1
|
Panaino CMV, Piccinini S, Andreassi MG, Bandini G, Borghini A, Borgia M, Di Naro A, Labate LU, Maggiulli E, Portaluri MGA, Gizzi LA. Very High-Energy Electron Therapy Toward Clinical Implementation. Cancers (Basel) 2025; 17:181. [PMID: 39857964 PMCID: PMC11763822 DOI: 10.3390/cancers17020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The use of very high energy electron (VHEE) beams, with energies between 50 and 400 MeV, has drawn considerable interest in radiotherapy due to their deep tissue penetration, sharp beam edges, and low sensitivity to tissue density. VHEE beams can be precisely steered with magnetic components, positioning VHEE therapy as a cost-effective option between photon and proton therapies. However, the clinical implementation of VHEE therapy (VHEET) requires advances in several areas: developing compact, stable, and efficient accelerators; creating sophisticated treatment planning software; and establishing clinically validated protocols. In addition, the perspective of VHEE to access ultra-high dose-rate regime presents a promising avenue for the practical integration of FLASH radiotherapy of deep tumors and metastases with VHEET (FLASH-VHEET), enhancing normal tissue sparing while maintaining the inherent dosimetric advantages of VHEET. However, FLASH-VHEET systems require validation of time-dependent dose parameters, thus introducing additional technological challenges. Here, we discuss recent progress in VHEET research, focusing on both conventional and FLASH modalities, and covering key aspects including dosimetric properties, radioprotection, accelerator technology, beam focusing, radiobiological effects, and clinical outcomes. Furthermore, we comprehensively analyze initial VHEET in silico studies on coverage across various tumor sites.
Collapse
Affiliation(s)
- Costanza Maria Vittoria Panaino
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Simona Piccinini
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Maria Grazia Andreassi
- Institute of Clinical Physiology, National Research Council of Italy, 56124 Pisa, Italy; (M.G.A.); (A.B.)
| | - Gabriele Bandini
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Andrea Borghini
- Institute of Clinical Physiology, National Research Council of Italy, 56124 Pisa, Italy; (M.G.A.); (A.B.)
| | | | - Angelo Di Naro
- ASST Papa Giovanni XXIII Hospital, Radiotherapy, 24127 Bergamo, Italy; (A.D.N.); (M.G.A.P.)
| | - Luca Umberto Labate
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
- National Institute for Nuclear Physics, 56127 Pisa, Italy
| | | | | | - Leonida Antonio Gizzi
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
- National Institute for Nuclear Physics, 56127 Pisa, Italy
| |
Collapse
|
2
|
Ma Y, Zhang W, Zhao Z, Lv J, Chen J, Yan X, Lin X, Zhang J, Wang B, Gao S, Xiao J, Yang G. Current views on mechanisms of the FLASH effect in cancer radiotherapy. Natl Sci Rev 2024; 11:nwae350. [PMID: 39479528 PMCID: PMC11523052 DOI: 10.1093/nsr/nwae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a new modality of radiotherapy that delivers doses with ultra-high dose rates. The FLASH effect was defined as the ability of FLASH-RT to suppress tumor growth while sparing normal tissues. Although the FLASH effect has been proven to be valid in various models by different modalities of irradiation and clinical trials of FLASH-RT have achieved promising initial success, the exact underlying mechanism is still unclear. This article summarizes mainstream hypotheses of the FLASH effect at physicochemical and biological levels, including oxygen depletion and free radical reactions, nuclear and mitochondria damage, as well as immune response. These hypotheses contribute reasonable explanations to the FLASH effect and are interconnected according to the chronological order of the organism's response to ionizing radiation. By collating the existing consensus, evidence and hypotheses, this article provides a comprehensive overview of potential mechanisms of the FLASH effect and practical guidance for future investigation in the field of FLASH-RT.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Wenkang Zhang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Ziming Zhao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Jianfeng Lv
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Junyi Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Xueqin Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - XiaoJi Lin
- Oncology Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Junlong Zhang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Song Gao
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Xiao
- KIRI Precision Particle Therapy Flash Technologies Research Center, Guangzhou 510700, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Harutyunyan T, Sargsyan A, Kalashyan L, Igityan H, Grigoryan B, Davtyan H, Aroutiounian R, Liehr T, Hovhannisyan G. Changes in Telomere Length in Leukocytes and Leukemic Cells after Ultrashort Electron Beam Radiation. Int J Mol Sci 2024; 25:6709. [PMID: 38928414 PMCID: PMC11203595 DOI: 10.3390/ijms25126709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Application of laser-generated electron beams in radiotherapy is a recent development. Accordingly, mechanisms of biological response to radiation damage need to be investigated. In this study, telomere length (TL) as endpoint of genetic damage was analyzed in human blood cells (leukocytes) and K562 leukemic cells irradiated with laser-generated ultrashort electron beam. Metaphases and interphases were analyzed in quantitative fluorescence in situ hybridization (Q-FISH) to assess TL. TLs were shortened compared to non-irradiated controls in both settings (metaphase and interphase) after irradiation with 0.5, 1.5, and 3.0 Gy in blood leukocytes. Radiation also caused a significant TL shortening detectable in the interphase of K562 cells. Overall, a negative correlation between TL and radiation doses was observed in normal and leukemic cells in a dose-dependent manner. K562 cells were more sensitive than normal blood cells to increasing doses of ultrashort electron beam radiation. As telomere shortening leads to genome instability and cell death, the results obtained confirm the suitability of this biomarker for assessing genotoxic effects of accelerated electrons for their further use in radiation therapy. Observed differences in TL shortening between normal and K562 cells provide an opportunity for further development of optimal radiation parameters to reduce side effects in normal cells during radiotherapy.
Collapse
Affiliation(s)
- Tigran Harutyunyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Anzhela Sargsyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Lily Kalashyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
| | - Hovhannes Igityan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
| | - Bagrat Grigoryan
- CANDLE Synchrotron Research Institute, Acharyan 31, Yerevan 0040, Armenia; (B.G.); (H.D.)
| | - Hakob Davtyan
- CANDLE Synchrotron Research Institute, Acharyan 31, Yerevan 0040, Armenia; (B.G.); (H.D.)
| | - Rouben Aroutiounian
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany
| | - Galina Hovhannisyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| |
Collapse
|
4
|
Metzkes-Ng J, Brack FE, Kroll F, Bernert C, Bock S, Bodenstein E, Brand M, Cowan TE, Gebhardt R, Hans S, Helbig U, Horst F, Jansen J, Kraft SD, Krause M, Leßmann E, Löck S, Pawelke J, Püschel T, Reimold M, Rehwald M, Richter C, Schlenvoigt HP, Schramm U, Schürer M, Seco J, Szabó ER, Umlandt MEP, Zeil K, Ziegler T, Beyreuther E. The DRESDEN PLATFORM is a research hub for ultra-high dose rate radiobiology. Sci Rep 2023; 13:20611. [PMID: 37996453 PMCID: PMC10667545 DOI: 10.1038/s41598-023-46873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The recently observed FLASH effect describes the observation of normal tissue protection by ultra-high dose rates (UHDR), or dose delivery in a fraction of a second, at similar tumor-killing efficacy of conventional dose delivery and promises great benefits for radiotherapy patients. Dedicated studies are now necessary to define a robust set of dose application parameters for FLASH radiotherapy and to identify underlying mechanisms. These studies require particle accelerators with variable temporal dose application characteristics for numerous radiation qualities, equipped for preclinical radiobiological research. Here we present the DRESDEN PLATFORM, a research hub for ultra-high dose rate radiobiology. By uniting clinical and research accelerators with radiobiology infrastructure and know-how, the DRESDEN PLATFORM offers a unique environment for studying the FLASH effect. We introduce its experimental capabilities and demonstrate the platform's suitability for systematic investigation of FLASH by presenting results from a concerted in vivo radiobiology study with zebrafish embryos. The comparative pre-clinical study was conducted across one electron and two proton accelerator facilities, including an advanced laser-driven proton source applied for FLASH-relevant in vivo irradiations for the first time. The data show a protective effect of UHDR irradiation up to [Formula: see text] and suggests consistency of the protective effect even at escalated dose rates of [Formula: see text]. With the first clinical FLASH studies underway, research facilities like the DRESDEN PLATFORM, addressing the open questions surrounding FLASH, are essential to accelerate FLASH's translation into clinical practice.
Collapse
Affiliation(s)
| | | | - Florian Kroll
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Stefan Bock
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Elisabeth Bodenstein
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - René Gebhardt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Uwe Helbig
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Horst
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jeannette Jansen
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Mechthild Krause
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | - Christian Richter
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Michael Schürer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Joao Seco
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
| | - Emília Rita Szabó
- ELI ALPS, ELI-HU Non-Profit Ltd., Szeged, Hungary
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Marvin E P Umlandt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
5
|
Atkinson J, Bezak E, Le H, Kempson I. The current status of FLASH particle therapy: a systematic review. Phys Eng Sci Med 2023; 46:529-560. [PMID: 37160539 DOI: 10.1007/s13246-023-01266-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Particle therapies are becoming increasingly available clinically due to their beneficial energy deposition profile, sparing healthy tissues. This may be further promoted with ultra-high dose rates, termed FLASH. This review comprehensively summarises current knowledge based on studies relevant to proton- and carbon-FLASH therapy. As electron-FLASH literature presents important radiobiological findings that form the basis of proton and carbon-based FLASH studies, a summary of key electron-FLASH papers is also included. Preclinical data suggest three key mechanisms by which proton and carbon-FLASH are able to reduce normal tissue toxicities compared to conventional dose rates, with equipotent, or enhanced, tumour kill efficacy. However, a degree of caution is needed in clinically translating these findings as: most studies use transmission and do not conform the Bragg peak to tumour volume; mechanistic understanding is still in its infancy; stringent verification of dosimetry is rarely provided; biological assays are prone to limitations which need greater acknowledgement.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, South Australia, 5000, Australia
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.
| |
Collapse
|
6
|
Gao Y, Liu R, Chang C, Charyyev S, Zhou J, Bradley JD, Liu T, Yang X. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J Appl Clin Med Phys 2022; 23:e13790. [PMID: 36168677 PMCID: PMC9588273 DOI: 10.1002/acm2.13790] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
FLASH radiotherapy (RT) is a novel technique in which the ultrahigh dose rate (UHDR) (≥40 Gy/s) is delivered to the entire treatment volume. Recent outcomes of in vivo studies show that the UHDR RT has the potential to spare normal tissue without sacrificing tumor control. There is a growing interest in the application of FLASH RT, and the ultrahigh dose irradiation delivery has been achieved by a few experimental and modified linear accelerators. The underlying mechanism of FLASH effect is yet to be fully understood, but the oxygen depletion in normal tissue providing extra protection during FLASH irradiation is a hypothesis that attracts most attention currently. Monte Carlo simulation is playing an important role in FLASH, enabling the understanding of its dosimetry calculations and hardware design. More advanced Monte Carlo simulation tools are under development to fulfill the challenge of reproducing the radiolysis and radiobiology processes in FLASH irradiation. FLASH RT may become one of standard treatment modalities for tumor treatment in the future. This paper presents the history and status of FLASH RT studies with a focus on FLASH irradiation delivery modalities, underlying mechanism of FLASH effect, in vivo and vitro experiments, and simulation studies. Existing challenges and prospects of this novel technique are discussed in this manuscript.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Ruirui Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Chih‐Wei Chang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Serdar Charyyev
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
7
|
The Effect of Low-Energy Laser-Driven Ultrashort Pulsed Electron Beam Irradiation on Erythropoiesis and Oxidative Stress in Rats. Int J Mol Sci 2022; 23:ijms23126692. [PMID: 35743135 PMCID: PMC9223873 DOI: 10.3390/ijms23126692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Anemia is a commonly observed consequence of whole-body exposure to a dose of X-ray or gamma irradiation of the order of the mean lethal dose in mammals, and it is an important factor for the determination of the survival of animals. The aim of this study was to unravel the effect of laser-driven ultrashort pulsed electron beam (UPEB) irradiation on the process of erythropoiesis and the redox state in the organism. Wistar rats were exposed to laser-driven UPEB irradiation, after which the level of oxidative stress and the activities of different antioxidant enzymes, as well as blood smears, bone marrow imprints and sections, erythroblastic islets, hemoglobin and hematocrit, hepatic iron, DNA, and erythropoietin levels, were assessed on the 1st, 3rd, 7th, 14th, and 28th days after irradiation. Despite the fact that laser-driven UPEB irradiation requires quite low doses and repetition rates to achieve the LD50 in rats, our findings suggest that whole-body exposure with this new type of irradiation causes relatively mild anemia in rats, with subsequent fast recovery up to the 28th day. Moreover, this novel type of irradiation causes highly intense processes of oxidative stress, which, despite being relatively extinguished, did not reach the physiologically stable level even at the 28th day after irradiation due to the violations in the antioxidant system of the organism.
Collapse
|
8
|
Tsakanova G, Babayan N, Karalova E, Hakobyan L, Abroyan L, Avetisyan A, Avagyan H, Hakobyan S, Poghosyan A, Baghdasaryan B, Arakelova E, Ayvazyan V, Matevosyan L, Navasardyan A, Davtyan H, Apresyan L, Yeremyan A, Aroutiounian R, Osipov AN, Grigoryan B, Karalyan Z. Low-Energy Laser-Driven Ultrashort Pulsed Electron Beam Irradiation-Induced Immune Response in Rats. Int J Mol Sci 2021; 22:ijms222111525. [PMID: 34768958 PMCID: PMC8584044 DOI: 10.3390/ijms222111525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
The development of new laser-driven electron linear accelerators, providing unique ultrashort pulsed electron beams (UPEBs) with low repetition rates, opens new opportunities for radiotherapy and new fronts for radiobiological research in general. Considering the growing interest in the application of UPEBs in radiation biology and medicine, the aim of this study was to reveal the changes in immune system in response to low-energy laser-driven UPEB whole-body irradiation in rodents. Forty male albino Wistar rats were exposed to laser-driven UPEB irradiation, after which different immunological parameters were studied on the 1st, 3rd, 7th, 14th, and 28th day after irradiation. According to the results, this type of irradiation induces alterations in the rat immune system, particularly by increasing the production of pro- and anti-inflammatory cytokines and elevating the DNA damage rate. Moreover, such an immune response reaches its maximal levels on the third day after laser-driven UPEB whole-body irradiation, showing partial recovery on subsequent days with a total recovery on the 28th day. The results of this study provide valuable insight into the effect of laser-driven UPEB whole-body irradiation on the immune system of the animals and support further animal experiments on the role of this novel type of irradiation.
Collapse
Affiliation(s)
- Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- CANDLE Synchrotron Research Institute, Yerevan 0040, Armenia; (A.N.); (H.D.); (A.Y.); (B.G.)
- Correspondence: ; Tel.: +374-941-23070
| | - Nelly Babayan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- Department of Genetics and Cytology, Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
| | - Elena Karalova
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- Experimental Laboratory, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Lina Hakobyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| | - Liana Abroyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| | - Aida Avetisyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- Experimental Laboratory, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Hranush Avagyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- Experimental Laboratory, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Sona Hakobyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| | - Arpine Poghosyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| | - Bagrat Baghdasaryan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| | - Elina Arakelova
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- CANDLE Synchrotron Research Institute, Yerevan 0040, Armenia; (A.N.); (H.D.); (A.Y.); (B.G.)
| | - Violetta Ayvazyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| | - Lusine Matevosyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- CANDLE Synchrotron Research Institute, Yerevan 0040, Armenia; (A.N.); (H.D.); (A.Y.); (B.G.)
| | - Arpine Navasardyan
- CANDLE Synchrotron Research Institute, Yerevan 0040, Armenia; (A.N.); (H.D.); (A.Y.); (B.G.)
| | - Hakob Davtyan
- CANDLE Synchrotron Research Institute, Yerevan 0040, Armenia; (A.N.); (H.D.); (A.Y.); (B.G.)
| | - Lilit Apresyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| | - Arsham Yeremyan
- CANDLE Synchrotron Research Institute, Yerevan 0040, Armenia; (A.N.); (H.D.); (A.Y.); (B.G.)
| | - Rouben Aroutiounian
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- Department of Genetics and Cytology, Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
| | - Andreyan N. Osipov
- Group for Radiation Biochemistry of Nucleic Acids, N.N. Semenov Federal Research for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
- Laboratory for the Development of Innovative Drugs and Agricultural Biotechnology, Moscow Institute of Physics and Technology, 141701 Moscow, Russia
- Experimental Radiobiology and Radiation Medicine Department, State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Bagrat Grigoryan
- CANDLE Synchrotron Research Institute, Yerevan 0040, Armenia; (A.N.); (H.D.); (A.Y.); (B.G.)
| | - Zaven Karalyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| |
Collapse
|
9
|
Pawelke J, Brand M, Hans S, Hideghéty K, Karsch L, Lessmann E, Löck S, Schürer M, Szabó ER, Beyreuther E. Electron dose rate and oxygen depletion protect zebrafish embryos from radiation damage. Radiother Oncol 2021; 158:7-12. [DOI: 10.1016/j.radonc.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
|
10
|
VandenBussche EJ, Flannigan DJ. Reducing Radiation Damage in Soft Matter with Femtosecond-Timed Single-Electron Packets. NANO LETTERS 2019; 19:6687-6694. [PMID: 31433192 DOI: 10.1021/acs.nanolett.9b03074] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the development of a myriad of mitigation methods, radiation damage continues to be a major limiting factor in transmission electron microscopy. Intriguing results have been reported using pulsed-laser driven and chopped electron beams for modulated dose delivery, but the underlying relationships and effects remain unclear. Indeed, delivering precisely timed single-electron packets to the specimen has yet to be systematically explored, and no direct comparisons to conventional methods within a common parameter space have been made. Here, using a model linear saturated hydrocarbon (n-hexatriacontane, C36H74), we show that precisely timed delivery of each electron to the specimen, with a well-defined and uniform time between arrival, leads to a repeatable reduction in damage compared to conventional ultralow-dose methods for the same dose rate and the same accumulated dose. Using a femtosecond pulsed laser to confine the probability of electron emission to a 300 fs temporal window, we find damage to be sensitively dependent on the time between electron arrival (controlled with the laser repetition rate) and on the number of electrons per packet (controlled with the laser-pulse energy). Relative arrival times of 5, 20, and 100 μs were tested for electron packets comprised of, on average, 1, 5, and 20 electrons. In general, damage increased with decreasing time between electrons and, more substantially, with increasing electron number. Further, we find that improvements relative to conventional methods vanish once a threshold number of electrons per packet is reached. The results indicate that precise electron-by-electron dose delivery leads to a repeatable reduction in irreversible structural damage, and the systematic studies indicate this arises from control of the time between sequential electrons arriving within the same damage radius, all else being equal.
Collapse
Affiliation(s)
- Elisah J VandenBussche
- Department of Chemical Engineering and Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
11
|
Harutyunyan T, Hovhannisyan G, Sargsyan A, Grigoryan B, Al-Rikabi AH, Weise A, Liehr T, Aroutiounian R. Analysis of copy number variations induced by ultrashort electron beam radiation in human leukocytes in vitro. Mol Cytogenet 2019; 12:18. [PMID: 31131024 PMCID: PMC6524226 DOI: 10.1186/s13039-019-0433-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Environmental risk factors have been shown to alter DNA copy number variations (CNVs). Recently, CNVs have been described to arise after low-dose ionizing radiation in vitro and in vivo. Development of cost- and size-effective laser-driven electron accelerators (LDEAs), capable to deliver high energy beams in pico- or femtosecond durations requires examination of their biological effects. Here we studied in vitro impact of LDEAs radiation on known CNV hotspots in human peripheral blood lymphocytes on single cell level. RESULTS Here CNVs in chromosomal regions 1p31.1, 7q11.22, 9q21.3, 10q21.1 and 16q23.1 earlier reported to be sensitive to ionizing radiation were analyzed using molecular cytogenetics. Irradiation of cells with 0.5, 1.5 and 3.0 Gy significantly increased signal intensities in all analyzed chromosomal regions compared to controls. The latter is suggested to be due to radiation-induced duplication or amplification of CNV stretches. As significantly lower gains in mean fluorescence intensities were observed only for chromosomal locus 1p31.1 (after irradiation with 3.0 Gy variant sensitivites of different loci to LDEA is suggested. Negative correlation was found between fluorescence intensities and chromosome size (r = - 0.783, p < 0.001) in cells exposed to 3.0 Gy irradiation and between fluorescence intensities and gene density (r = - 0.475, p < 0.05) in cells exposed to 0.5 Gy irradiation. CONCLUSIONS In this study we demonstrated that irradiation with laser-driven electron bunches can induce molecular-cytogenetically visible CNVs in human blood leukocytes in vitro. These CNVs occur most likely due to duplications or amplification and tend to inversely correlate with chromosome size and gene density. CNVs can last in cell population as stable chromosomal changes for several days after radiation exposure; therefore this endpoint can be used for characterization of genetic effects of accelerated electrons. These findings should be complemented with other studies and implementation of more sophisticated approaches for CNVs analysis.
Collapse
Affiliation(s)
- Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| | - Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| | - Anzhela Sargsyan
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| | - Bagrat Grigoryan
- CANDLE Synchrotron Research Institute, Acharyan 31, 0040 Yerevan, Armenia
| | - Ahmed H. Al-Rikabi
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, D-07740 Jena, Germany
| | - Anja Weise
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, D-07740 Jena, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, D-07740 Jena, Germany
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| |
Collapse
|
12
|
Vozenin MC, Hendry JH, Limoli CL. Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken. Clin Oncol (R Coll Radiol) 2019; 31:407-415. [PMID: 31010708 DOI: 10.1016/j.clon.2019.04.001] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022]
Abstract
FLASH radiotherapy (FLASH-RT) is a technology that could modify the way radiotherapy is delivered in the future. This technique involves the ultra-fast delivery of radiotherapy at dose rates several orders of magnitude higher than those currently used in routine clinical practice. This very short time of exposure leads to the striking observation of relative protection of normal tissues that are exposed to FLASH-RT as compared with conventional dose rate radiotherapy. Here we summarise the current knowledge about the FLASH effect and provide a synthesis of the observations that have been reported on various experimental animal models (mice, zebrafish, pig, cats), various organs (lung, gut, brain, skin) and by various groups across 40 years of research. We also propose possible mechanisms for the FLASH effect, as well as possible paths for clinical application.
Collapse
Affiliation(s)
- M-C Vozenin
- Laboratory of Radiation Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Department of Radiation Oncology/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - J H Hendry
- Department of Medical Physics and Engineering, Christie Hospital, Manchester, UK
| | - C L Limoli
- Department of Radiation Oncology, University of California, Irvine, California, USA
| |
Collapse
|
13
|
Babayan N, Hovhannisyan G, Grigoryan B, Grigoryan R, Sarkisyan N, Tsakanova G, Haroutiunian S, Aroutiounian R. Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro. JOURNAL OF RADIATION RESEARCH 2017; 58:894-897. [PMID: 28992052 PMCID: PMC5737585 DOI: 10.1093/jrr/rrx035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 05/07/2023]
Abstract
Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation.
Collapse
Affiliation(s)
- Nelly Babayan
- Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia
- Institute of Molecular Biology of NAS, Hasratyan 7, 0014 Yerevan, Armenia
- Corresponding author. Institute of Molecular Biology of NAS, Hasratyan 7, 0014 Yerevan, Armenia. Tel: +37491-572573; Fax: +37410-282061;
| | | | - Bagrat Grigoryan
- CANDLE Synchrotron Research Institute, Acharyan 31, 0040, Yerevan, Armenia
| | - Ruzanna Grigoryan
- Institute of Molecular Biology of NAS, Hasratyan 7, 0014 Yerevan, Armenia
| | - Natalia Sarkisyan
- Institute of Molecular Biology of NAS, Hasratyan 7, 0014 Yerevan, Armenia
| | - Gohar Tsakanova
- Institute of Molecular Biology of NAS, Hasratyan 7, 0014 Yerevan, Armenia
| | | | | |
Collapse
|