessing dose for comparison with historical film badge records and dose reconstruction conducted in parallel. For the purpose of quantitative retrospective biodosimetry, peripheral blood samples from 12 exposed veterans and 12 age-matched (>80 years) veteran controls were collected and evaluated for radiation-induced chromosome damage utilizing directional genomic hybridization (dGH), a cytogenomics-based methodology that facilitates simultaneous detection of translocations and inversions. Standard calibration curves were constructed from six male volunteers in their mid-20s to reflect the age range of the veterans at time of exposure. Doses were estimated for each veteran using translocation and inversion rates independently; however, combining them by a weighted-average generally improved the accuracy of dose estimations. Various confounding factors were also evaluated for potential effects on chromosome aberration frequencies. Perhaps not surprisingly, smoking and age-associated increases in background frequencies of inversions were observed. Telomere length was also measured, and inverse relationships with both age and combined weighted dose estimates were observed. Interestingly, smokers in the non-exposed control veteran cohort displayed similar telomere lengths as those in the never-smoker exposed veteran group, suggesting that chronic smoking had as much effect on telomere length as a single exposure to radioactive fallout. Taken together, we find that our approach of combined chromosome aberration-based retrospective biodosimetry provided reliable dose estimation capability, particularly on a group average basis, for exposures above statistical detection limits.
Collapse
Affiliation(s)
- Miles J. McKenna
- Cell and Molecular Biology Program Colorado State University, Fort Collins, Colorado
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- KromaTiD, Inc., Fort Collins, Colorado
| | | | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | | | - Michael N. Cornforth
- Cell and Molecular Biology Program Colorado State University, Fort Collins, Colorado
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| | - Steven L. Simon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Susan M. Bailey
- Cell and Molecular Biology Program Colorado State University, Fort Collins, Colorado
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- KromaTiD, Inc., Fort Collins, Colorado
| |
Collapse
|