1
|
Sedor SF, Shao S. Mechanism of ASF1 engagement by CDAN1. Nat Commun 2025; 16:2599. [PMID: 40091041 PMCID: PMC11911400 DOI: 10.1038/s41467-025-57950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Codanin-1 (CDAN1) is an essential and ubiquitous protein named after congenital dyserythropoietic anemia type I, an autosomal recessive disease that manifests from mutations in CDAN1 or CDIN1 (CDAN1 interacting nuclease 1). CDAN1 interacts with CDIN1 and the paralogous histone H3-H4 chaperones ASF1A (Anti-Silencing Function 1 A) and ASF1B. However, CDAN1 function remains unclear. Here, we analyze CDAN1 complexes using biochemistry, single-particle cryo-EM, and structural predictions. We find that CDAN1 dimerizes and assembles into cytosolic complexes with CDIN1 and multiple copies of ASF1A/B. One CDAN1 can engage two ASF1 through two B-domains commonly found in ASF1 binding partners and two helices that mimic histone H3 binding. We additionally show that ASF1A and ASF1B have different requirements for CDAN1 engagement. Our findings explain how CDAN1 sequesters ASF1A/B by occupying all functional binding sites known to facilitate histone chaperoning and provide molecular-level insights into this enigmatic complex.
Collapse
Affiliation(s)
- Samantha F Sedor
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
2
|
Fraile-Martinez O, García-Montero C, Pekarek T, Bujan J, Barrena-Blázquez S, Pena-Burgos EM, López-González L, Pekarek L, Díaz-Pedrero R, De León-Luis JA, Bravo C, Álvarez-Mon M, Saez MA, García-Honduvilla N, Ortega MA. Dysregulation of Circadian Markers, HAT1 and Associated Epigenetic Proteins, and the Anti-Aging Protein KLOTHO in Placenta of Pregnant Women with Chronic Venous Disease. J Pers Med 2025; 15:107. [PMID: 40137423 PMCID: PMC11943174 DOI: 10.3390/jpm15030107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Chronic venous disease (CVD) is a vascular disorder common among pregnant women, due to the impairment in the venous function associated with the mechanical, hemodynamical, and hormonal changes that occur during pregnancy. CVD is linked to venous hypertension, inflammation, oxidative stress, and hypoxia, which alter placental structure and function, as demonstrated in previous works. The placenta fulfills several roles in fetal development and maternal well-being by mediating nutrient exchange; acting as a mechanical, chemical, and immunological shield; and producing essential hormones, making it crucial to investigate the effects of CVD in this organ. Patients and methods: This work specifically analyzes the gene expression of circadian markers (CLOCK, BMAL1, PER1, and PER2), epigenetic regulators (HAT1 and associated molecules like histones H3, H4, RBBP7, and ASF1), and the anti-aging protein KLOTHO in placental tissue of pregnant women with CVD (CVD-PW, N = 98) compared to healthy pregnant controls (HC-PW, N = 82), using RT-qPCR and immunohistochemistry (IHC) to determine protein expression. Results: Our study demonstrates that the placentas of CVD-PW exhibit the reduced gene and protein levels of circadian regulators (clock, bmal1, per1, and per2), increased expression of hat1 and related proteins (h3, h4, rbbp7, and asf1), and decreased klotho expression, indicative of accelerated aging. Conclusions: These findings highlight profound molecular disturbances in the placentas of women with CVD, offering insights into the disease's pathophysiology and potential implications for maternofetal well-being. While this study deepens our understanding of the relationship between CVD and placental dysfunction, further research is required to fully elucidate these mechanisms and their long-term effects.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Tatiana Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | | | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Raul Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| |
Collapse
|
3
|
Song A, Wang Y, Liu C, Yu J, Zhang Z, Lan L, Lin H, Zhao J, Li G. Replication-coupled inheritance of chromatin states. CELL INSIGHT 2024; 3:100195. [PMID: 39391004 PMCID: PMC11462216 DOI: 10.1016/j.cellin.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 10/12/2024]
Abstract
During the development of eukaryote, faithful inheritance of chromatin states is central to the maintenance of cell fate. DNA replication poses a significant challenge for chromatin state inheritance because every nucleosome in the genome is disrupted as the replication fork passes. It has been found that many factors including DNA polymerases, histone chaperones, as well as, RNA Pol II and histone modifying enzymes coordinate spatially and temporally to maintain the epigenome during this progress. In this review, we provide a summary of the detailed mechanisms of replication-coupled nucleosome assembly and post-replication chromatin maturation, highlight the inheritance of chromatin states and epigenome during these processes, and discuss the future directions and challenges in this field.
Collapse
Affiliation(s)
- Aoqun Song
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunting Wang
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zixu Zhang
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liting Lan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Lin
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jicheng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Guohong Li
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Sedor SF, Shao S. Mechanism of ASF1 Inhibition by CDAN1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607204. [PMID: 39149339 PMCID: PMC11326237 DOI: 10.1101/2024.08.08.607204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Codanin-1 (CDAN1) is an essential and ubiquitous protein named after congenital dyserythropoietic anemia type I (CDA-I), an autosomal recessive disease that manifests from mutations in the CDAN1 or CDIN1 (CDAN1 interacting nuclease 1) gene. CDAN1 interacts with CDIN1 and the paralogous histone H3-H4 chaperones ASF1A (Anti-Silencing Function 1A) and ASF1B, but its function remains unclear. Here, we biochemically and structurally analyze CDAN1 complexes. We find that CDAN1 dimerizes and assembles into cytosolic complexes with CDIN1 and multiple copies of ASF1A/B. Single-particle cryogenic electron microscopy (cryo-EM) structures of CDAN1 complexes identify interactions with ASF1 mediated by two CDAN1 B-domains commonly found in ASF1 binding partners and two helices that mimic histone H3 binding. We additionally observe that one CDAN1 can recruit two ASF1 molecules and that ASF1A and ASF1B have different requirements for CDAN1 engagement. Our findings explain how CDAN1 sequesters and inhibits the chaperone function of ASF1A/B and provide new molecular-level insights into this enigmatic complex.
Collapse
Affiliation(s)
- Samantha F. Sedor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
5
|
Kim HJ, Szurgot MR, van Eeuwen T, Ricketts MD, Basnet P, Zhang AL, Vogt A, Sharmin S, Kaplan CD, Garcia BA, Marmorstein R, Murakami K. Structure of the Hir histone chaperone complex. Mol Cell 2024; 84:2601-2617.e12. [PMID: 38925115 PMCID: PMC11338637 DOI: 10.1016/j.molcel.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
The evolutionarily conserved HIRA/Hir histone chaperone complex and ASF1a/Asf1 co-chaperone cooperate to deposit histone (H3/H4)2 tetramers on DNA for replication-independent chromatin assembly. The molecular architecture of the HIRA/Hir complex and its mode of histone deposition have remained unknown. Here, we report the cryo-EM structure of the S. cerevisiae Hir complex with Asf1/H3/H4 at 2.9-6.8 Å resolution. We find that the Hir complex forms an arc-shaped dimer with a Hir1/Hir2/Hir3/Hpc2 stoichiometry of 2/4/2/4. The core of the complex containing two Hir1/Hir2/Hir2 trimers and N-terminal segments of Hir3 forms a central cavity containing two copies of Hpc2, with one engaged by Asf1/H3/H4, in a suitable position to accommodate a histone (H3/H4)2 tetramer, while the C-terminal segments of Hir3 harbor nucleic acid binding activity to wrap DNA around the Hpc2-assisted histone tetramer. The structure suggests a model for how the Hir/Asf1 complex promotes the formation of histone tetramers for their subsequent deposition onto DNA.
Collapse
Affiliation(s)
- Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary R Szurgot
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor van Eeuwen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Daniel Ricketts
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pratik Basnet
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Athena L Zhang
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Austin Vogt
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samah Sharmin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Shrestha B, Nieminen AI, Matilainen O. Loss of the histone chaperone UNC-85/ASF1 inhibits the epigenome-mediated longevity and modulates the activity of one-carbon metabolism. Cell Stress Chaperones 2024; 29:392-403. [PMID: 38608859 PMCID: PMC11039323 DOI: 10.1016/j.cstres.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Histone H3/H4 chaperone anti-silencing function 1 (ASF1) is a conserved factor mediating nucleosomal assembly and disassembly, playing crucial roles in processes such as replication, transcription, and DNA repair. Nevertheless, its involvement in aging has remained unclear. Here, we utilized the model organism Caenorhabditis elegans to demonstrate that the loss of UNC-85, the homolog of ASF1, leads to a shortened lifespan in a multicellular organism. Furthermore, we show that UNC-85 is required for epigenome-mediated longevity, as knockdown of the histone H3 lysine K4 methyltransferase ash-2 does not extend the lifespan of unc-85 mutants. In this context, we found that the longevity-promoting ash-2 RNA interference enhances UNC-85 activity by increasing its nuclear localization. Finally, our data indicate that the loss of UNC-85 increases the activity of one-carbon metabolism, and that downregulation of the one-carbon metabolism component dao-3/MTHFD2 partially rescues the short lifespan of unc-85 mutants. Together, these findings reveal UNC-85/ASF1 as a modulator of the central metabolic pathway and a factor regulating a pro-longevity response, thus shedding light on a mechanism of how nucleosomal maintenance associates with aging.
Collapse
Affiliation(s)
- Bideep Shrestha
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Shi X, Liu T, Pei P, Shen W, Hu L, Zhu R, Wang F, Chen C, Yang K. Radionuclide-Labeled Antisilencing Function 1a Inhibitory Peptides for Tumor Identification and Individualized Therapy. ACS NANO 2024; 18:9114-9127. [PMID: 38477305 DOI: 10.1021/acsnano.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Immune checkpoint blockade (ICB) therapy is promising to revolutionize cancer regimens, but the low response rate and the lack of a suitable patient stratification method have impeded universal profit to cancer patients. Noninvasive positron emission tomography (PET) imaging in the whole body, upon coupling with specific biomarkers closely related to the immune response, could provide spatiotemporal information to prescribe cancer therapy. Herein, we demonstrate that antisilencing function 1a (ASF1a) could serve as a biomarker target to delineate tumor immune microenvironments by immune PET (iPET). The iPET radiotracer (68Ga-AP1) is designed to target ASF1a in tumors and predict immune response, and the signal intensity predicts anti-PD-1 (αPD-1) therapy response in a negative correlation manner. The ICB-resistant tumors with a high level of ASF1a as revealed by iPET (ASF1aHigh-iPET) are prescribed to be treated by either the combined 177Lu-labeled AP1 and αPD-1 or the standalone α particle-emitting 225Ac-labeled AP1, both achieving enhanced therapeutic efficacy and prolonged survival time. Our study not only replenishes the iPET arsenal for immune-related response evaluation by designing a reliable biomarker and a facile radiotracer but also provides optional therapeutic strategies for ICB-resistant tumors with versatile radionuclide-labeled AP1 peptides, which is promising for real-time clinical diagnosis and individualized therapy planning simultaneously.
Collapse
Affiliation(s)
- Xiumin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenhao Shen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ran Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
8
|
Breuer J, Ferreira DEA, Kramer M, Bollermann J, Nowrousian M. Functional analysis of chromatin-associated proteins in Sordaria macrospora reveals similar roles for RTT109 and ASF1 in development and DNA damage response. G3 (BETHESDA, MD.) 2024; 14:jkae019. [PMID: 38261383 PMCID: PMC10917505 DOI: 10.1093/g3journal/jkae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
We performed a functional analysis of two potential partners of ASF1, a highly conserved histone chaperone that plays a crucial role in the sexual development and DNA damage resistance in the ascomycete Sordaria macrospora. ASF1 is known to be involved in nucleosome assembly and disassembly, binding histones H3 and H4 during transcription, replication and DNA repair and has direct and indirect roles in histone recycling and modification as well as DNA methylation, acting as a chromatin modifier hub for a large network of chromatin-associated proteins. Here, we functionally characterized two of these proteins, RTT109 and CHK2. RTT109 is a fungal-specific histone acetyltransferase, while CHK2 is an ortholog to PRD-4, a checkpoint kinase of Neurospora crassa that performs similar cell cycle checkpoint functions as yeast RAD53. Through the generation and characterization of deletion mutants, we discovered striking similarities between RTT109 and ASF1 in terms of their contributions to sexual development, histone acetylation, and protection against DNA damage. Phenotypic observations revealed a developmental arrest at the same stage in Δrtt109 and Δasf1 strains, accompanied by a loss of H3K56 acetylation, as detected by western blot analysis. Deletion mutants of rtt109 and asf1 are sensitive to the DNA damaging agent methyl methanesulfonate, but not hydroxyurea. In contrast, chk2 mutants are fertile and resistant to methyl methanesulfonate, but not hydroxyurea. Our findings suggest a close functional association between ASF1 and RTT109 in the context of development, histone modification, and DNA damage response, while indicating a role for CHK2 in separate pathways of the DNA damage response.
Collapse
Affiliation(s)
- Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | | | - Mike Kramer
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Jonas Bollermann
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
9
|
Evstyukhina TA, Alekseeva EA, Peshekhonov VT, Skobeleva II, Fedorov DV, Korolev VG. The Role of Chromatin Assembly Factors in Induced Mutagenesis at Low Levels of DNA Damage. Genes (Basel) 2023; 14:1242. [PMID: 37372422 DOI: 10.3390/genes14061242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The problem of low-dose irradiation has been discussed in the scientific literature for several decades, but it is impossible to come to a generally accepted conclusion about the presence of any specific features of low-dose irradiation in contrast to acute irradiation. We were interested in the effect of low doses of UV radiation on the physiological processes, including repair processes in cells of the yeast Saccharomyces cerevisiae, in contrast to high doses of radiation. Cells utilize excision repair and DNA damage tolerance pathways without significant delay of the cell cycle to address low levels of DNA damage (such as spontaneous base lesions). For genotoxic agents, there is a dose threshold below which checkpoint activation is minimal despite the measurable activity of the DNA repair pathways. Here we report that at ultra-low levels of DNA damage, the role of the error-free branch of post-replicative repair in protection against induced mutagenesis is key. However, with an increase in the levels of DNA damage, the role of the error-free repair branch is rapidly decreasing. We demonstrate that with an increase in the amount of DNA damage from ultra-small to high, asf1Δ-specific mutagenesis decreases catastrophically. A similar dependence is observed for mutants of gene-encoding subunits of the NuB4 complex. Elevated levels of dNTPs caused by the inactivation of the SML1 gene are responsible for high spontaneous reparative mutagenesis. The Rad53 kinase plays a key role in reparative UV mutagenesis at high doses, as well as in spontaneous repair mutagenesis at ultra-low DNA damage levels.
Collapse
Affiliation(s)
- Tatiyana A Evstyukhina
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center-Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia
| | - Elena A Alekseeva
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center-Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia
| | - Vyacheslav T Peshekhonov
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center-Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia
| | - Irina I Skobeleva
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
| | - Dmitriy V Fedorov
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
| | - Vladimir G Korolev
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center-Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia
| |
Collapse
|
10
|
Miller CLW, Winston F. The conserved histone chaperone Spt6 is strongly required for DNA replication and genome stability. Cell Rep 2023; 42:112264. [PMID: 36924499 PMCID: PMC10106089 DOI: 10.1016/j.celrep.2023.112264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/31/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Histone chaperones are an important class of proteins that regulate chromatin accessibility for DNA-templated processes. Spt6 is a conserved histone chaperone and key regulator of transcription and chromatin structure. However, its functions outside of these roles have been little explored. In this work, we demonstrate a requirement for S. cerevisiae Spt6 in DNA replication and, more broadly, as a regulator of genome stability. Depletion or mutation of Spt6 impairs DNA replication in vivo. Additionally, spt6 mutants are sensitive to DNA replication stress-inducing agents. Interestingly, this sensitivity is independent of the association of Spt6 with RNA polymerase II (RNAPII), suggesting that spt6 mutants have a transcription-independent impairment of DNA replication. Specifically, genomic studies reveal that spt6 mutants have decreased loading of the MCM replicative helicase at replication origins, suggesting that Spt6 promotes origin licensing. Our results identify Spt6 as a regulator of genome stability, at least in part through a role in DNA replication.
Collapse
Affiliation(s)
- Catherine L W Miller
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Maier D, Bauer M, Boger M, Sanchez Jimenez A, Yuan Z, Fechner J, Scharpf J, Kovall RA, Preiss A, Nagel AC. Genetic and Molecular Interactions between HΔCT, a Novel Allele of the Notch Antagonist Hairless, and the Histone Chaperone Asf1 in Drosophila melanogaster. Genes (Basel) 2023; 14:205. [PMID: 36672946 PMCID: PMC9858708 DOI: 10.3390/genes14010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Cellular differentiation relies on the highly conserved Notch signaling pathway. Notch activity induces gene expression changes that are highly sensitive to chromatin landscape. We address Notch gene regulation using Drosophila as a model, focusing on the genetic and molecular interactions between the Notch antagonist Hairless and the histone chaperone Asf1. Earlier work implied that Asf1 promotes the silencing of Notch target genes via Hairless (H). Here, we generate a novel HΔCT allele by genome engineering. Phenotypically, HΔCT behaves as a Hairless gain of function allele in several developmental contexts, indicating that the conserved CT domain of H has an attenuator role under native biological contexts. Using several independent methods to assay protein-protein interactions, we define the sequences of the CT domain that are involved in Hairless-Asf1 binding. Based on previous models, where Asf1 promotes Notch repression via Hairless, a loss of Asf1 binding should reduce Hairless repressive activity. However, tissue-specific Asf1 overexpression phenotypes are increased, not rescued, in the HΔCT background. Counterintuitively, Hairless protein binding mitigates the repressive activity of Asf1 in the context of eye development. These findings highlight the complex connections of Notch repressors and chromatin modulators during Notch target-gene regulation and open the avenue for further investigations.
Collapse
Affiliation(s)
- Dieter Maier
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Milena Bauer
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Mike Boger
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
| | - Anna Sanchez Jimenez
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 2201, Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Johannes Fechner
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- Institute of Biomedical Genetics (IBMG), University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Janika Scharpf
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 2201, Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Anette Preiss
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| |
Collapse
|
12
|
Poulet A, Rousselot E, Téletchéa S, Noirot C, Jacob Y, van Wolfswinkel J, Thiriet C, Duc C. The Histone Chaperone Network Is Highly Conserved in Physarum polycephalum. Int J Mol Sci 2023; 24:1051. [PMID: 36674565 PMCID: PMC9864664 DOI: 10.3390/ijms24021051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
The nucleosome is composed of histones and DNA. Prior to their deposition on chromatin, histones are shielded by specialized and diverse proteins known as histone chaperones. They escort histones during their entire cellular life and ensure their proper incorporation in chromatin. Physarum polycephalum is a Mycetozoan, a clade located at the crown of the eukaryotic tree. We previously found that histones, which are highly conserved between plants and animals, are also highly conserved in Physarum. However, histone chaperones differ significantly between animal and plant kingdoms, and this thus probed us to further study the conservation of histone chaperones in Physarum and their evolution relative to animal and plants. Most of the known histone chaperones and their functional domains are conserved as well as key residues required for histone and chaperone interactions. Physarum is divergent from yeast, plants and animals, but PpHIRA, PpCABIN1 and PpSPT6 are similar in structure to plant orthologues. PpFACT is closely related to the yeast complex, and the Physarum genome encodes the animal-specific APFL chaperone. Furthermore, we performed RNA sequencing to monitor chaperone expression during the cell cycle and uncovered two distinct patterns during S-phase. In summary, our study demonstrates the conserved role of histone chaperones in handling histones in an early-branching eukaryote.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Ellyn Rousselot
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Stéphane Téletchéa
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Céline Noirot
- INRAE, UR 875 Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo Auzeville, 31326 Castanet-Tolosan, France
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Josien van Wolfswinkel
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Christophe Thiriet
- Université Rennes 1, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, 35043 Rennes, France
| | - Céline Duc
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| |
Collapse
|
13
|
Zhang M, Zhang L, Zhou M, Wang E, Meng B, Li Q, Wang X, Wang Y, Li Q. Anti‑silencing function 1B promotes the progression of pancreatic cancer by activating c‑Myc. Int J Oncol 2023; 62:8. [PMID: 36416310 PMCID: PMC9728557 DOI: 10.3892/ijo.2022.5456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
The present study aimed to explore the role of histone chaperone anti‑silencing function 1B (ASF1B) in pancreatic cancer and the underlying mechanism. The biological function of ASF1B was investigated in pancreatic cancer cell lines (PANC‑1 and SW1990) and a mouse xenograft model. Chromatin immunoprecipitation was used to detect the effect of ASF1B on the transcriptional activity of c‑Myc. ASF1B was highly expressed in pancreatic adenocarcinoma (PAAD) samples from The Cancer Genome Atlas. ASF1B expression was positively associated with poor survival rates in patients with PAAD. Silencing of ASF1B in PANC‑1 and SW1990 cells inhibited cell proliferation, migration and invasion, and induced apoptosis. Mechanistically, ASF1B increased H3K56 acetylation (H3K56ac) in a CREB‑binding protein (CBP)‑dependent manner. ASF1B promoted H3K56ac at the c‑Myc promoter and increased c‑Myc expression. In PANC‑1 and SW1990 cells, the CBP inhibitor curcumin and the c‑Myc inhibitor 10058‑F4 reversed the promoting effects of ASF1B on cell proliferation, migration and invasion. In the mouse xenograft model, ASF1B silencing inhibited tumor growth, and was associated with low H3K56ac and c‑Myc expression. ASF1B promoted pancreatic cancer progression by activating c‑Myc via CBP‑mediated H3K56ac.
Collapse
Affiliation(s)
- Min Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450008
| | - Luyang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450008
| | - Minghe Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450008
| | - Enze Wang
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450008
| | - Bo Meng
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450008
| | - Qingjun Li
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450008
| | - Xiaoqian Wang
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450008
| | - Yunjian Wang
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450008
| | - Qiong Li
- Key Laboratory for Medical Tissue Regeneration of Henan Province, Xinxiang Medical College, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
14
|
Nowrousian M. The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi. Microbiol Mol Biol Rev 2022; 86:e0010422. [PMID: 36409109 PMCID: PMC9769939 DOI: 10.1128/mmbr.00104-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fungal fruiting bodies are complex, three-dimensional structures that arise from a less complex vegetative mycelium. Their formation requires the coordinated action of many genes and their gene products, and fruiting body formation is accompanied by major changes in the transcriptome. In recent years, numerous transcription factor genes as well as chromatin modifier genes that play a role in fruiting body morphogenesis were identified, and through research on several model organisms, the underlying regulatory networks that integrate chromatin structure, gene expression, and cell differentiation are becoming clearer. This review gives a summary of the current state of research on the role of transcriptional control and chromatin structure in fruiting body development. In the first part, insights from transcriptomics analyses are described, with a focus on comparative transcriptomics. In the second part, examples of more detailed functional characterizations of the role of chromatin modifiers and/or transcription factors in several model organisms (Neurospora crassa, Aspergillus nidulans, Sordaria macrospora, Coprinopsis cinerea, and Schizophyllum commune) that have led to a better understanding of regulatory networks at the level of chromatin structure and transcription are discussed.
Collapse
Affiliation(s)
- Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Yeast Protein Asf1 Possesses Modulating Activity towards Protein Kinase CK2. Int J Mol Sci 2022; 23:ijms232415764. [PMID: 36555405 PMCID: PMC9779303 DOI: 10.3390/ijms232415764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2 plays an important role in cell survival and protects regulatory proteins from caspase-mediated degradation during apoptosis. The consensus sequence of proteins phosphorylated by CK2 contains a cluster of acidic amino acids around the phosphorylation site. The poly-acidic sequence in yeast protein Asf1 is similar to the acidic loop in CK2β, which possesses a regulatory function. We observed that the overexpression of Asf1 in yeast cells influences cell growth. Experiments performed in vitro and in vivo indicate that yeast protein Asf1 inhibits protein kinase CK2. Our data suggest that each CK2 isoform might be regulated in a different way. Deletion of the amino or carboxyl end of Asf1 reveals that the acidic cluster close to the C-terminus is responsible for the activation or inhibition of CK2 activity.
Collapse
|
16
|
Wang S, Song C, Zhao L, Xu W, Li Z, Liu X, Zhang X. GTP Binding Protein Gtr1 Cooperating with ASF1 Regulates Asexual Development in Stemphylium eturmiunum. Int J Mol Sci 2022; 23:ijms23158355. [PMID: 35955500 PMCID: PMC9369126 DOI: 10.3390/ijms23158355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/25/2023] Open
Abstract
The Gtr1 protein was a member of the RagA subfamily of the Ras-like small GTPase superfamily and involved in phosphate acquisition, ribosome biogenesis and epigenetic control of gene expression in yeast. However, Gtr1 regulation sexual or asexual development in filamentous fungi is barely accepted. In the study, SeGtr1, identified from Stemphylium eturmiunum, could manipulate mycelial growth, nuclear distribution of mycelium and the morphology of conidia in Segtr1 silenced strains compared with its overexpression transformants, while the sexual activity of Segtr1 silenced strains were unchanged. SeASF1, a H3/H4 chaperone, participated in nucleosome assembly/disassembly, DNA replication and transcriptional regulation. Our experiments showed that deletion Seasf1 mutants produced the hyphal fusion and abnormal conidia. Notably, we characterized that Segtr1 was down-regulated in Se∆asf1 mutants and Seasf1 was also down-regulated in SiSegtr1 strains. We further confirmed that SeGtr1 interacted with SeASF1 or SeH4 in vivo and vitro, respectively. Thus, SeGtr1 can cooperate with SeASF1 to modulate asexual development in Stemphylium eturmiunum.
Collapse
Affiliation(s)
- Shi Wang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (S.W.); (C.S.); (L.Z.); (W.X.); (Z.L.)
| | - Chunyan Song
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (S.W.); (C.S.); (L.Z.); (W.X.); (Z.L.)
| | - Lili Zhao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (S.W.); (C.S.); (L.Z.); (W.X.); (Z.L.)
| | - Wenmeng Xu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (S.W.); (C.S.); (L.Z.); (W.X.); (Z.L.)
| | - Zhuang Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (S.W.); (C.S.); (L.Z.); (W.X.); (Z.L.)
| | - Xiaoyong Liu
- College of Life Sciences, Shandong Normal University, Jinan 250014, China;
| | - Xiuguo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (S.W.); (C.S.); (L.Z.); (W.X.); (Z.L.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China;
- Correspondence:
| |
Collapse
|
17
|
Kim JH, Youn Y, Lee JC, Kim J, Ryu JK, Hwang JH. Downregulation of ASF1B inhibits tumor progression and enhances efficacy of cisplatin in pancreatic cancer. Cancer Biomark 2022; 34:647-659. [DOI: 10.3233/cbm-210490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pancreatic cancer is an aggressive and lethal cancer with the highest mortality rate. Hence, the development of new targeting and innovative treatment strategies is needed. Recent studies reported that the histone chaperone anti-silencing function 1B (ASF1B) can be used as a diagnosis and prognosis cancer biomarker. However, functional studies of ASF1B in pancreatic cancer have not been performed. This study compared expression levels of ASF1B in pancreatic cancer specimens with those of normal tissues using publicly available online databases. We found that ASF1B was commonly overexpressed in pancreatic cancer specimens, which is associated with poor prognosis. ASF1B downregulation in pancreatic cancer cells reduced their colony formation, proliferation, migration, and invasion abilities, and inhibited MMP9 activity. Furthermore, ASF1B expression downregulation increased cell cycle S-phase arrest and DNA damage though activation of the checkpoint kinases Chk1 and Chk2 pathways. Additionally, increased caspase (caspases-3 and -9) activation and PARP cleavage led to enhanced caspase-dependent apoptosis and improved cisplatin sensitivity. Collectively, our results indicate that ASF1B may serve as a potential biomarker of pancreatic cancer and a novel therapeutic target.
Collapse
Affiliation(s)
- Jae Hyeong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Yuna Youn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Jong-Chan Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jaihwan Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Ji Kon Ryu
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Khan SU, Khan MU, Kalsoom F, Khan MI, Gao S, Unar A, Zubair M, Bilal M. Mechanisms of gene regulation by histone degradation in adaptation of yeast: an overview of recent advances. Arch Microbiol 2022; 204:287. [PMID: 35482104 DOI: 10.1007/s00203-022-02897-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Histones are important component of eukaryotic cells chromatin and consist of arginine and lysine residues. Histones play an important role in the protection of DNA. Their contents significantly affect high-level chromatin structure formation, gene expression, DNA replication, and other important life activities. Protein degradation is an important regulatory mechanism of histone content. Recent studies have revealed that modification of amino acid sequence is directly related to histone breakdown. In addition, histone degradation is closely related to covalent modifications, such as ubiquitination and acetylation, which are considered to be driving factors in gene regulation. Gene regulation is an important mechanism in adaptation to the environment and survival of species. With the introduction of highly efficient technology, various mutations in histones have been identified in yeast. In the field of epigenetics and the transmission of chromatin states, two widely used model organisms are the budding yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe. Higher eukaryotes can use their silent loci to maintain their epigenetic states and providing the base to investigate mechanisms underlying development. Therfore, both species have contributed a plethora of information on these mechanisms in both yeast and higher eukaryotes. This study focuses on the role of histone modifications in controlling telomeric silencing in Saccharomyces cerevisiae and centromeric silencing in S. pombe as examples of genetic loci that demonstrate epigenetic inheritance. In view of recent advances, this review focuses on the post-translational modification of histone amino acid residues and reviews the relationship between histone degradation and amino acid residue modification.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Fadia Kalsoom
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Hefei National Laboratory for Physical Sciences at Microscale and the Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Department of Pathology, District headquarters hospital, Jhang, 35200, Punjab Province, Islamic Republic of Pakistan.
| | - Shuang Gao
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Ahsanullah Unar
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Muhammad Zubair
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.
| |
Collapse
|
19
|
Yue Y, Yang WS, Zhang L, Liu CP, Xu RM. Topography of histone H3-H4 interaction with the Hat1-Hat2 acetyltransferase complex. Genes Dev 2022; 36:408-413. [PMID: 35393344 PMCID: PMC9067401 DOI: 10.1101/gad.349099.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/14/2022] [Indexed: 01/04/2023]
Abstract
In this study, Yue et al. present the structure of the Hat1–Hat2 acetyltransferase complex bound to Asf1–H3–H4, which shows that the core domains of H3 and H4 are involved in binding Hat1 and Hat2, and the N-terminal tail of H3 makes extensive interaction with Hat2. These findings extend our knowledge of histone–protein interaction and implicate a function of Hat2/RbAp46/48 in the passing of histones between chaperones. Chaperones influence histone conformation and intermolecular interaction in multiprotein complexes, and the structures obtained with full-length histones often provide more accurate and comprehensive views. Here, our structure of the Hat1–Hat2 acetyltransferase complex bound to Asf1–H3–H4 shows that the core domains of H3 and H4 are involved in binding Hat1 and Hat2, and the N-terminal tail of H3 makes extensive interaction with Hat2. These findings expand the knowledge about histone–protein interaction and implicate a function of Hat2/RbAp46/48, which is a versatile histone chaperone found in many chromatin-associated complexes, in the passing of histones between chaperones.
Collapse
Affiliation(s)
- Ye Yue
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Si Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao-Pei Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Zhang M, Zhao X, Feng X, Hu X, Zhao X, Lu W, Lu X. Histone chaperone HIRA complex regulates retrotransposons in embryonic stem cells. Stem Cell Res Ther 2022; 13:137. [PMID: 35365225 PMCID: PMC8973876 DOI: 10.1186/s13287-022-02814-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone cell cycle regulator (HIRA) complex is an important histone chaperone that mediates the deposition of the H3.3 histone variant onto chromatin independently from DNA synthesis. However, it is still unknown whether it participates in the expression control of retrotransposons and cell fate determination. METHODS We screened the role of HIRA complex members in repressing the expression of retrotransposons by shRNA depletion in embryonic stem cells (ESCs) followed by RT-qPCR. RNA-seq was used to study the expression profiles after depletion of individual HIRA member. RT-qPCR and western blot were used to determine overexpression of HIRA complex members. Chromatin immunoprecipitation (ChIP)-qPCR was used to find the binding of H3.3, HIRA members to chromatin. Co-immunoprecipitation was used to identify the interaction between Hira mutant and Ubn2. ChIP-qPCR was used to identify H3.3 deposition change and western blot of chromatin extract was used to validate the epigenetic change. Bioinformatics analysis was applied for the analysis of available ChIP-seq data. RESULTS We revealed that Hira, Ubn2, and Ubn1 were the main repressors of 2-cell marker retrotransposon MERVL among HIRA complex members. Surprisingly, Ubn2 and Hira targeted different groups of retrotransposons and retrotransposon-derived long noncoding RNAs (lncRNAs), despite that they partially shared target genes. Furthermore, Ubn2 prevented ESCs to gain a 2-cell like state or activate trophectodermal genes upon differentiation. Mechanistically, Ubn2 and Hira suppressed retrotransposons by regulating the deposition of histone H3.3. Decreased H3.3 deposition, that was associated with the loss of Ubn2 or Hira, caused the reduction of H3K9me2 and H3K9me3, which are known repressive marks of retrotransposons. CONCLUSIONS Overall, our findings shed light on the distinct roles of HIRA complex members in controlling retrotransposons and cell fate conversion in ESCs.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, People's Republic of China
| | - Xin Zhao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, People's Republic of China
| | - Xiao Feng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, People's Republic of China
| | | | - Xuan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, People's Republic of China
| | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
21
|
Corrales E, Levit-Zerdoun E, Metzger P, Kowar S, Ku M, Brummer T, Boerries M. Dynamic transcriptome analysis reveals signatures of paradoxical effect of vemurafenib on human dermal fibroblasts. Cell Commun Signal 2021; 19:123. [PMID: 34930313 PMCID: PMC8686565 DOI: 10.1186/s12964-021-00801-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vemurafenib (PLX4032) is one of the most frequently used treatments for late-stage melanoma patients with the BRAFV600E mutation; however, acquired resistance to the drug poses as a major challenge. It remains to be determined whether off-target effects of vemurafenib on normal stroma components could reshape the tumor microenvironment in a way that contributes to cancer progression and drug resistance. METHODS By using temporally-resolved RNA- and ATAC-seq, we studied the early molecular changes induced by vemurafenib in human dermal fibroblast (HDF), a main stromal component in melanoma and other tumors with high prevalence of BRAFV600 mutations. RESULTS Transcriptomics analyses revealed a stepwise up-regulation of proliferation signatures, together with a down-regulation of autophagy and proteolytic processes. The gene expression changes in HDF strongly correlated in an inverse way with those in BRAFV600E mutant malignant melanoma (MaMel) cell lines, consistent with the observation of a paradoxical effect of vemurafenib, leading to hyperphosphorylation of MEK1/2 and ERK1/2. The transcriptional changes in HDF were not strongly determined by alterations in chromatin accessibility; rather, an already permissive chromatin landscape seemed to facilitate the early accessibility to MAPK/ERK-regulated transcription factor binding sites. Combinatorial treatment with the MEK inhibitor trametinib did not preclude the paradoxical activation of MAPK/ERK signaling in HDF. When administered together, vemurafenib partially compensated for the reduction of cell viability and proliferation induced by trametinib. These paradoxical changes were restrained by using the third generation BRAF inhibitor PLX8394, a so-called paradox breaker compound. However, the advantageous effects on HDF during combination therapies were also lost. CONCLUSIONS Vemurafenib induces paradoxical changes in HDF, enabled by a permissive chromatin landscape. These changes might provide an advantage during combination therapies, by compensating for the toxicity induced in stromal cells by less specific MAPK/ERK inhibitors. Our results highlight the relevance of evaluating the effects of the drugs on non-transformed stromal components, carefully considering the implications of their administration either as mono- or combination therapies. Video Abstract.
Collapse
Affiliation(s)
- Eyleen Corrales
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Ella Levit-Zerdoun
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Patrick Metzger
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
| | - Silke Kowar
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
| | - Manching Ku
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstr. 1, 79106 Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
22
|
Abstract
Nucleosome dynamics and properties are central to all forms of genomic activities. Among the core histones, H3 variants play a pivotal role in modulating nucleosome structure and function. Here, we focus on the impact of H3 variants on various facets of development. The deposition of the replicative H3 variant following DNA replication is essential for the transmission of the epigenomic information encoded in posttranscriptional modifications. Through this process, replicative H3 maintains cell fate while, in contrast, the replacement H3.3 variant opposes cell differentiation during early embryogenesis. In later steps of development, H3.3 and specialized H3 variants are emerging as new, important regulators of terminal cell differentiation, including neurons and gametes. The specific pathways that regulate the dynamics of the deposition of H3.3 are paramount during reprogramming events that drive zygotic activation and the initiation of a new cycle of development.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, University of Lyon, F-69007 Lyon, France;
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
23
|
Zhang W, Feng J, Li Q. The replisome guides nucleosome assembly during DNA replication. Cell Biosci 2020; 10:37. [PMID: 32190287 PMCID: PMC7066812 DOI: 10.1186/s13578-020-00398-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
Nucleosome assembly during DNA replication is tightly coupled to ongoing DNA synthesis. This process, termed DNA replication-coupled (RC) nucleosome assembly, is essential for chromatin replication and has a great impact on both genome stability maintenance and epigenetic inheritance. This review discusses a set of recent findings regarding the role of replisome components contributing to RC nucleosome assembly. Starting with a brief introduction to the factors involved in nucleosome assembly and some aspects of the architecture of the eukaryotic replisome, we discuss studies from yeast to mammalian cells and the interactions of replisome components with histones and histone chaperones. We describe the proposed functions of replisome components during RC nucleosome assembly and discuss their impacts on histone segregation and implications for epigenetic inheritance.
Collapse
Affiliation(s)
- Wenshuo Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
24
|
Distinct associations of the Saccharomyces cerevisiae Rad9 protein link Mac1-regulated transcription to DNA repair. Curr Genet 2019; 66:531-548. [PMID: 31784768 DOI: 10.1007/s00294-019-01047-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
While it is known that ScRad9 DNA damage checkpoint protein is recruited to damaged DNA by recognizing specific histone modifications, here we report a different way of Rad9 recruitment on chromatin under non DNA damaging conditions. We found Rad9 to bind directly with the copper-modulated transcriptional activator Mac1, suppressing both its DNA binding and transactivation functions. Rad9 was recruited to active Mac1-target promoters (CTR1, FRE1) and along CTR1 coding region following the association pattern of RNA polymerase (Pol) II. Hir1 histone chaperone also interacted directly with Rad9 and was partly required for its localization throughout CTR1 gene. Moreover, Mac1-dependent transcriptional initiation was necessary and sufficient for Rad9 recruitment to the heterologous ACT1 coding region. In addition to Rad9, Rad53 kinase also localized to CTR1 coding region in a Rad9-dependent manner. Our data provide an example of a yeast DNA-binding transcriptional activator that interacts directly with a DNA damage checkpoint protein in vivo and is functionally restrained by this protein, suggesting a new role for Rad9 in connecting factors of the transcription machinery with the DNA repair pathway under unchallenged conditions.
Collapse
|
25
|
ASF1a inhibition induces p53-dependent growth arrest and senescence of cancer cells. Cell Death Dis 2019; 10:76. [PMID: 30692519 PMCID: PMC6349940 DOI: 10.1038/s41419-019-1357-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022]
Abstract
Anti-silencing function 1a (ASF1a) is a histone H3-H4 chaperone isoform involved in chromatin assembling and transcription regulation. Recently, ASF1a has been shown to be up-regulated in certain human malignancies and required for the expression of telomerase reverse transcriptase (TERT), a factor essential for the immortal phenotype of cancer cells; however, its role in oncogenesis remains poorly defined. In the present study, we determine whether ASF1a is required for the unlimited proliferation of cancer cells, a key cancer hallmark. Elevated ASF1a mRNA expression was observed in hepatocellular carcinoma (HCC) tumors. The overexpression of ASF1a was similarly found in 20 cancer types contained in TCGA and GTEx datasets. ASF1a knockdown led to growth arrest and senescence of wild-type (wt) p53-carrying HCC and prostate cancer cells. Cellular senescence mediated by ASF1a inhibition resulted from the robust up-regulation of p53 and p21cip1 expression, but without detectable changes in TERT expression. p53 inhibition attenuated p21cip1 induction caused by ASF1a depletion. Mechanistically, ASF1a-knocked down cells displayed widespread DNA damage. The TCGA dataset analysis revealed a negative correlation between ASF1a and p21cip1 expression in multiple types of primary tumors, including HCC, prostate, gastric, and breast cancer. Higher ASF1a and lower p21cip1 expression predicted a poor outcome in patients with HCC. Our results reveal that ASF1a overexpression is widespread in human malignancies and is required for the infinite proliferation of cancer cells, whereas its inhibition induces DNA damage and subsequent up-regulation of p53-p21cip1 expression, thereby triggering cellular senescence. Thus, ASF1a may serve as a potential target in cancer therapy.
Collapse
|
26
|
Schumacher DI, Lütkenhaus R, Altegoer F, Teichert I, Kück U, Nowrousian M. The transcription factor PRO44 and the histone chaperone ASF1 regulate distinct aspects of multicellular development in the filamentous fungus Sordaria macrospora. BMC Genet 2018; 19:112. [PMID: 30545291 PMCID: PMC6293562 DOI: 10.1186/s12863-018-0702-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Background Fungal fruiting bodies are complex three-dimensional structures that are formed to protect and disperse the sexual spores. Their morphogenesis requires the concerted action of numerous genes; however, at the molecular level, the spatio-temporal sequence of events leading to the mature fruiting body is largely unknown. In previous studies, the transcription factor gene pro44 and the histone chaperone gene asf1 were shown to be essential for fruiting body formation in the ascomycete Sordaria macrospora. Both PRO44 and ASF1 are predicted to act on the regulation of gene expression in the nucleus, and mutants in both genes are blocked at the same stage of development. Thus, we hypothesized that PRO44 and ASF1 might be involved in similar aspects of transcriptional regulation. In this study, we characterized their roles in fruiting body development in more detail. Results The PRO44 protein forms homodimers, localizes to the nucleus, and is strongly expressed in the outer layers of the developing young fruiting body. Analysis of single and double mutants of asf1 and three other chromatin modifier genes, cac2, crc1, and rtt106, showed that only asf1 is essential for fruiting body formation whereas cac2 and rtt106 might have redundant functions in this process. RNA-seq analysis revealed distinct roles for asf1 and pro44 in sexual development, with asf1 acting as a suppressor of weakly expressed genes during morphogenesis. This is most likely not due to global mislocalization of nucleosomes as micrococcal nuclease-sequencing did not reveal differences in nucleosome spacing and positioning around transcriptional start sites between Δasf1 and the wild type. However, bisulfite sequencing revealed a decrease in DNA methylation in Δasf1, which might be a reason for the observed changes in gene expression. Transcriptome analysis of gene expression in young fruiting bodies showed that pro44 is required for correct expression of genes involved in extracellular metabolism. Deletion of the putative transcription factor gene asm2, which is downregulated in young fruiting bodies of Δpro44, results in defects during ascospore maturation. Conclusions In summary, the results indicate distinct roles for the transcription factor PRO44 and the histone chaperone ASF1 in the regulation of sexual development in fungi. Electronic supplementary material The online version of this article (10.1186/s12863-018-0702-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ramona Lütkenhaus
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Florian Altegoer
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany.,LOEWE-Zentrum für Synthetische Mikrobiologie & Department of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany.
| |
Collapse
|
27
|
Asf1a resolves bivalent chromatin domains for the induction of lineage-specific genes during mouse embryonic stem cell differentiation. Proc Natl Acad Sci U S A 2018; 115:E6162-E6171. [PMID: 29915027 DOI: 10.1073/pnas.1801909115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bivalent chromatin domains containing repressive H3K27me3 and active H3K4me3 modifications are barriers for the expression of lineage-specific genes in ES cells and must be resolved for the transcription induction of these genes during differentiation, a process that remains largely unknown. Here, we show that Asf1a, a histone chaperone involved in nucleosome assembly and disassembly, regulates the resolution of bivalent domains and activation of lineage-specific genes during mouse ES cell differentiation. Deletion of Asf1a does not affect the silencing of pluripotent genes, but compromises the expression of lineage-specific genes during ES cell differentiation. Mechanistically, the Asf1a-histone interaction, but not the role of Asf1a in nucleosome assembly, is required for gene transcription. Asf1a is recruited to several bivalent promoters, partially through association with transcription factors, and mediates nucleosome disassembly during differentiation. We suggest that Asf1a-mediated nucleosome disassembly provides a means for resolution of bivalent domain barriers for induction of lineage-specific genes during differentiation.
Collapse
|
28
|
Mileo E, Ilbert M, Barducci A, Bordes P, Castanié-Cornet MP, Garnier C, Genevaux P, Gillet R, Goloubinoff P, Ochsenbein F, Richarme G, Iobbi-Nivol C, Giudici-Orticoni MT, Gontero B, Genest O. Emerging fields in chaperone proteins: A French workshop. Biochimie 2018; 151:159-165. [PMID: 29890204 DOI: 10.1016/j.biochi.2018.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2022]
Abstract
The "Bioénergétique et Ingénierie des Protéines (BIP)" laboratory, CNRS (France), organized its first French workshop on molecular chaperone proteins and protein folding in November 2017. The goal of this workshop was to gather scientists working in France on chaperone proteins and protein folding. This initiative was a great success with excellent talks and fruitful discussions. The highlights were on the description of unexpected functions and post-translational regulation of known molecular chaperones (such as Hsp90, Hsp33, SecB, GroEL) and on state-of-the-art methods to tackle questions related to this theme, including Cryo-electron microscopy, Nuclear Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR), simulation and modeling. We expect to organize a second workshop in two years that will include more scientists working in France in the chaperone field.
Collapse
Affiliation(s)
- Elisabetta Mileo
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Marianne Ilbert
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Alessandro Barducci
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Patricia Bordes
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, CNRS, Université Paul-Sabatier, Toulouse, France
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, CNRS, Université Paul-Sabatier, Toulouse, France
| | - Cyrille Garnier
- Mécanismes Moléculaires dans les Démences Neurodégénératives, Université de Montpellier, EPHE, INSERM, U1198, F-34095, Montpellier, France; Université de Rennes 1, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, CNRS, Université Paul-Sabatier, Toulouse, France
| | - Reynald Gillet
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Rennes, France
| | - Pierre Goloubinoff
- Département de Biologie Moléculaire Végétale, Université de Lausanne, 1015, Lausanne, Switzerland
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), Joliot, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gilbert Richarme
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Chantal Iobbi-Nivol
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | | | - Brigitte Gontero
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Olivier Genest
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France.
| |
Collapse
|
29
|
Differential effect of the overexpression of Rad2/XPG family endonucleases on genome integrity in yeast and human cells. DNA Repair (Amst) 2017; 57:66-75. [DOI: 10.1016/j.dnarep.2017.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 01/31/2023]
|
30
|
Histone Chaperone ASF1A Predicts Poor Outcomes for Patients With Gastrointestinal Cancer and Drives Cancer Progression by Stimulating Transcription of β-Catenin Target Genes. EBioMedicine 2017. [PMID: 28625518 PMCID: PMC5514402 DOI: 10.1016/j.ebiom.2017.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epigenetic mechanisms play a key role in gastrointestinal cancer (GIC) development and progression, and most studies have been focused on aberrant DNA methylation and histone modifying enzymes. However, the histone H3–H4 chaperone ASF1A is an important factor regulating chromatin assembling and gene transcription, while it is currently unclear whether ASF1A is involved in cancer pathogenesis. The present study is thus designed to address this issue. Here we showed that ASF1A expression was widespread in GIC-derived cell lines and up-regulated in primary GIC. Higher levels of ASF1A expression predicted significantly shorter patient overall survival in colorectal cancer (P = 0.0012). The further analyses of the GEO dataset validate higher ASF1A expression as a prognostic factor for CRC patients. Mechanistically, ASF1A interacted with β-catenin and promoted the transcription of β-catenin target genes including c-MYC, cyclin D1, ZEB1 and LGR5, thereby stimulating proliferation, stemness and migration/invasion of GIC cells. β-Catenin inhibition abolished these effects of ASF1A. Moreover, the ASF1A-β-catenin-ZEB1 axis down-regulated E-Cadherin expression, thereby contributing to enhanced migration/invasion of GIC cells. ASF1A over-expression and depletion facilitated and inhibited in vivo tumor growth and/or metastasis in mouse xenograft models, respectively. Taken together, ASF1A is aberrantly over-expressed in GIC tumors and plays key roles in GIC development and progression by stimulating the transcription of β-catenin target genes. ASF1A may thus be a novel target for GIC therapy and a potential prognostic marker. ASF1A is over-expressed in GIC and predicts poor patient outcomes. ASF1A interacts with β-catenin, facilitates the expression of its targets and promotes stemness and invasion of GIC cells. Targeting ASF1A could be a novel epigenetic strategy against GIC.
Gastrointestinal cancer (GIC) is the leading cause of cancer-related death worldwide and invasion or distant metastasis account for the majority of mortalities due to the limited treatment choices. We determined the effect of ASF1A, the histone H3–H4 chaperone, on GIC pathogenesis. We found that ASF1A expression was up-regulated in primary GIC and higher ASF1A levels predicted significantly shorter patient overall survival in colorectal cancer. ASF1A interacted with β-catenin and promoted the transcription of β-catenin target genes, thereby stimulating proliferation, stemness and migration/invasion of GIC cells. ASF1A may thus be a novel target for GIC therapy and a useful prognostic marker.
Collapse
|
31
|
Tsabar M, Waterman DP, Aguilar F, Katsnelson L, Eapen VV, Memisoglu G, Haber JE. Asf1 facilitates dephosphorylation of Rad53 after DNA double-strand break repair. Genes Dev 2017; 30:1211-24. [PMID: 27222517 PMCID: PMC4888841 DOI: 10.1101/gad.280685.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 02/07/2023]
Abstract
In this study, Tsabar et al. investigated how the DNA damage checkpoint is extinguished and found that dissociation of histone H3 from Asf1, a histone chaperone, is required for efficient recovery. They also show that Asf1 is required for complete dephosphorylation of Rad53 when the upstream DNA damage checkpoint signaling is turned off, providing new insights into the mechanisms regulating the response to DNA damage. To allow for sufficient time to repair DNA double-stranded breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint. In budding yeast, Rad53 (mammalian Chk2) phosphorylation parallels the persistence of the unrepaired DSB and is extinguished when repair is complete in a process termed recovery or when the cells adapt to the DNA damage checkpoint. A strain containing a slowly repaired DSB does not require the histone chaperone Asf1 to resume cell cycle progression after DSB repair. When a second, rapidly repairable DSB is added to this strain, Asf1 becomes required for recovery. Recovery from two repairable DSBs also depends on the histone acetyltransferase Rtt109 and the cullin subunit Rtt101, both of which modify histone H3 that is associated with Asf1. We show that dissociation of histone H3 from Asf1 is required for efficient recovery and that Asf1 is required for complete dephosphorylation of Rad53 when the upstream DNA damage checkpoint signaling is turned off. Our data suggest that the requirements for recovery from the DNA damage checkpoint become more stringent with increased levels of damage and that Asf1 plays a histone chaperone-independent role in facilitating complete Rad53 dephosphorylation following repair.
Collapse
Affiliation(s)
- Michael Tsabar
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - David P Waterman
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Fiona Aguilar
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Lizabeth Katsnelson
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Vinay V Eapen
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Gonen Memisoglu
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - James E Haber
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
32
|
Prado F, Maya D. Regulation of Replication Fork Advance and Stability by Nucleosome Assembly. Genes (Basel) 2017; 8:genes8020049. [PMID: 28125036 PMCID: PMC5333038 DOI: 10.3390/genes8020049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
The advance of replication forks to duplicate chromosomes in dividing cells requires the disassembly of nucleosomes ahead of the fork and the rapid assembly of parental and de novo histones at the newly synthesized strands behind the fork. Replication-coupled chromatin assembly provides a unique opportunity to regulate fork advance and stability. Through post-translational histone modifications and tightly regulated physical and genetic interactions between chromatin assembly factors and replisome components, chromatin assembly: (1) controls the rate of DNA synthesis and adjusts it to histone availability; (2) provides a mechanism to protect the integrity of the advancing fork; and (3) regulates the mechanisms of DNA damage tolerance in response to replication-blocking lesions. Uncoupling DNA synthesis from nucleosome assembly has deleterious effects on genome integrity and cell cycle progression and is linked to genetic diseases, cancer, and aging.
Collapse
Affiliation(s)
- Felix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| | - Douglas Maya
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| |
Collapse
|
33
|
ASF1a enhances antiviral immune response by associating with CBP to mediate acetylation of H3K56 at the Ifnb promoter. Mol Immunol 2016; 78:57-64. [DOI: 10.1016/j.molimm.2016.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/15/2016] [Accepted: 08/13/2016] [Indexed: 01/01/2023]
|
34
|
Wang C, Chang JF, Yan H, Wang DL, Liu Y, Jing Y, Zhang M, Men YL, Lu D, Yang XM, Chen S, Sun FL. A conserved RAD6-MDM2 ubiquitin ligase machinery targets histone chaperone ASF1A in tumorigenesis. Oncotarget 2016; 6:29599-613. [PMID: 26336826 PMCID: PMC4745749 DOI: 10.18632/oncotarget.5011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/12/2015] [Indexed: 11/25/2022] Open
Abstract
Chromatin is a highly organized and dynamic structure in eukaryotic cells. The change of chromatin structure is essential in many cellular processes, such as gene transcription, DNA damage repair and others. Anti-silencing function 1 (ASF1) is a histone chaperone that participates in chromatin higher-order organization and is required for appropriate chromatin assembly. In this study, we identified the E2 ubiquitin-conjugating enzyme RAD6 as an evolutionary conserved interacting protein of ASF1 in D. melanogaster and H. sapiens that promotes the turnover of ASF1A by cooperating with a well-known E3 ligase, MDM2, via ubiquitin-proteasome pathway in H. sapiens. Further functional analyses indicated that the interplay between RAD6 and ASF1A associates with tumorigenesis. Together, these data suggest that the RAD6-MDM2 ubiquitin ligase machinery is critical for the degradation of chromatin-related proteins.
Collapse
Affiliation(s)
- Chen Wang
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China.,UN School of Environmental Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Hongli Yan
- Department of Laboratory Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Da-Liang Wang
- Institute of Epigenetics and Cancer Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yan Liu
- Institute of Epigenetics and Cancer Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yuanya Jing
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Meng Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Yu-Long Men
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Dongdong Lu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Xiao-Mei Yang
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Su Chen
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China.,Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei, 064200, China
| | - Fang-Lin Sun
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| |
Collapse
|
35
|
Messiaen S, Guiard J, Aigueperse C, Fliniaux I, Tourpin S, Barroca V, Allemand I, Fouchet P, Livera G, Vernet M. Loss of the histone chaperone ASF1B reduces female reproductive capacity in mice. Reproduction 2016; 151:477-89. [PMID: 26850882 DOI: 10.1530/rep-15-0327] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022]
Abstract
Anti-silencing function 1 (ASF1) is an evolutionarily conserved histone H3-H4 chaperone involved in the assembly/disassembly of nucleosome and histone modification. Two paralogous genes, Asf1a and Asf1b, exist in the mouse genome. Asf1a is ubiquitously expressed and its loss causes embryonic lethality. Conversely, Asf1b expression is more restricted and has been less studied. To determine the in vivo function of Asf1b, we generated a Asf1b-deficient mouse line (Asf1b(GT(ROSA-βgeo)437)) in which expression of the lacZ reporter gene is driven by the Asf1b promoter. Analysis of β-galactosidase activity at early embryonic stages indicated a correlation between Asf1b expression and cell differentiation potential. In the gonads of both male and female, Asf1b expression was specifically detected in the germ cell lineage with a peak expression correlated with meiosis. The viability of Asf1b-null mice suggests that Asf1b is dispensable for mouse development. However, these mice showed reduced reproductive capacity compared with wild-type controls. We present evidence that the timing of meiotic entry and the subsequent gonad development are affected more severely in Asf1b-null female mice than in male mice. In female mice, in addition to subfertility related to altered gamete formation, variable defects compromising the development and/or survival of their offspring were also observed. Altogether, our data indicate the importance of Asf1b expression at the time of meiotic entry, suggesting that chromatin modifications may play a central role in this process.
Collapse
Affiliation(s)
- S Messiaen
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - J Guiard
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - C Aigueperse
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - I Fliniaux
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - S Tourpin
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - V Barroca
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - I Allemand
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de gamétogenèseapoptose et génotoxicité, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - P Fouchet
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de gamétogenèseapoptose et génotoxicité, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - G Livera
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - M Vernet
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France Laboratoire de Recherche sur la réparation et la transcription dans les cellules souchesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| |
Collapse
|
36
|
Ramos TCP, Nunes VS, Nardelli SC, dos Santos Pascoalino B, Moretti NS, Rocha AA, da Silva Augusto L, Schenkman S. Expression of non-acetylatable lysines 10 and 14 of histone H4 impairs transcription and replication in Trypanosoma cruzi. Mol Biochem Parasitol 2015; 204:1-10. [DOI: 10.1016/j.molbiopara.2015.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 11/16/2022]
|
37
|
Czerwoniec A, Kasprzak JM, Bytner P, Dobrychłop M, Bujnicki JM. Structure and intrinsic disorder of the proteins of the Trypanosoma brucei editosome. FEBS Lett 2015; 589:2603-10. [PMID: 26226426 DOI: 10.1016/j.febslet.2015.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 01/02/2023]
Abstract
Mitochondrial pre-mRNAs in trypanosomatids undergo RNA editing to be converted into translatable mRNAs. The reaction is characterized by the insertion and deletion of uridine residues and is catalyzed by a macromolecular protein complex called the editosome. Despite intensive research, structural information for the majority of editosome proteins is still missing and no high resolution structure for the editosome exists. Here we present a comprehensive structural bioinformatics analysis of all proteins of the Trypanosoma brucei editosome. We specifically focus on the interplay between intrinsic order and disorder. According to computational predictions, editosome proteins involved in the basal reaction steps of the processing cycle are mostly ordered. By contrast, thirty percent of the amino acid content of the editosome is intrinsically disordered, which includes most prominently proteins with OB-fold domains. Based on the data we suggest a functional model, in which the structurally disordered domains of the complex are correlated with the RNA binding and RNA unfolding activity of the T. brucei editosome.
Collapse
Affiliation(s)
- Anna Czerwoniec
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland.
| | - Joanna M Kasprzak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland; Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Patrycja Bytner
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Mateusz Dobrychłop
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland; Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland.
| |
Collapse
|
38
|
Abstract
Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions.
Collapse
|
39
|
Replisome function during replicative stress is modulated by histone h3 lysine 56 acetylation through Ctf4. Genetics 2015; 199:1047-63. [PMID: 25697176 DOI: 10.1534/genetics.114.173856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Histone H3 lysine 56 acetylation in Saccharomyces cerevisiae is required for the maintenance of genome stability under normal conditions and upon DNA replication stress. Here we show that in the absence of H3 lysine 56 acetylation replisome components become deleterious when replication forks collapse at natural replication block sites. This lethality is not a direct consequence of chromatin assembly defects during replication fork progression. Rather, our genetic analyses suggest that in the presence of replicative stress H3 lysine 56 acetylation uncouples the Cdc45-Mcm2-7-GINS DNA helicase complex and DNA polymerases through the replisome component Ctf4. In addition, we discovered that the N-terminal domain of Ctf4, necessary for the interaction of Ctf4 with Mms22, an adaptor protein of the Rtt101-Mms1 E3 ubiquitin ligase, is required for the function of the H3 lysine 56 acetylation pathway, suggesting that replicative stress promotes the interaction between Ctf4 and Mms22. Taken together, our results indicate that Ctf4 is an essential member of the H3 lysine 56 acetylation pathway and provide novel mechanistic insights into understanding the role of H3 lysine 56 acetylation in maintaining genome stability upon replication stress.
Collapse
|
40
|
Richet N, Liu D, Legrand P, Velours C, Corpet A, Gaubert A, Bakail M, Moal-Raisin G, Guerois R, Compper C, Besle A, Guichard B, Almouzni G, Ochsenbein F. Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic Acids Res 2015; 43:1905-17. [PMID: 25618846 PMCID: PMC4330383 DOI: 10.1093/nar/gkv021] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MCM2 is a subunit of the replicative helicase machinery shown to interact with histones H3 and H4 during the replication process through its N-terminal domain. During replication, this interaction has been proposed to assist disassembly and assembly of nucleosomes on DNA. However, how this interaction participates in crosstalk with histone chaperones at the replication fork remains to be elucidated. Here, we solved the crystal structure of the ternary complex between the histone-binding domain of Mcm2 and the histones H3-H4 at 2.9 Å resolution. Histones H3 and H4 assemble as a tetramer in the crystal structure, but MCM2 interacts only with a single molecule of H3-H4. The latter interaction exploits binding surfaces that contact either DNA or H2B when H3-H4 dimers are incorporated in the nucleosome core particle. Upon binding of the ternary complex with the histone chaperone ASF1, the histone tetramer dissociates and both MCM2 and ASF1 interact simultaneously with the histones forming a 1:1:1:1 heteromeric complex. Thermodynamic analysis of the quaternary complex together with structural modeling support that ASF1 and MCM2 could form a chaperoning module for histones H3 and H4 protecting them from promiscuous interactions. This suggests an additional function for MCM2 outside its helicase function as a proper histone chaperone connected to the replication pathway.
Collapse
Affiliation(s)
- Nicolas Richet
- CEA, iBiTec-S, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, France Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 144, Gif-sur-Yvette, F-91191, France
| | - Danni Liu
- CEA, iBiTec-S, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, France Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 144, Gif-sur-Yvette, F-91191, France
| | | | - Christophe Velours
- Laboratoire d'Enzymologie et de Biologie Structurale, CNRS UPR 3082, 1 avenue de la Terrasse, Gif-sur-Yvette, F-91190, France
| | - Armelle Corpet
- Institut Curie, Centre de Recherche, CNRS UMR 3664, Equipe Labellisée Ligue contre le Cancer, and Université Pierre et Marie Curie, Université Sorbonne PSL*, Paris, F-75248, France
| | - Albane Gaubert
- CEA, iBiTec-S, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, France Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 144, Gif-sur-Yvette, F-91191, France
| | - May Bakail
- CEA, iBiTec-S, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, France Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 144, Gif-sur-Yvette, F-91191, France
| | - Gwenaelle Moal-Raisin
- CEA, iBiTec-S, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, France Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 144, Gif-sur-Yvette, F-91191, France
| | - Raphael Guerois
- CEA, iBiTec-S, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, France Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 144, Gif-sur-Yvette, F-91191, France
| | - Christel Compper
- CEA, iBiTec-S, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, France Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 144, Gif-sur-Yvette, F-91191, France
| | - Arthur Besle
- CEA, iBiTec-S, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, France Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 144, Gif-sur-Yvette, F-91191, France
| | - Berengère Guichard
- CEA, iBiTec-S, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, France Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 144, Gif-sur-Yvette, F-91191, France
| | - Genevieve Almouzni
- Institut Curie, Centre de Recherche, CNRS UMR 3664, Equipe Labellisée Ligue contre le Cancer, and Université Pierre et Marie Curie, Université Sorbonne PSL*, Paris, F-75248, France
| | - Françoise Ochsenbein
- CEA, iBiTec-S, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, France Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 144, Gif-sur-Yvette, F-91191, France
| |
Collapse
|
41
|
Genome-wide mapping of yeast histone chaperone anti-silencing function 1 reveals its role in condensin binding with chromatin. PLoS One 2014; 9:e108652. [PMID: 25264624 PMCID: PMC4181348 DOI: 10.1371/journal.pone.0108652] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022] Open
Abstract
Genome-wide participation and importance of the histone chaperone Asf1 (Anti-Silencing Function 1) in diverse DNA transactions like replication, repair, heterochromatic silencing and transcription are well documented. Yet its genome-wide targets have not been reported. Using ChIP-seq method, we found that yeast Asf1 associates with 590 unique targets including centromeres, telomeres and condensin-binding sites. It is found selectively on highly transcribed regions, which include replication fork pause sites. Asf1 preferentially associates with the genes transcribed by RNA polymerase (pol) III where its presence affects RNA production and replication-independent histone exchange. On pol II-transcribed genes, a negative correlation is found between Asf1 and nucleosome occupancy. It is not enriched on most of the reported sites of histone exchange or on the genes, which are misregulated in the asf1Δ cells. Interestingly, chromosome-wide distributions of Asf1 and one of the condensin subunits, Brn1 show a nearly identical pattern. Moreover, Brn1 shows reduced occupancy at various condensin-binding sites in asf1Δ cells. These results along with high association of Asf1 with heterochromatic centromeres and telomeres ascribe novel roles to Asf1 in condensin loading and chromatin dynamics.
Collapse
|
42
|
Gonzalez-Muñoz E, Arboleda-Estudillo Y, Otu HH, Cibelli JB. Cell reprogramming. Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming. Science 2014; 345:822-5. [PMID: 25035411 DOI: 10.1126/science.1254745] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Unfertilized oocytes have the intrinsic capacity to remodel sperm and the nuclei of somatic cells. The discoveries that cells can change their phenotype from differentiated to embryonic state using oocytes or specific transcription factors have been recognized as two major breakthroughs in the biomedical field. Here, we show that ASF1A, a histone-remodeling chaperone specifically enriched in the metaphase II human oocyte, is necessary for reprogramming of human adult dermal fibroblasts (hADFs) into undifferentiated induced pluripotent stem cell. We also show that overexpression of just ASF1A and OCT4 in hADFs exposed to the oocyte-specific paracrine growth factor GDF9 can reprogram hADFs into pluripotent cells. Our Report underscores the importance of studying the unfertilized MII oocyte as a means to understand the molecular pathways governing somatic cell reprogramming.
Collapse
Affiliation(s)
- Elena Gonzalez-Muñoz
- LARCEL, Laboratorio Andaluz de Reprogramación Celular, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología Andalucía, 29590, Spain
| | - Yohanna Arboleda-Estudillo
- LARCEL, Laboratorio Andaluz de Reprogramación Celular, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología Andalucía, 29590, Spain
| | - Hasan H Otu
- Department of Genetics and Bioengineering, Istanbul Bilgi University 34060, Istanbul, Turkey. Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jose B Cibelli
- LARCEL, Laboratorio Andaluz de Reprogramación Celular, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología Andalucía, 29590, Spain. Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA. Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
43
|
Pamblanco M, Oliete-Calvo P, García-Oliver E, Luz Valero M, Sanchez del Pino MM, Rodríguez-Navarro S. Unveiling novel interactions of histone chaperone Asf1 linked to TREX-2 factors Sus1 and Thp1. Nucleus 2014; 5:247-59. [PMID: 24824343 DOI: 10.4161/nucl.29155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Anti-silencing function 1 (Asf1) is a conserved key eukaryotic histone H3/H4 chaperone that participates in a variety of DNA and chromatin-related processes. These include the assembly and disassembly of histones H3 and H4 from chromatin during replication, transcription, and DNA repair. In addition, Asf1 is required for H3K56 acetylation activity dependent on histone acetyltransferase Rtt109. Thus, Asf1 impacts on many aspects of DNA metabolism. To gain insights into the functional links of Asf1 with other cellular machineries, we employed mass spectrometry coupled to tandem affinity purification (TAP) to investigate novel physical interactions of Asf1. Under different TAP-MS analysis conditions, we describe a new repertoire of Asf1 physical interactions and novel Asf1 post-translational modifications as ubiquitination, methylation and acetylation that open up new ways to regulate Asf1 functions. Asf1 co-purifies with several subunits of the TREX-2, SAGA complexes, and with nucleoporins Nup2, Nup60, and Nup57, which are all involved in transcription coupled to mRNA export in eukaryotes. Reciprocally, Thp1 and Sus1 interact with Asf1. Albeit mRNA export and GAL1 transcription are not affected in asf1Δ a strong genetic interaction exists between ASF1 and SUS1. Notably, supporting a functional link between Asf1 and TREX-2, both Sus1 and Thp1 affect the levels of Asf1-dependent histone H3K56 acetylation and histone H3 and H4 incorporation onto chromatin. Additionally, we provide evidence for a role of Asf1 in histone H2B ubiquitination. This work proposes a functional link between Asf1 and TREX-2 components in histone metabolism at the vicinity of the nuclear pore complex.
Collapse
Affiliation(s)
- Mercè Pamblanco
- Departament de Bioquímica i Biologia Molecular; Universitat de València; Burjassot, Spain
| | - Paula Oliete-Calvo
- Gene Expression and RNA Metabolism Laboratory; Centro de Investigación Príncipe Felipe (CIPF); València, Spain
| | - Encar García-Oliver
- Gene Expression and RNA Metabolism Laboratory; Centro de Investigación Príncipe Felipe (CIPF); València, Spain
| | - M Luz Valero
- Secció de Proteòmica; Servei Central de Suport a la Investigació Experimental (SCSIE); Universitat de València; Burjassot, Spain
| | | | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory; Centro de Investigación Príncipe Felipe (CIPF); València, Spain
| |
Collapse
|
44
|
Im JS, Keaton M, Lee KY, Kumar P, Park J, Dutta A. ATR checkpoint kinase and CRL1βTRCP collaborate to degrade ASF1a and thus repress genes overlapping with clusters of stalled replication forks. Genes Dev 2014; 28:875-87. [PMID: 24700029 PMCID: PMC4003279 DOI: 10.1101/gad.239194.114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many chemotherapeutic agents, such as doxorubicin (DOX), interfere with DNA replication. Here, Dutta and colleagues show that DOX treatment produces clusters of stalled replication forks and transcriptional repression of neighboring genes. An ATR-dependent checkpoint pathway that down-regulates histone chaperone ASF1a is shown to repress genes overlapping with stalled replication forks. Furthermore, ASF1a-depleted cancer cells are more sensitive to DOX, suggesting that the loss of this histone chaperone, as seen in several cancers, could be a personalized tumor marker for sensitivity to DOX. Many agents used for chemotherapy, such as doxorubicin, interfere with DNA replication, but the effect of this interference on transcription is largely unknown. Here we show that doxorubicin induces the firing of dense clusters of neoreplication origins that lead to clusters of stalled replication forks in gene-rich parts of the genome, particularly on expressed genes. Genes that overlap with these clusters of stalled forks are actively dechromatinized, unwound, and repressed by an ATR-dependent checkpoint pathway. The ATR checkpoint pathway causes a histone chaperone normally associated with the replication fork, ASF1a, to degrade through a CRL1βTRCP-dependent ubiquitination/proteasome pathway, leading to the localized dechromatinization and gene repression. Therefore, a globally active checkpoint pathway interacts with local clusters of stalled forks to specifically repress genes in the vicinity of the stalled forks, providing a new mechanism of action of chemotherapy drugs like doxorubicin. Finally, ASF1a-depleted cancer cells are more sensitive to doxorubicin, suggesting that the 7%–10% of prostate adenocarcinomas and adenoid cystic carcinomas reported to have homozygous deletion or significant underexpression of ASF1a should be tested for high sensitivity to doxorubicin.
Collapse
Affiliation(s)
- Jun-Sub Im
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
45
|
Tousled-like kinases phosphorylate Asf1 to promote histone supply during DNA replication. Nat Commun 2014; 5:3394. [PMID: 24598821 PMCID: PMC3977046 DOI: 10.1038/ncomms4394] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/05/2014] [Indexed: 12/25/2022] Open
Abstract
During DNA replication, nucleosomes are rapidly assembled on newly synthesized DNA to restore chromatin organization. Asf1, a key histone H3-H4 chaperone required for this process, is phosphorylated by Tousled-Like Kinases (TLKs). Here, we identify TLK phosphorylation sites by mass spectrometry and dissect how phosphorylation impacts on human Asf1 function. The divergent C-terminal tail of Asf1a is phosphorylated at several sites and this is required for timely progression through S phase. Consistent with this, biochemical analysis of wild-type and phosphomimetic Asf1a shows that phosphorylation enhances binding to histones and the downstream chaperones CAF-1 and HIRA. Moreover, we find that TLK phosphorylation of Asf1a is induced in cells experiencing deficiency of new histones and that TLK interaction with Asf1a involves its histone-binding pocket. We thus propose that TLK signaling promotes histone supply in S phase by targeting histone-free Asf1 and stimulating its ability to shuttle histones to sites of chromatin assembly.
Collapse
|
46
|
Amin AD, Vishnoi N, Prochasson P. A global requirement for the HIR complex in the assembly of chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:264-276. [PMID: 24459729 DOI: 10.1016/j.bbagrm.2011.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Due to its extensive length, DNA is packaged into a protective chromatin structure known as the nucleosome. In order to carry out various cellular functions, nucleosomes must be disassembled, allowing access to the underlying DNA, and subsequently reassembled on completion of these processes. The assembly and disassembly of nucleosomes is dependent on the function of histone modifiers, chromatin remodelers and histone chaperones. In this review, we discuss the roles of an evolutionarily conserved histone chaperone known as the HIR/HIRA complex. In S. cerevisiae, the HIR complex is made up of the proteins Hir1, Hir2, Hir3 and Hpc2, which collectively act in transcriptional regulation, elongation, gene silencing, cellular senescence and even aging. This review presents an overview of the role of the HIR complex, in yeast as well as other organisms, in each of these processes, in order to give a better understanding of how nucleosome assembly is imperative for cellular homeostasis and genomic integrity. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
47
|
Maintenance of heterochromatin boundary and nucleosome composition at promoters by the Asf1 histone chaperone and SWR1-C chromatin remodeler in Saccharomyces cerevisiae. Genetics 2014; 197:133-45. [PMID: 24578349 DOI: 10.1534/genetics.114.162909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin remodeling complexes cooperate to regulate gene promoters and to define chromatin neighborhoods. Here, we identified genetic and functional connections between two silencing-related chromatin factors in the maintenance of native heterochromatic structures and nucleosome composition at promoters. Building on a previously reported link between the histone chaperone Asf1 and the Yaf9 subunit of the SWR1-C chromatin remodeler, we found that ASF1 broadly interacted with genes encoding for SWR1-C subunits. Asf1 and Yaf9 were required for maintaining expression of heterochromatin-proximal genes and they worked cooperatively to prevent repression of telomere-proximal genes by limiting the spread of SIR complexes into nearby regions. Genome-wide Sir2 profiling, however, revealed that the cooperative heterochromatin regulation of Asf1 and SWR1-C occurred only on a subset of yeast telomeres. Extensive analyses demonstrated that formation of aberrant heterochromatin structures in the absence of ASF1 and YAF9 was not causal for the pronounced growth and transcriptional defects in cells lacking both these factors. Instead, genetic and molecular analysis revealed that H3K56 acetylation was required for efficient deposition of H2A.Z at subtelomeric and euchromatic gene promoters, pointing to a role for Asf1-dependent H3K56 acetylation in SWR1-C biology.
Collapse
|
48
|
Pascoalino B, Dindar G, Vieira-da-Rocha JP, Machado CR, Janzen CJ, Schenkman S. Characterization of two different Asf1 histone chaperones with distinct cellular localizations and functions in Trypanosoma brucei. Nucleic Acids Res 2013; 42:2906-18. [PMID: 24322299 PMCID: PMC3950673 DOI: 10.1093/nar/gkt1267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The anti-silencing function protein 1 (Asf1) is a chaperone that forms a complex with histones H3 and H4 facilitating dimer deposition and removal from chromatin. Most eukaryotes possess two different Asf1 chaperones but their specific functions are still unknown. Trypanosomes, a group of early-diverged eukaryotes, also have two, but more divergent Asf1 paralogs than Asf1 of higher eukaryotes. To unravel possible different functions, we characterized the two Asf1 proteins in Trypanosoma brucei. Asf1A is mainly localized in the cytosol but translocates to the nucleus in S phase. In contrast, Asf1B is predominantly localized in the nucleus, as described for other organisms. Cytosolic Asf1 knockdown results in accumulation of cells in early S phase of the cell cycle, whereas nuclear Asf1 knockdown arrests cells in S/G2 phase. Overexpression of cytosolic Asf1 increases the levels of histone H3 and H4 acetylation. In contrast to cytosolic Asf1, overexpression of nuclear Asf1 causes less pronounced growth defects in parasites exposed to genotoxic agents, prompting a function in chromatin remodeling in response to DNA damage. Only the cytosolic Asf1 interacts with recombinant H3/H4 dimers in vitro. These findings denote the early appearance in evolution of distinguishable functions for the two Asf1 chaperons in trypanosomes.
Collapse
Affiliation(s)
- Bruno Pascoalino
- Depto. de Microbiologia, Imunologia e Parasitologia, UNIFESP, Rua Pedro de Toledo 669 L6A, São Paulo, São Paulo 04039-032, Brazil, Lehrstuhl für Zell- und Entwicklungsbiologie, Theodor-Boveri-Institut, Biozentrum der Universität Würzburg, Am Hubland, 97074 Würzburg, Germany and Depto. de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP 4861, 30161-970, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The size of a eukaryotic genome presents a unique challenge to the cell: package and organize the DNA to fit within the confines of the nucleus while at the same time ensuring sufficient dynamics to allow access to specific sequences and features such as genes and regulatory elements. This is achieved via the dynamic nucleoprotein organization of eukaryotic DNA into chromatin. The basic unit of chromatin, the nucleosome, comprises a core particle with 147 bp of DNA wrapped 1.7 times around an octamer of histones. The nucleosome is a highly versatile and modular structure, both in its composition, with the existence of various histone variants, and through the addition of a series of posttranslational modifications on the histones. This versatility allows for both short-term regulatory responses to external signaling, as well as the long-term and multigenerational definition of large functional chromosomal domains within the nucleus, such as the centromere. Chromatin organization and its dynamics participate in essentially all DNA-templated processes, including transcription, replication, recombination, and repair. Here we will focus mainly on nucleosomal organization and describe the pathways and mechanisms that contribute to assembly of this organization and the role of chromatin in regulating the DNA replication program.
Collapse
Affiliation(s)
- David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
50
|
The dynamics of HCF-1 modulation of herpes simplex virus chromatin during initiation of infection. Viruses 2013; 5:1272-91. [PMID: 23698399 PMCID: PMC3712308 DOI: 10.3390/v5051272] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022] Open
Abstract
Successful infection of herpes simplex virus is dependent upon chromatin modulation by the cellular coactivator host cell factor-1 (HCF-1). This review focuses on the multiple chromatin modulation components associated with HCF-1 and the chromatin-related dynamics mediated by this coactivator that lead to the initiation of herpes simplex virus (HSV) immediate early gene expression.
Collapse
|