1
|
Luxenburg O, Vaknin S, Wilf-Miron R, Saban M. Evaluating the Accuracy and Impact of the ESR-iGuide Decision Support Tool in Optimizing CT Imaging Referral Appropriateness. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:357-367. [PMID: 39028357 PMCID: PMC11811312 DOI: 10.1007/s10278-024-01197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Radiology referral quality impacts patient care, yet factors influencing quality are poorly understood. This study assessed the quality of computed tomography (CT) referrals, identified associated characteristics, and evaluated the ESR-iGuide clinical decision support tool's ability to optimize referrals. A retrospective review analyzed 300 consecutive CT referrals from an acute care hospital. Referral quality was evaluated on a 5-point scale by three expert reviewers (inter-rater reliability κ = 0.763-0.97). The ESR-iGuide tool provided appropriateness scores and estimated radiation exposure levels for the actual referred exams and recommended exams. Scores were compared between actual and recommended exams. Associations between ESR-iGuide scores and referral characteristics, including the specialty of the ordering physician (surgical vs. non-surgical), were explored. Of the referrals, 67.1% were rated as appropriate. The most common exams were head and abdomen/pelvis CTs. The ESR-iGuide deemed 70% of the actual referrals "usually appropriate" and found that the recommended exams had lower estimated radiation exposure compared to the actual exams. Logistic regression analysis showed that non-surgical physicians were more likely to order inappropriate exams compared to surgical physicians. Over one-third of the referrals showed suboptimal quality in the unstructured system. The ESR-iGuide clinical decision support tool identified opportunities to optimize appropriateness and reduce radiation exposure. Implementation of such a tool warrants consideration to improve communication and maximize patient care quality.
Collapse
Affiliation(s)
- Osnat Luxenburg
- Medical Technology, Health Information and Research Directorate, Ministry of Health, Jerusalem, Israel
| | - Sharona Vaknin
- The Gertner Institute for Health Policy and Epidemiology, Ramat-Gan, Israel
| | - Rachel Wilf-Miron
- Department of Health Promotion, School of Public Health, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Mor Saban
- School of Health Professions, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv-Yafo, Israel.
| |
Collapse
|
2
|
Romero-Expósito M, Sánchez-Nieto B, Riveira-Martin M, Azizi M, Gkavonatsiou A, Muñoz I, López-Martínez IN, Espinoza I, Zelada G, Córdova-Bernhardt A, Norrlid O, Goldkuhl C, Molin D, Sánchez FMP, López-Medina A, Toma-Dasu I, Dasu A. Individualized evaluation of the total dose received by radiotherapy patients: Integrating in-field, out-of-field, and imaging doses. Phys Med 2025; 129:104879. [PMID: 39718311 DOI: 10.1016/j.ejmp.2024.104879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/07/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
PURPOSE To propose a methodology for integrating the out-of-field and imaging doses to the in-field dose received by radiotherapy (RT) patients. In addition, the impact of considering the total dose in planning and radiation-induced second malignancies (RISM) risk assessment will be evaluated in several scenarios comprising photon and proton treatments. METHODS The total dose is the voxel-wise sum of the doses from the different radiation sources (accounting for the radiobiological effectiveness) produced during the whole RT chain. The dose from the plan and imaging procedures were obtained by measurements for a photon prostate treatment and by calculation (combining treatment planning system, analytical models, and Monte Carlo simulations) for two lymphoma treatments, one using photons and the other, protons. Dose distributions, dose volume histograms (DVHs) metrics, mean organ doses, and RISM risks were evaluated for each radiation exposure in each treatment. RESULTS In general, the contribution of the imaging doses is low compared to the dose administered during RT treatment, being higher in proton therapy. However, for some organs, for instance testes in the prostate case, the imaging dose becomes higher than the scattered dose from the treatment fields. Plan evaluations revealed shifts in cumulative DVHs with the inclusion of out-of-field and imaging doses, though minimal clinical impact is expected. Risk assessment showed increased estimates with total dose. CONCLUSIONS The methodology enables accounting for the total dose for optimization of plans and imaging protocols, prospective risk predictions and retrospective epidemiological analyses.
Collapse
Affiliation(s)
- Maite Romero-Expósito
- The Skandion Clinic, Uppsala, Sweden; Oncology Pathology Department, Karolinska Institutet, Stockholm, Sweden.
| | | | | | - Mona Azizi
- Oncology Pathology Department, Karolinska Institutet, Stockholm, Sweden; Medical Radiation Physics, Stockholm University, Stockholm, Sweden
| | | | - Isidora Muñoz
- Pontificia Universidad Católica de Chile, Instituto de Física, Santiago, Chile
| | | | - Ignacio Espinoza
- Pontificia Universidad Católica de Chile, Instituto de Física, Santiago, Chile
| | - Gabriel Zelada
- Servicio de Radioterapia, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | | | - Ola Norrlid
- Uppsala University Hospital, Uppsala, Sweden
| | | | - Daniel Molin
- Department of Immunology, Genetics and Pathology, Cancer Immunotherapy, Uppsala University, Uppsala, Sweden
| | | | - Antonio López-Medina
- Medical Physics and RP Department (GALARIA), University Hospital of Vigo, Meixoeiro Hospital, Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Vigo, Spain
| | - Iuliana Toma-Dasu
- Oncology Pathology Department, Karolinska Institutet, Stockholm, Sweden; Medical Radiation Physics, Stockholm University, Stockholm, Sweden
| | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden; Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Rosen S, Singer C, Vaknin S, Kaim A, Luxenburg O, Makori A, Goldberg N, Rad M, Gitman S, Saban M. Inappropriate CT examinations: how much, who and where? Insights from a clinical decision support system (CDSS) analysis. Eur Radiol 2023; 33:7796-7804. [PMID: 37646812 DOI: 10.1007/s00330-023-10136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE To assess the appropriateness of Computed Tomography (CT) examinations, using the ESR-iGuide. MATERIAL AND METHODS A retrospective study was conducted in 2022 in a medium-sized acute care teaching hospital. A total of 278 consecutive cases of CT referral were included. For each imaging referral, the ESR-iGuide provided an appropriateness score using a scale of 1-9 and the Relative Radiation Level using a scale of 0-5. These were then compared with the appropriateness score and the radiation level of the recommended ESR-iGuide exam. DATA ANALYSIS Pearson's chi-square test or Fisher exact test was used to explore the correlation between ESR-iGuide appropriateness level and physician, patients, and shift characteristics. A stepwise logistic regression model was used to capture the contribution of each of these factors. RESULTS Most of exams performed were CT head (63.67%) or CT abdominal pelvis (23.74%). Seventy percent of the actual imaging referrals resulted in an ESR-iGuide score corresponding to "usually appropriate." The mean radiation level for actual exam was 3.2 ± 0.45 compared with 2.16 ± 1.56 for the recommended exam. When using a stepwise logistic regression for modeling the probability of non-appropriate score, both physician specialty and status were significant (p = 0.0011, p = 0.0192 respectively). Non-surgical and specialist physicians were more likely to order inappropriate exams than surgical physicians. CONCLUSIONS ESR-iGuide software indicates a substantial rate of inappropriate exams of CT head and CT abdominal-pelvis and unnecessary radiation exposure mainly in the ED department. Inappropriate exams were found to be related to physicians' specialty and seniority. CLINICAL RELEVANCE STATEMENT These findings underscore the urgent need for improved imaging referral practices to ensure appropriate healthcare delivery and effective resource management. Additionally, they highlight the potential benefits and necessity of integrating CDSS as a standard medical practice. By implementing CDSS, healthcare providers can make more informed decisions, leading to enhanced patient care, optimized resource allocation, and improved overall healthcare outcomes. KEY POINTS • The overall mean of appropriateness for the actual exam according to the ESR-iGuide was 6.62 ± 2.69 on a scale of 0-9. • Seventy percent of the actual imaging referrals resulted in an ESR-iGuide score corresponding to "usually appropriate." • Inappropriate examination is related to both the specialty of the physician who requested the exam and the seniority status of the physician.
Collapse
Affiliation(s)
- Shani Rosen
- Department of Health Technology and Policy Evaluation, Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel HaShomer, Israel
| | - Clara Singer
- Department of Health Technology and Policy Evaluation, Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel HaShomer, Israel
| | - Sharona Vaknin
- Department of Health Technology and Policy Evaluation, Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel HaShomer, Israel
| | - Arielle Kaim
- Department of Emergency and Disaster Management, School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel-Aviv-Yafo, Israel
- National Center for Trauma and Emergency Medicine Research, Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel-HaShomer, Israel
| | - Osnat Luxenburg
- Medical Technology, Health Information and Research Directorate, Ministry of Health, Jerusalem, Israel
| | - Arnon Makori
- Community Medical Services Division, Clalit Health Services, Tel Aviv, Israel
| | | | - Moran Rad
- Research Division, Carmel Medical Center, Haifa, Israel
| | - Shani Gitman
- Research Division, Carmel Medical Center, Haifa, Israel
| | - Mor Saban
- Nursing Department, School of Health Sciences, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Pazzaglia S, Eidemüller M, Lumniczky K, Mancuso M, Ramadan R, Stolarczyk L, Moertl S. Out-of-field effects: lessons learned from partial body exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:485-504. [PMID: 36001144 PMCID: PMC9722818 DOI: 10.1007/s00411-022-00988-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
Partial body exposure and inhomogeneous dose delivery are features of the majority of medical and occupational exposure situations. However, mounting evidence indicates that the effects of partial body exposure are not limited to the irradiated area but also have systemic effects that are propagated outside the irradiated field. It was the aim of the "Partial body exposure" session within the MELODI workshop 2020 to discuss recent developments and insights into this field by covering clinical, epidemiological, dosimetric as well as mechanistic aspects. Especially the impact of out-of-field effects on dysfunctions of immune cells, cardiovascular diseases and effects on the brain were debated. The presentations at the workshop acknowledged the relevance of out-of-field effects as components of the cellular and organismal radiation response. Furthermore, their importance for the understanding of radiation-induced pathologies, for the discovery of early disease biomarkers and for the identification of high-risk organs after inhomogeneous exposure was emphasized. With the rapid advancement of clinical treatment modalities, including new dose rates and distributions a better understanding of individual health risk is urgently needed. To achieve this, a deeper mechanistic understanding of out-of-field effects in close connection to improved modelling was suggested as priorities for future research. This will support the amelioration of risk models and the personalization of risk assessments for cancer and non-cancer effects after partial body irradiation.
Collapse
Affiliation(s)
- S. Pazzaglia
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - M. Eidemüller
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - K. Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, Albert Florian u. 2-6, 1097 Budapest, Hungary
| | - M. Mancuso
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - R. Ramadan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - L. Stolarczyk
- Danish Centre for Particle Therapy, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark
| | - S. Moertl
- Federal Office for Radiation Protection, Ingolstädter Landstr. 1, 85764 Oberschleißheim, Germany
| |
Collapse
|
5
|
Nesteruk KP, Bobić M, Sharp GC, Lalonde A, Winey BA, Nenoff L, Lomax AJ, Paganetti H. Low-Dose Computed Tomography Scanning Protocols for Online Adaptive Proton Therapy of Head-and-Neck Cancers. Cancers (Basel) 2022; 14:cancers14205155. [PMID: 36291939 PMCID: PMC9600085 DOI: 10.3390/cancers14205155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To evaluate the suitability of low-dose CT protocols for online plan adaptation of head-and-neck patients. METHODS We acquired CT scans of a head phantom with protocols corresponding to CT dose index volume CTDIvol in the range of 4.2-165.9 mGy. The highest value corresponds to the standard protocol used for CT simulations of 10 head-and-neck patients included in the study. The minimum value corresponds to the lowest achievable tube current of the GE Discovery RT scanner used for the study. For each patient and each low-dose protocol, the noise relative to the standard protocol, derived from phantom images, was applied to a virtual CT (vCT). The vCT was obtained from a daily CBCT scan corresponding to the fraction with the largest anatomical changes. We ran an established adaptive workflow twice for each low-dose protocol using a high-quality daily vCT and the corresponding low-dose synthetic vCT. For a relative comparison of the adaptation efficacy, two adapted plans were recalculated in the high-quality vCT and evaluated with the contours obtained through deformable registration of the planning CT. We also evaluated the accuracy of dose calculation in low-dose CT volumes using the standard CT protocol as reference. RESULTS The maximum differences in D98 between low-dose protocols and the standard protocol for the high-risk and low-risk CTV were found to be 0.6% and 0.3%, respectively. The difference in OAR sparing was up to 3%. The Dice similarity coefficient between propagated contours obtained with low-dose and standard protocols was above 0.982. The mean 2%/2 mm gamma pass rate for the lowest-dose image, using the standard protocol as reference, was found to be 99.99%. CONCLUSION The differences between low-dose protocols and the standard scanning protocol were marginal. Thus, low-dose CT protocols are suitable for online adaptive proton therapy of head-and-neck cancers. As such, considering scanning protocols used in our clinic, the imaging dose associated with online adaption of head-and-neck cancers treated with protons can be reduced by a factor of 40.
Collapse
Affiliation(s)
- Konrad P. Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Correspondence:
| | - Mislav Bobić
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Gregory C. Sharp
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Arthur Lalonde
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Brian A. Winey
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lena Nenoff
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Antony J. Lomax
- Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland
- Center for Proton Therapy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
6
|
Rehani MM, Applegate K, Bodzay T, Heon Kim C, Miller DL, Ali Nassiri M, Chul Paeng J, Srimahachota S, Srinivasa S, Takenaka M, Terez S, Vassileva J, Zhuo W. Accounting for radiation exposure from previous CT exams while deciding on the next exam: What do referring clinicians think? Eur J Radiol 2022; 155:110468. [PMID: 35973303 DOI: 10.1016/j.ejrad.2022.110468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/11/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To obtain clinicians' views of the need to account for radiation exposure from previous CT scans and the advisability of a regulatory mechanism to control the number of CT scans for an individual patient. METHODS A convenience survey was conducted by emailing a link to a three-question electronic survey to clinicians in many countries, mostly through radiology and radiation protection contacts. RESULTS 505 responses were received from 24 countries. 293 respondents (58%) understand that current regulations do not limit the number of CT scans that can be prescribed for a single patient in a year. When asked whether there should be a regulation to limit the number of CT scans that can be prescribed for a single patient in one year, only a small fraction (143, 28%) answered 'No', 182 (36%) answered 'Maybe' and 166 (33%) answered 'Yes'. Most respondents (337; 67%) think that radiation risk should form part of the consideration when deciding whether to request a CT exam. A minority (138; 27%) think the decision should be based only on the medical indication for the CT exam. Comparison among the 4 countries (South Korea, Hungary, USA and Canada) with the largest number of respondents indicated wide variations in responses. CONCLUSIONS A majority of the surveyed clinicians consider radiation risk, in addition to clinical factors, when prescribing CT exams. Most respondents are in favor of, or would consider, regulation to control the number of CT scans that could be performed on a patient annually.
Collapse
Affiliation(s)
- Madan M Rehani
- Radiology, Massachusetts General Hospital, Boston, MA, USA.
| | | | - Tamás Bodzay
- Traumatology, Dr. Manninger Jenő Trauma Center, Budapest, Hungary
| | - Chi Heon Kim
- Neurosurgery, Seoul National University College of Medicine, South Korea
| | - Donald L Miller
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, USA
| | | | - Jin Chul Paeng
- Nuclear Medicine, Seoul National University College of Medicine, South Korea
| | - Suphot Srimahachota
- Cardiovascular Medicine, King Chulalongkorn Memorial Hospital and Chulalongkorn University, Bangkok, Thailand
| | | | - Mamoru Takenaka
- Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Sera Terez
- Radiology Clinic and Nuclear Medicine, University of Szeged, Hungary
| | - Jenia Vassileva
- Radiation Protection of Patients Unit, International Atomic Energy Agency, Vienna, Austria
| | - Weihai Zhuo
- Medical Physics, Institute of Radiation Medicine, Fudan University, China
| |
Collapse
|
7
|
Mohan DK, Nandhini K, Raavi V, Perumal V. Impact of X-radiation in the management of COVID-19 disease. World J Radiol 2022; 14:219-228. [PMID: 36160628 PMCID: PMC9350611 DOI: 10.4329/wjr.v14.i7.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/16/2022] [Accepted: 07/17/2022] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are a diverse group of viruses that infect both animals and humans. Even though the existence of coronavirus and its infection to humans is not new, the 2019-novel coronavirus (nCoV) caused a major burden to individuals and society i.e., anxiety, fear of infection, extreme competition for hospitalization, and more importantly financial liability. The nCoV infection/disease diagnosis was based on non-specific signs and symptoms, biochemical parameters, detection of the virus using reverse-transcription polymerase chain reaction (RT-PCR), and X-ray-based imaging. This review focuses on the consolidation of potentials of X-ray-based imaging modality [chest-X radiography (CXR) and chest computed tomography (CT)] and low-dose radiation therapy (LDRT) for screening, severity, and management of COVID-19 disease. Reported studies suggest that CXR contributed significantly toward initial rapid screening/diagnosis and CT- imaging to monitor the disease severity. The chest CT has high sensitivity up to 98% and low specificity for diagnosis and severity of COVID-19 disease compared to RT-PCR. Similarly, LDRT compliments drug therapy in the early recovery/Less hospital stays by maintaining the physiological parameters better than the drug therapy alone. All the results undoubtedly demonstrated the evidence that X-ray-based technology continues to evolve and play a significant role in human health care even during the pandemic.
Collapse
Affiliation(s)
- Aishwarya T A
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600 116, Tamil Nadu, India
| | - Divya K Mohan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600 116, Tamil Nadu, India
| | - K Nandhini
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600 116, Tamil Nadu, India
| | - Venkateswarlu Raavi
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Tamaka, Kolar 563 103, Karnataka, India
| | - Venkatachalam Perumal
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600 116, Tamil Nadu, India
| |
Collapse
|
8
|
Rühm W, Laurier D, Wakeford R. Cancer risk following low doses of ionising radiation - Current epidemiological evidence and implications for radiological protection. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503436. [PMID: 35094811 DOI: 10.1016/j.mrgentox.2021.503436] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 01/05/2023]
Abstract
Recent studies suggest that every year worldwide about a million patients might be exposed to doses of the order of 100 mGy of low-LET radiation, due to recurrent application of radioimaging procedures. This paper presents a synthesis of recent epidemiological evidence on radiation-related cancer risks from low-LET radiation doses of this magnitude. Evidence from pooled analyses and meta-analyses also involving epidemiological studies that, individually, do not find statistically significant radiation-related cancer risks is reviewed, and evidence from additional and more recent epidemiological studies of radiation exposures indicating excess cancer risks is also summarized. Cohorts discussed in the present paper include Japanese atomic bomb survivors, nuclear workers, patients exposed for medical purposes, and populations exposed environmentally to natural background radiation or radioactive contamination. Taken together, the overall evidence summarized here is based on studies including several million individuals, many of them followed-up for more than half a century. In summary, substantial evidence was found from epidemiological studies of exposed groups of humans that ionizing radiation causes cancer at acute and protracted doses above 100 mGy, and growing evidence for doses below 100 mGy. The significant radiation-related solid cancer risks observed at doses of several 100 mGy of protracted exposures (observed, for example, among nuclear workers) demonstrate that doses accumulated over many years at low dose rates do cause stochastic health effects. On this basis, it can be concluded that doses of the order of 100 mGy from recurrent application of medical imaging procedures involving ionizing radiation are of concern, from the viewpoint of radiological protection.
Collapse
Affiliation(s)
- W Rühm
- Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany.
| | - D Laurier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - R Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
9
|
Bagherzadeh S, Jabbari N, Khalkhali HR. Radiation dose and cancer risks from radiation exposure during abdominopelvic computed tomography (CT) scans: comparison of diagnostic and radiotherapy treatment planning CT scans. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:579-589. [PMID: 34542682 DOI: 10.1007/s00411-021-00942-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
In the present study, radiation doses and cancer risks resulting from abdominopelvic radiotherapy planning computed tomography (RP-CT) and abdominopelvic diagnostic CT (DG-CT) examinations are compared. Two groups of patients who underwent abdominopelvic CT scans with RP-CT (n = 50) and DG-CT (n = 50) voluntarily participated in this study. The two groups of patients had approximately similar demographic features including mass, height, body mass index, sex, and age. Radiation dose parameters included CTDIvol, dose-length product, scan length, effective tube current, and pitch factor, all taken from the CT scanner console. The ImPACT software was used to calculate the patient-specific radiation doses. The risks of cancer incidence and mortality were estimated based on the BEIR VII report of the US National Research Council. In the RP-CT group, the mean ± standard deviation of cancer incidence risk for all cancers, leukemia, and all solid cancers was 621.58 ± 214.76, 101.59 ± 27.15, and 516.60 ± 189.01 cancers per 100,000 individuals, respectively, for male patients. For female patients, the corresponding risks were 742.71 ± 292.35, 74.26 ± 20.26, and 667.03 ± 275.67 cancers per 100,000 individuals, respectively. In contrast, for DG-CT cancer incidence risks were 470.22 ± 170.07, 78.23 ± 18.22, and 390.25 ± 152.82 cancers per 100,000 individuals for male patients, while they were 638.65 ± 232.93, 62.14 ± 13.74, and 575.73 ± 221.21 cancers per 100,000 individuals for female patients. Cancer incidence and mortality risks were greater for RP-CT than for DG-CT scans. It is concluded that the various protocols of abdominopelvic CT scans, especially the RP-CT scans, should be optimized with respect to the radiation doses associated with these scans.
Collapse
Affiliation(s)
- Saeed Bagherzadeh
- Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nasrollah Jabbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hamid Reza Khalkhali
- Patient Safety Research Center, Department of Biostatistics and Epidemiology, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
10
|
Mitrovic M, Ciraj-Bjelac O, Jovanovic Z, Krstic N, Nikezic D, Krstic D, Zivkovic M, Lazarevic-Macanovic M. Voxel model of a rabbit: assessment of absorbed doses in organs after CT examination performed by two different protocols. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:631-638. [PMID: 34487228 DOI: 10.1007/s00411-021-00941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
The objective of this work was to assess absorbed doses in organs and tissues of a rabbit, following computed tomography (CT) examinations, using a dedicated 3D voxel model. Absorbed doses in relevant organs were calculated using the MCNP5 Monte Carlo software. Calculations were perfomed for two standard CT protocols, using tube voltages of 110 kVp and 130 kVp. Absorbed doses were calculated in 11 organs and tissues, i.e., skin, bones, brain, muscles, heart, lungs, liver, spleen, kidney, testicles, and fat tissue. The doses ranged from 15.3 to 28.3 mGy, and from 40.2 to 74.3 mGy, in the two investigated protocols. The organs that received the highest dose were bones and kidneys. In contrast, brain and spleen were organs that received the smallest doses. Doses in organs which are stretched along the body did not change significantly with distance. On the other hand, doses in organs which are localized in the body showed maximums and minimums. Using the voxel model, it is possible to calculate the dose distribution in the rabbit's body after CT scans, and study the potential biological effects of CT doses in certain organs. The voxel model presented in this work can be used to calculated doses in all radiation experiments in which rabbits are used as experimental animals.
Collapse
Affiliation(s)
- M Mitrovic
- Department of Radiology and Radiation Hygiene, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - O Ciraj-Bjelac
- Radiation Protection Department, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Z Jovanovic
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - N Krstic
- Department of Radiology and Radiation Hygiene, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - D Nikezic
- State University of Novi Pazar, Novi Pazar, Serbia.
| | - D Krstic
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - M Zivkovic
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - M Lazarevic-Macanovic
- Department of Radiology and Radiation Hygiene, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Visweswaran S, Raavi V, Abdul Syed Basheerudeen S, Kanagaraj K, Prasad A, Selvan Gnana Sekaran T, Pattan S, Shanmugam P, Ozimuthu A, Joseph S, Perumal V. Comparative analysis of physical doses and biomarker changes in subjects underwent Computed Tomography, Positron Emission Tomography-Computed Tomography, and interventional procedures. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 870-871:503404. [PMID: 34583824 DOI: 10.1016/j.mrgentox.2021.503404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Even though the medical uses of ionizing radiation are well-acknowledged globally as vital tools for the improvement of human health, they also symbolize the major man-made sources of radiation exposure to the population. Estimation of absorbed dose and biological changes after radiation-based imaging might help to better understand the effects of low dose radiation. Because of this, we measured the Entrance Surface Dose (ESD) at different anatomical locations using Lithium tetraborate doped with manganese (Li2B4O7: Mn), recorded Dose Length Product (DLP) and Dose Area Product (DAP), analyzed Chromosomal Aberration (CA), Micronucleus (MN), gamma-H2AX (γ-H2AX), and p53ser15 proteins in the blood lymphocytes of patients (n = 267) underwent Computed Tomography (CT), Positron Emission Tomography-CT (PET/CT), and interventional procedures and healthy volunteers (n = 19). The DLP and effective doses obtained from PET/CT procedures were significantly higher (p < 0.05) when compared to CT. Fluoroscopic time and DAP were significantly higher (p < 0.05) in therapeutic compared to diagnostic interventional procedures. All the anatomical locations registered a significant amount of ESD, the ESD obtained from CT and interventional procedures were significantly (p < 0.05) higher when compared to PET/CT. Fluoroscopic time did not correlate with the ESD (eye, head, thyroid, and shoulder; R2 = 0.03). CA frequency after PET/CT was significantly higher (p < 0.001) when compared to CT and interventional procedures. MN frequency was significantly higher in 24-hs (p < 0.001) post-interventional procedure compared to 2-hs. The mean ± SD of mean fluorescence intensity of γ-H2AX and p53ser15 obtained from all subjects underwent PET/CT and interventional procedures did not show a significant difference (p > 0.05) between pre- and post-procedure. However, the relative fluorescence intensity of γ-H2AX and p53ser15 was >1 in 58.5 % and 65.8 % of subjects respectively. Large inter-individual variation and lack of correlation between physical dose and biomarkers suggest the need for robust dosimetry with a large sample size to understand the health effects of low dose radiation.
Collapse
Affiliation(s)
- Shangamithra Visweswaran
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Venkateswarlu Raavi
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Tamaka, Kolar, Karnataka, 563 103, India
| | - Safa Abdul Syed Basheerudeen
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Karthik Kanagaraj
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Akshaya Prasad
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Tamizh Selvan Gnana Sekaran
- Central Research Lab, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575 018, India
| | - Sudha Pattan
- Department of Radiology & Imaging Sciences, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Panneerselvam Shanmugam
- Department of Radiology & Imaging Sciences, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Annalakshmi Ozimuthu
- Safety, Quality & Resource Management Group, Health Safety and Environment Group, Homi Bhabha National Institute, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India
| | - Santhosh Joseph
- Department of Neuro-Radiology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Venkatachalam Perumal
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India.
| |
Collapse
|
12
|
Vassileva J, Holmberg O. Radiation protection perspective to recurrent medical imaging: what is known and what more is needed? Br J Radiol 2021; 94:20210477. [PMID: 34161167 DOI: 10.1259/bjr.20210477] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This review summarises the current knowledge about recurrent radiological imaging and associated cumulative doses to patients. The recent conservative estimates are for around 0.9 million patients globally who cumulate radiation doses above 100 mSv, where evidence exists for cancer risk elevation. Around one in five is estimated to be under the age of 50. Recurrent imaging is used for managing various health conditions and chronic diseases such as malignancies, trauma, end-stage kidney disease, cardiovascular diseases, Crohn's disease, urolithiasis, cystic pulmonary disease. More studies are needed from different parts of the world to understand the magnitude and appropriateness. The analysis identified areas of future work to improve radiation protection of individuals who are submitted to frequent imaging. These include access to dose saving imaging technologies; improved imaging strategies and appropriateness process; specific optimisation tailored to the clinical condition and patient habitus; wider utilisation of the automatic exposure monitoring systems with an integrated option for individual exposure tracking in standardised patient-specific risk metrics; improved training and communication. The integration of the clinical and exposure history data will support improved knowledge about radiation risks from low doses and individual radiosensitivity. The radiation protection framework will need to respond to the challenge of recurrent imaging and high individual doses. The radiation protection perspective complements the clinical perspective, and the risk to benefit analysis must account holistically for all incidental and long-term benefits and risks for patients, their clinical history and specific needs. This is a step toward the patient-centric health care.
Collapse
Affiliation(s)
- Jenia Vassileva
- Radiation Protection of Patients Unit, International Atomic Energy Agency, Vienna, Austria
| | | |
Collapse
|
13
|
Visweswaran S, Joseph S, Dhanasekaran J, Paneerselvam S, Annalakshmi O, Jose MT, Perumal V. Exposure of patients to low doses of X-radiation during neuro-interventional imaging and procedures: Dose estimation and analysis of γ-H2AX foci and gene expression in blood lymphocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 856-857:503237. [PMID: 32928370 DOI: 10.1016/j.mrgentox.2020.503237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/19/2022]
Abstract
Radiation has widespread applications in medicine. However, despite the benefits of medical radiation exposures, adverse long-term health effects are cause for concern. Protein and gene biomarkers are early indicators of cellular response after low-dose exposure. We examined DNA damage by quantifying γ-H2AX foci and expression of twelve candidate genes in the blood lymphocytes of patients exposed to low doses of X-radiation during neuro-interventional procedures. Entrance surface dose (ESD; 10.92-1062.55 mGy) was measured by thermoluminescence dosimetry (TLD). Absorbed dose was estimated using γ-H2AX focus frequency and gene expression, with in vitro dose-response curves generated for the same biomarkers. γ-H2AX foci in post-exposure samples were significantly higher than in pre-exposure samples. Among the genes analysed, FDXR, ATM, BCL2, MDM2, TNFSF9, and PCNA showed increased expression; CDKN1A, DDB2, SESN1, BAX, and TNFRSF10B showed unchanged or decreased expression. Absorbed dose, estimated based on γ-H2AX focus frequency and gene expression changes, did not show any correlation with measured ESD. Patients undergoing interventional procedures receive considerable radiation doses, resulting in DNA damage and altered gene expression. Medical procedures should be carried out using the lowest radiation doses possible without compromising treatment.
Collapse
Affiliation(s)
- Shangamithra Visweswaran
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India
| | - Santhosh Joseph
- Department of Neuro-Radiology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India
| | - Jagadeesan Dhanasekaran
- Department of Neuro-Radiology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India
| | - S Paneerselvam
- Department of Neuro-Radiology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India
| | - O Annalakshmi
- Radiation Safety Division Unit, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, 603102, Tamil Nadu, India
| | - M T Jose
- Radiation Safety Division Unit, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, 603102, Tamil Nadu, India
| | - Venkatachalam Perumal
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India.
| |
Collapse
|
14
|
Kachelrieß M, Rehani MM. Is it possible to kill the radiation risk issue in computed tomography? Phys Med 2020; 71:176-177. [PMID: 32163886 DOI: 10.1016/j.ejmp.2020.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022] Open
|