1
|
Herriage HC, Huang YT, Calvi BR. The antagonistic relationship between apoptosis and polyploidy in development and cancer. Semin Cell Dev Biol 2024; 156:35-43. [PMID: 37331841 PMCID: PMC10724375 DOI: 10.1016/j.semcdb.2023.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
One of the important functions of regulated cell death is to prevent cells from inappropriately acquiring extra copies of their genome, a state known as polyploidy. Apoptosis is the primary cell death mechanism that prevents polyploidy, and defects in this apoptotic response can result in polyploid cells whose subsequent error-prone chromosome segregation are a major contributor to genome instability and cancer progression. Conversely, some cells actively repress apoptosis to become polyploid as part of normal development or regeneration. Thus, although apoptosis prevents polyploidy, the polyploid state can actively repress apoptosis. In this review, we discuss progress in understanding the antagonistic relationship between apoptosis and polyploidy in development and cancer. Despite recent advances, a key conclusion is that much remains unknown about the mechanisms that link apoptosis to polyploid cell cycles. We suggest that drawing parallels between the regulation of apoptosis in development and cancer could help to fill this knowledge gap and lead to more effective therapies.
Collapse
Affiliation(s)
- Hunter C Herriage
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
2
|
Lakhotia SC. C-value paradox: Genesis in misconception that natural selection follows anthropocentric parameters of 'economy' and 'optimum'. BBA ADVANCES 2023; 4:100107. [PMID: 37868661 PMCID: PMC10587719 DOI: 10.1016/j.bbadva.2023.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
C-value paradox refers to the lack of correlation between biological complexity and the intuitively expected protein-coding genomic information or DNA content. Here I discuss five questions about this paradox: i) Do biologically complex organisms carry more protein-coding genes? ii) Does variable accumulation of selfish/ junk/ parasitic DNA underlie the c-value paradox? iii) Can nucleoskeletal or nucleotypic function of DNA explain the enigma of orders of magnitude high levels of DNA in some 'lower' taxa or in taxonomically related species? iv) Can the newly understood noncoding but functional DNA explain the c-value paradox? and, v) Does natural selection uniformly apply the anthropocentric parameters for 'optimum' and 'economy'? Answers to Q.1-5 are largely negative. Biology presents numerous 'anomalous' examples where the same end function/ phenotype is attained in different organisms through astoundingly diverse ways that appear 'illogical' in our perceptions. Such evolutionary oddities exist because natural selection, unlike a designer, exploits random and stochastic events to modulate the existing system. Consequently, persistence of the new-found 'solution/s' often appear bizarre, uneconomic, and therefore, paradoxical to human logic. The unexpectedly high c-values in diverse organisms are irreversible evolutionary accidents that persisted, and the additional DNA often got repurposed over the evolutionary time scale. Therefore, the c-value paradox is a redundant issue. Future integrative biological studies should address evolutionary mechanisms and processes underlying sporadic DNA expansions/ contractions, and how the newly acquired DNA content has been repurposed in diverse groups.
Collapse
Affiliation(s)
- Subhash C. Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Hill HJ, Bonser D, Golic KG. Dicentric chromosome breakage in Drosophila melanogaster is influenced by pericentric heterochromatin and occurs in nonconserved hotspots. Genetics 2023; 224:iyad052. [PMID: 37010100 PMCID: PMC10213500 DOI: 10.1093/genetics/iyad052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/18/2022] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Chromosome breakage plays an important role in the evolution of karyotypes and can produce deleterious effects within a single individual, such as aneuploidy or cancer. Forces that influence how and where chromosomes break are not fully understood. In humans, breakage tends to occur in conserved hotspots called common fragile sites (CFS), especially during replication stress. By following the fate of dicentric chromosomes in Drosophila melanogaster, we find that breakage under tension also tends to occur in specific hotspots. Our experimental approach was to induce sister chromatid exchange in a ring chromosome to generate a dicentric chromosome with a double chromatid bridge. In the following cell division, the dicentric bridges may break. We analyzed the breakage patterns of 3 different ring-X chromosomes. These chromosomes differ by the amount and quality of heterochromatin they carry as well as their genealogical history. For all 3 chromosomes, breakage occurs preferentially in several hotspots. Surprisingly, we found that the hotspot locations are not conserved between the 3 chromosomes: each displays a unique array of breakage hotspots. The lack of hotspot conservation, along with a lack of response to aphidicolin, suggests that these breakage sites are not entirely analogous to CFS and may reveal new mechanisms of chromosome fragility. Additionally, the frequency of dicentric breakage and the durability of each chromosome's spindle attachment vary significantly between the 3 chromosomes and are correlated with the origin of the centromere and the amount of pericentric heterochromatin. We suggest that different centromere strengths could account for this.
Collapse
Affiliation(s)
- Hunter J Hill
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Danielle Bonser
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kent G Golic
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Bernués J, Izquierdo-Boulstridge A, Reina O, Castejón L, Fernández-Castañer E, Leal N, Guerrero-Pepinosa N, Bonet-Costa C, Vujatovic O, Climent-Cantó P, Azorín F. Lysine 27 dimethylation of Drosophila linker histone dH1 contributes to heterochromatin organization independently of H3K9 methylation. Nucleic Acids Res 2022; 50:9212-9225. [PMID: 36039761 PMCID: PMC9458452 DOI: 10.1093/nar/gkac716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
Post-translational modifications (PTMs) of core histones are important epigenetic determinants that correlate with functional chromatin states. However, despite multiple linker histone H1s PTMs have been identified, little is known about their genomic distribution and contribution to the epigenetic regulation of chromatin. Here, we address this question in Drosophila that encodes a single somatic linker histone, dH1. We previously reported that dH1 is dimethylated at K27 (dH1K27me2). Here, we show that dH1K27me2 is a major PTM of Drosophila heterochromatin. At mitosis, dH1K27me2 accumulates at pericentromeric heterochromatin, while, in interphase, it is also detected at intercalary heterochromatin. ChIPseq experiments show that >98% of dH1K27me2 enriched regions map to heterochromatic repetitive DNA elements, including transposable elements, simple DNA repeats and satellite DNAs. Moreover, expression of a mutated dH1K27A form, which impairs dH1K27me2, alters heterochromatin organization, upregulates expression of heterochromatic transposable elements and results in the accumulation of RNA:DNA hybrids (R-loops) in heterochromatin, without affecting H3K9 methylation and HP1a binding. The pattern of dH1K27me2 is H3K9 methylation independent, as it is equally detected in flies carrying a H3K9R mutation, and is not affected by depletion of Su(var)3-9, HP1a or Su(var)4-20. Altogether these results suggest that dH1K27me2 contributes to heterochromatin organization independently of H3K9 methylation.
Collapse
Affiliation(s)
- Jordi Bernués
- To whom correspondence should be addressed. Tel: +34 934034960;
| | - Andrea Izquierdo-Boulstridge
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain,Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Lucía Castejón
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain,Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Elena Fernández-Castañer
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Núria Leal
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Nancy Guerrero-Pepinosa
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Carles Bonet-Costa
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain,Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Olivera Vujatovic
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain,Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Paula Climent-Cantó
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain,Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain,Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Dialynas G, Delabaere L, Chiolo I. Arp2/3 and Unc45 maintain heterochromatin stability in Drosophila polytene chromosomes. Exp Biol Med (Maywood) 2019; 244:1362-1371. [PMID: 31364400 PMCID: PMC6880141 DOI: 10.1177/1535370219862282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022] Open
Abstract
Repairing DNA double-strand breaks is particularly challenging in pericentromeric heterochromatin, where the abundance of repeated sequences exacerbates the risk of ectopic recombination. In Drosophila Kc cells, accurate homologous recombination repair of heterochromatic double-strand breaks relies on the relocalization of repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. This movement is driven by Arp2/3-dependent nuclear actin filaments and myosins’ ability to walk along them. Conserved mechanisms enable the relocalization of heterochromatic repair sites in mouse cells, and defects in these pathways lead to massive ectopic recombination in heterochromatin and chromosome rearrangements. In Drosophila polytene chromosomes, extensive DNA movement is blocked by a stiff structure of chromosome bundles. Repair pathways in this context are poorly characterized, and whether heterochromatic double-strand breaks relocalize in these cells is unknown. Here, we show that damage in heterochromatin results in relaxation of the heterochromatic chromocenter, consistent with a dynamic response. Arp2/3, the Arp2/3 activator Scar, and the myosin activator Unc45, are required for heterochromatin stability in polytene cells, suggesting that relocalization enables heterochromatin repair also in this tissue. Together, these studies reveal critical roles for actin polymerization and myosin motors in heterochromatin repair and genome stability across different organisms and tissue types.
Collapse
Affiliation(s)
- George Dialynas
- Department of Molecular and Computational Biology,
University
of Southern California, Los Angeles
90089, USA
| | - Laetitia Delabaere
- Department of Molecular and Computational Biology,
University
of Southern California, Los Angeles
90089, USA
| | - Irene Chiolo
- Department of Molecular and Computational Biology,
University
of Southern California, Los Angeles
90089, USA
| |
Collapse
|
6
|
Kolesnikova TD, Goncharov FP, Zhimulev IF. Similarity in replication timing between polytene and diploid cells is associated with the organization of the Drosophila genome. PLoS One 2018; 13:e0195207. [PMID: 29659604 PMCID: PMC5902040 DOI: 10.1371/journal.pone.0195207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Morphologically, polytene chromosomes of Drosophila melanogaster consist of compact “black” bands alternating with less compact “grey” bands and interbands. We developed a comprehensive approach that combines cytological mapping data of FlyBase-annotated genes and novel tools for predicting cytogenetic features of chromosomes on the basis of their protein composition and determined the genomic coordinates for all black bands of polytene chromosome 2R. By a PCNA immunostaining assay, we obtained the replication timetable for all the bands mapped. The results allowed us to compare replication timing between polytene chromosomes in salivary glands and chromosomes from cultured diploid cell lines and to observe a substantial similarity in the global replication patterns at the band resolution level. In both kinds of chromosomes, the intervals between black bands correspond to early replication initiation zones. Black bands are depleted of replication initiation events and are characterized by a gradient of replication timing; therefore, the time of replication completion correlates with the band length. The bands are characterized by low gene density, contain predominantly tissue-specific genes, and are represented by silent chromatin types in various tissues. The borders of black bands correspond well to the borders of topological domains as well as to the borders of the zones showing H3K27me3, SUUR, and LAMIN enrichment. In conclusion, the characteristic pattern of polytene chromosomes reflects partitioning of the Drosophila genome into two global types of domains with contrasting properties. This partitioning is conserved in different tissues and determines replication timing in Drosophila.
Collapse
Affiliation(s)
- Tatyana D. Kolesnikova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Fedor P. Goncharov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
7
|
DNA Replication Control During Drosophila Development: Insights into the Onset of S Phase, Replication Initiation, and Fork Progression. Genetics 2017; 207:29-47. [PMID: 28874453 PMCID: PMC5586379 DOI: 10.1534/genetics.115.186627] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. Drosophila melanogaster serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types. Additionally, Drosophila has provided several developmentally regulated replication models to dissect the molecular mechanisms that underlie replication-based copy number changes in the genome, which include differential underreplication and gene amplification. Here, we review key findings and our current understanding of the developmental control of DNA replication in the contexts of the archetypal replication program as well as of underreplication and differential gene amplification. We focus on the use of these latter two replication systems to delineate many of the molecular mechanisms that underlie the developmental control of replication initiation and fork elongation.
Collapse
|
8
|
Boldyreva LV, Goncharov FP, Demakova OV, Zykova TY, Levitsky VG, Kolesnikov NN, Pindyurin AV, Semeshin VF, Zhimulev IF. Protein and Genetic Composition of Four Chromatin Types in Drosophila melanogaster Cell Lines. Curr Genomics 2017; 18:214-226. [PMID: 28367077 PMCID: PMC5345337 DOI: 10.2174/1389202917666160512164913] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recently, we analyzed genome-wide protein binding data for the Drosophila cell lines S2, Kc, BG3 and Cl.8 (modENCODE Consortium) and identified a set of 12 proteins enriched in the regions corresponding to interbands of salivary gland polytene chromosomes. Using these data, we developed a bioinformatic pipeline that partitioned the Drosophila genome into four chromatin types that we hereby refer to as aquamarine, lazurite, malachite and ruby. RESULTS Here, we describe the properties of these chromatin types across different cell lines. We show that aquamarine chromatin tends to harbor transcription start sites (TSSs) and 5' untranslated regions (5'UTRs) of the genes, is enriched in diverse "open" chromatin proteins, histone modifications, nucleosome remodeling complexes and transcription factors. It encompasses most of the tRNA genes and shows enrichment for non-coding RNAs and miRNA genes. Lazurite chromatin typically encompasses gene bodies. It is rich in proteins involved in transcription elongation. Frequency of both point mutations and natural deletion breakpoints is elevated within lazurite chromatin. Malachite chromatin shows higher frequency of insertions of natural transposons. Finally, ruby chromatin is enriched for proteins and histone modifications typical for the "closed" chromatin. Ruby chromatin has a relatively low frequency of point mutations and is essentially devoid of miRNA and tRNA genes. Aquamarine and ruby chromatin types are highly stable across cell lines and have contrasting properties. Lazurite and malachite chromatin types also display characteristic protein composition, as well as enrichment for specific genomic features. We found that two types of chromatin, aquamarine and ruby, retain their complementary protein patterns in four Drosophila cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Igor F. Zhimulev
- Address correspondence to this author at the Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Tel: +7 383 363-90-41; Fax: +7 383 363-90-78; E-mail:
| |
Collapse
|
9
|
Abstract
As the ratio of the copy number of the most replicated to the unreplicated regions in the same chromosome, the definition of chromosomal replication complexity (CRC) appears to leave little room for variation, being either two during S-phase or one otherwise. However, bacteria dividing faster than they replicate their chromosome spike CRC to four and even eight. A recent experimental inquiry about the limits of CRC in Escherichia coli revealed two major reasons to avoid elevating it further: (i) increased chromosomal fragmentation and (ii) complications with subsequent double-strand break repair. Remarkably, examples of stable elevated CRC in eukaryotic chromosomes are well known under various terms like "differential replication," "underreplication," "DNA puffs," "onion-skin replication," or "re-replication" and highlight the phenomenon of static replication fork (sRF). To accurately describe the resulting "amplification by overinitiation," I propose a new term: "replification" (subchromosomal overreplication). In both prokaryotes and eukaryotes, replification, via sRF processing, causes double-strand DNA breaks and, with their repair elevating chromosomal rearrangements, represents a novel genome instability factor. I suggest how static replication bubbles could be stabilized and speculate that some tandem duplications represent such persistent static bubbles. Moreover, I propose how static replication bubbles could be transformed into tandem duplications, double minutes, or inverted triplications. Possible experimental tests of these models are discussed.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
10
|
Khoroshko VA, Levitsky VG, Zykova TY, Antonenko OV, Belyaeva ES, Zhimulev IF. Chromatin Heterogeneity and Distribution of Regulatory Elements in the Late-Replicating Intercalary Heterochromatin Domains of Drosophila melanogaster Chromosomes. PLoS One 2016; 11:e0157147. [PMID: 27300486 PMCID: PMC4907538 DOI: 10.1371/journal.pone.0157147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/25/2016] [Indexed: 12/28/2022] Open
Abstract
Late-replicating domains (intercalary heterochromatin) in the Drosophila genome display a number of features suggesting their organization is quite unique. Typically, they are quite large and encompass clusters of functionally unrelated tissue-specific genes. They correspond to the topologically associating domains and conserved microsynteny blocks. Our study aims at exploring further details of molecular organization of intercalary heterochromatin and has uncovered surprising heterogeneity of chromatin composition in these regions. Using the 4HMM model developed in our group earlier, intercalary heterochromatin regions were found to host chromatin fragments with a particular epigenetic profile. Aquamarine chromatin fragments (spanning 0.67% of late-replicating regions) are characterized as a class of sequences that appear heterogeneous in terms of their decompactization. These fragments are enriched with enhancer sequences and binding sites for insulator proteins. They likely mark the chromatin state that is related to the binding of cis-regulatory proteins. Malachite chromatin fragments (11% of late-replicating regions) appear to function as universal transitional regions between two contrasting chromatin states. Namely, they invariably delimit intercalary heterochromatin regions from the adjacent active chromatin of interbands. Malachite fragments also flank aquamarine fragments embedded in the repressed chromatin of late-replicating regions. Significant enrichment of insulator proteins CP190, SU(HW), and MOD2.2 was observed in malachite chromatin. Neither aquamarine nor malachite chromatin types appear to correlate with the positions of highly conserved non-coding elements (HCNE) that are typically replete in intercalary heterochromatin. Malachite chromatin found on the flanks of intercalary heterochromatin regions tends to replicate earlier than the malachite chromatin embedded in intercalary heterochromatin. In other words, there exists a gradient of replication progressing from the flanks of intercalary heterochromatin regions center-wise. The peculiar organization and features of replication in large late-replicating regions are discussed as possible factors shaping the evolutionary stability of intercalary heterochromatin.
Collapse
Affiliation(s)
| | - Viktor G. Levitsky
- Novosibirsk State University, Novosibirsk, Russia
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Tatyana Yu. Zykova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | | | - Elena S. Belyaeva
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
11
|
Tethering of SUUR and HP1 proteins results in delayed replication of euchromatic regions in Drosophila melanogaster polytene chromosomes. Chromosoma 2014; 124:209-20. [PMID: 25398563 DOI: 10.1007/s00412-014-0491-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/14/2014] [Accepted: 10/28/2014] [Indexed: 12/19/2022]
Abstract
We analyze how artificial targeting of Suppressor of Under-Replication (SUUR) and HP1 proteins affects DNA replication in the "open," euchromatic regions. Normally these regions replicate early in the S phase and display no binding of either SUUR or HP1. These proteins were expressed as fusions with DNA-binding domain of GAL4 and recruited to multimerized UAS integrated in three euchromatic sites of the polytene X chromosome: 3B, 8D, and 18B. Using PCNA staining as a marker of ongoing replication, we showed that targeting of SUUR(GAL4DBD) and HP1(GAL4DBD) results in delayed replication of appropriate euchromatic regions. Specifically, replication at these regions starts early, much like in the absence of the fusion proteins; however, replication completion is significantly delayed. Notably, delayed replication was insufficient to induce underreplication. Recruitment of SUUR(GAL4DBD) and HP1(GAL4DBD) had distinct effects on expression of a mini-white reporter, found near UAS. Whereas SUUR(GAL4DBD) had no measurable influence on mini-white expression, HP1(GAL4DBD) targeting silenced mini-white, even in the absence of functional SU(VAR)3-9. Furthermore, recruitment of SUUR(GAL4DBD) and HP1(GAL4DBD) had distinct effects on the protein composition of target regions. HP1(GAL4DBD) but not SUUR(GAL4DBD) could displace an open chromatin marker, CHRIZ, from the tethering sites.
Collapse
|
12
|
Yarosh W, Spradling AC. Incomplete replication generates somatic DNA alterations within Drosophila polytene salivary gland cells. Genes Dev 2014; 28:1840-55. [PMID: 25128500 PMCID: PMC4197960 DOI: 10.1101/gad.245811.114] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
DNA replication remains unfinished in many Drosophila polyploid cells, which harbor disproportionately fewer copies of late-replicating chromosomal regions. Using NextGen sequencing of DNA from giant polytene cells of the larval salivary gland, Yarosh and Spradling show that sporadic, incomplete replication during the endocycle S phase alters the Drosophila genome at thousands of sites that differ in every cell; similar events occur in the ovary. The authors propose that the extensive somatic DNA instability described here underlies position effect variegation and molds the structure of polytene chromosomes. DNA replication remains unfinished in many Drosophila polyploid cells, which harbor disproportionately fewer copies of late-replicating chromosomal regions. By analyzing paired-end high-throughput sequence data from polytene larval salivary gland cells, we define 112 underreplicated (UR) euchromatic regions 60–480 kb in size. To determine the effects of underreplication on genome integrity, we analyzed anomalous read pairs and breakpoint reads throughout the euchromatic genome. Each UR euchromatic region contains many different deletions 10–500 kb in size, while very few deletions are present in fully replicated chromosome regions or UR zones from embryo DNA. Thus, during endocycles, stalled forks within UR regions break and undergo local repair instead of remaining stable and generating nested forks. As a result, each salivary gland cell contains hundreds of unique deletions that account for their copy number reductions. Similar UR regions and deletions were observed in ovarian DNA, suggesting that incomplete replication, fork breakage, and repair occur widely in polytene cells. UR regions are enriched in genes encoding immunoglobulin superfamily proteins and contain many neurally expressed and homeotic genes. We suggest that the extensive somatic DNA instability described here underlies position effect variegation, molds the structure of polytene chromosomes, and should be investigated for possible functions.
Collapse
Affiliation(s)
- Will Yarosh
- Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Allan C Spradling
- Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| |
Collapse
|
13
|
Zhimulev IF, Zykova TY, Goncharov FP, Khoroshko VA, Demakova OV, Semeshin VF, Pokholkova GV, Boldyreva LV, Demidova DS, Babenko VN, Demakov SA, Belyaeva ES. Genetic organization of interphase chromosome bands and interbands in Drosophila melanogaster. PLoS One 2014; 9:e101631. [PMID: 25072930 PMCID: PMC4114487 DOI: 10.1371/journal.pone.0101631] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/09/2014] [Indexed: 12/18/2022] Open
Abstract
Drosophila melanogaster polytene chromosomes display specific banding pattern; the underlying genetic organization of this pattern has remained elusive for many years. In the present paper, we analyze 32 cytology-mapped polytene chromosome interbands. We estimated molecular locations of these interbands, described their molecular and genetic organization and demonstrate that polytene chromosome interbands contain the 5' ends of housekeeping genes. As a rule, interbands display preferential "head-to-head" orientation of genes. They are enriched for "broad" class promoters characteristic of housekeeping genes and associate with open chromatin proteins and Origin Recognition Complex (ORC) components. In two regions, 10A and 100B, coding sequences of genes whose 5'-ends reside in interbands map to constantly loosely compacted, early-replicating, so-called "grey" bands. Comparison of expression patterns of genes mapping to late-replicating dense bands vs genes whose promoter regions map to interbands shows that the former are generally tissue-specific, whereas the latter are represented by ubiquitously active genes. Analysis of RNA-seq data (modENCODE-FlyBase) indicates that transcripts from interband-mapping genes are present in most tissues and cell lines studied, across most developmental stages and upon various treatment conditions. We developed a special algorithm to computationally process protein localization data generated by the modENCODE project and show that Drosophila genome has about 5700 sites that demonstrate all the features shared by the interbands cytologically mapped to date.
Collapse
Affiliation(s)
- Igor F. Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Tatyana Yu. Zykova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Fyodor P. Goncharov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Varvara A. Khoroshko
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga V. Demakova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valeriy F. Semeshin
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Galina V. Pokholkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lidiya V. Boldyreva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Darya S. Demidova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir N. Babenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey A. Demakov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena S. Belyaeva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Andreyenkova NG, Kolesnikova TD, Makunin IV, Pokholkova GV, Boldyreva LV, Zykova TY, Zhimulev IF, Belyaeva ES. Late replication domains are evolutionary conserved in the Drosophila genome. PLoS One 2013; 8:e83319. [PMID: 24391753 PMCID: PMC3877026 DOI: 10.1371/journal.pone.0083319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/01/2013] [Indexed: 12/20/2022] Open
Abstract
Drosophila chromosomes are organized into distinct domains differing in their predominant chromatin composition, replication timing and evolutionary conservation. We show on a genome-wide level that genes whose order has remained unaltered across 9 Drosophila species display late replication timing and frequently map to the regions of repressive chromatin. This observation is consistent with the existence of extensive domains of repressive chromatin that replicate extremely late and have conserved gene order in the Drosophila genome. We suggest that such repressive chromatin domains correspond to a handful of regions that complete replication at the very end of S phase. We further demonstrate that the order of genes in these regions is rarely altered in evolution. Substantial proportion of such regions significantly coincide with large synteny blocks. This indicates that there are evolutionary mechanisms maintaining the integrity of these late-replicating chromatin domains. The synteny blocks corresponding to the extremely late-replicating regions in the D. melanogaster genome consistently display two-fold lower gene density across different Drosophila species.
Collapse
Affiliation(s)
- Natalya G. Andreyenkova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana D. Kolesnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Igor V. Makunin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Research Computing Centre, The University of Queensland, Brisbane, St Lucia, QLD, Australia
| | - Galina V. Pokholkova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lidiya V. Boldyreva
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana Yu. Zykova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- * E-mail:
| | - Elena S. Belyaeva
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
15
|
Sher N, Von Stetina JR, Bell GW, Matsuura S, Ravid K, Orr-Weaver TL. Fundamental differences in endoreplication in mammals and Drosophila revealed by analysis of endocycling and endomitotic cells. Proc Natl Acad Sci U S A 2013; 110:9368-73. [PMID: 23613587 PMCID: PMC3677442 DOI: 10.1073/pnas.1304889110] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Throughout the plant and animal kingdoms specific cell types become polyploid, increasing their DNA content to attain a large cell size. In mammals, megakaryocytes (MKs) become polyploid before fragmenting into platelets. The mammalian trophoblast giant cells (TGCs) exploit their size to form a barrier between the maternal and embryonic tissues. The mechanism of polyploidization has been investigated extensively in Drosophila, in which a modified cell cycle--the endocycle, consisting solely of alternating S and gap phases--produces polyploid tissues. During S phase in the Drosophila endocycle, heterochromatin and specific euchromatic regions are underreplicated and reduced in copy number. Here we investigate the properties of polyploidization in murine MKs and TGCs. We induced differentiation of primary MKs and directly microdissected TGCs from embryonic day 9.5 implantation sites. The copy number across the genome was analyzed by array-based comparative genome hybridization. In striking contrast to Drosophila, the genome was uniformly and integrally duplicated in both MKs and TGCs. This was true even for heterochromatic regions analyzed by quantitative PCR. Underreplication of specific regions in polyploid cells is proposed to be due to a slower S phase, resulting from low expression of S-phase genes, causing failure to duplicate late replicating genomic intervals. We defined the transcriptome of TGCs and found robust expression of S-phase genes. Similarly, S-phase gene expression is not repressed in MKs, providing an explanation for the distinct endoreplication parameters compared with Drosophila. Consistent with TGCs endocycling rather than undergoing endomitosis, they have low expression of M-phase genes.
Collapse
Affiliation(s)
| | | | | | - Shinobu Matsuura
- Departments of Medicine and Biochemistry, and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118
| | - Katya Ravid
- Departments of Medicine and Biochemistry, and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118
| | - Terry L. Orr-Weaver
- Whitehead Institute and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142; and
| |
Collapse
|
16
|
Rubtsov NB. Organization of eukaryotic chromosomes: From Kol’tsov’s studies up to present day. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413010109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Induced transcription results in local changes in chromatin structure, replication timing, and DNA polytenization in a site of intercalary heterochromatin. Chromosoma 2012; 121:573-83. [PMID: 23015267 DOI: 10.1007/s00412-012-0382-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/12/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
In salivary gland polytene chromosomes of Drosophila melanogaster, the regions of intercalary heterochromatin are characterized by late replication, under-replication, and genetic silencing. Using Gal4/UAS system, we induced transcription of sequences adjacent to transgene insertions in the band 11A6-9. This activation resulted in a loss of "silent" and appearance of "active" epigenetic marks, recruitment of RNA polymerase II, and formation of a puff. The activated region is now early replicating and shows increased level of DNA polytenization. Notably, all these changes are restricted to the area around the inserts, whereas the rest of the band remains inactive and late replicating. Although only a short area near the insertion site is transcribed, it results in an "open" chromatin conformation in a much broader region. We conclude that regions of intercalary heterochromatin do not form stand-alone units of late replication and under-replication. Every part of such regions can be activated and polytenized independently of other parts.
Collapse
|
18
|
Drosopoulou E, Nakou I, Síchová J, Kubíčková S, Marec F, Mavragani-Tsipidou P. Sex chromosomes and associated rDNA form a heterochromatic network in the polytene nuclei of Bactrocera oleae (Diptera: Tephritidae). Genetica 2012; 140:169-80. [PMID: 22825842 DOI: 10.1007/s10709-012-9668-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
Abstract
The olive fruit fly, Bactrocera oleae, has a diploid set of 2n = 12 chromosomes including a pair of sex chromosomes, XX in females and XY in males, but polytene nuclei show only five polytene chromosomes, obviously formed by five autosome pairs. Here we examined the fate of the sex chromosomes in the polytene complements of this species using fluorescence in situ hybridization (FISH) with the X and Y chromosome-derived probes, prepared by laser microdissection of the respective chromosomes from mitotic metaphases. Specificity of the probes was verified by FISH in preparations of mitotic chromosomes. In polytene nuclei, both probes hybridized strongly to a granular heterochromatic network, indicating thus underreplication of the sex chromosomes. The X chromosome probe (in both female and male nuclei) highlighted most of the granular mass, whereas the Y chromosome probe (in male nuclei) identified a small compact body of this heterochromatic network. Additional hybridization signals of the X probe were observed in the centromeric region of polytene chromosome II and in the telomeres of six polytene arms. We also examined distribution of the major ribosomal DNA (rDNA) using FISH with an 18S rDNA probe in both mitotic and polytene chromosome complements of B. oleae. In mitotic metaphases, the probe hybridized exclusively to the sex chromosomes. The probe signals localized a discrete rDNA site at the end of the short arm of the X chromosome, whereas they appeared dispersed over the entire dot-like Y chromosome. In polytene nuclei, the rDNA was found associated with the heterochromatic network representing the sex chromosomes. Only in nuclei with preserved nucleolar structure, the probe signals were scattered in the restricted area of the nucleolus. Thus, our study clearly shows that the granular heterochromatic network of polytene nuclei in B. oleae is formed by the underreplicated sex chromosomes and associated rDNA.
Collapse
Affiliation(s)
- Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
19
|
Zhimulev IF, Belyaeva ES, Vatolina TY, Demakov SA. Banding patterns in Drosophila melanogaster polytene chromosomes correlate with DNA-binding protein occupancy. Bioessays 2012; 34:498-508. [PMID: 22419120 DOI: 10.1002/bies.201100142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The most enigmatic feature of polytene chromosomes is their banding pattern, the genetic organization of which has been a very attractive puzzle for many years. Recent genome-wide protein mapping efforts have produced a wealth of data for the chromosome proteins of Drosophila cells. Based on their specific protein composition, the chromosomes comprise two types of bands, as well as interbands. These differ in terms of time of replication and specific types of proteins. The interbands are characterized by their association with "active" chromatin proteins, nucleosome remodeling, and origin recognition complexes, and so they have three functions: acting as binding sites for RNA pol II, initiation of replication and nucleosome remodeling of short fragments of DNA. The borders and organization of the same band and interband regions are largely identical, irrespective of the cell type studied. This demonstrates that the banding pattern is a universal principle of the organization of interphase polytene and non-polytene chromosomes.
Collapse
Affiliation(s)
- Igor F Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
20
|
Late replication domains in polytene and non-polytene cells of Drosophila melanogaster. PLoS One 2012; 7:e30035. [PMID: 22253867 PMCID: PMC3254639 DOI: 10.1371/journal.pone.0030035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/08/2011] [Indexed: 12/20/2022] Open
Abstract
In D. melanogaster polytene chromosomes, intercalary heterochromatin (IH) appears as large dense bands scattered in euchromatin and comprises clusters of repressed genes. IH displays distinctly low gene density, indicative of their particular regulation. Genes embedded in IH replicate late in the S phase and become underreplicated. We asked whether localization and organization of these late-replicating domains is conserved in a distinct cell type. Using published comprehensive genome-wide chromatin annotation datasets (modENCODE and others), we compared IH organization in salivary gland cells and in a Kc cell line. We first established the borders of 60 IH regions on a molecular map, these regions containing underreplicated material and encompassing ∼12% of Drosophila genome. We showed that in Kc cells repressed chromatin constituted 97% of the sequences that corresponded to IH bands. This chromatin is depleted for ORC-2 binding and largely replicates late. Differences in replication timing between the cell types analyzed are local and affect only sub-regions but never whole IH bands. As a rule such differentially replicating sub-regions display open chromatin organization, which apparently results from cell-type specific gene expression of underlying genes. We conclude that repressed chromatin organization of IH is generally conserved in polytene and non-polytene cells. Yet, IH domains do not function as transcription- and replication-regulatory units, because differences in transcription and replication between cell types are not domain-wide, rather they are restricted to small “islands” embedded in these domains. IH regions can thus be defined as a special class of domains with low gene density, which have narrow temporal expression patterns, and so displaying relatively conserved organization.
Collapse
|
21
|
Sher N, Bell GW, Li S, Nordman J, Eng T, Eaton ML, Macalpine DM, Orr-Weaver TL. Developmental control of gene copy number by repression of replication initiation and fork progression. Genome Res 2011; 22:64-75. [PMID: 22090375 DOI: 10.1101/gr.126003.111] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Precise DNA replication is crucial for genome maintenance, yet this process has been inherently difficult to study on a genome-wide level in untransformed differentiated metazoan cells. To determine how metazoan DNA replication can be repressed, we examined regions selectively under-replicated in Drosophila polytene salivary glands, and found they are transcriptionally silent and enriched for the repressive H3K27me3 mark. In the first genome-wide analysis of binding of the origin recognition complex (ORC) in a differentiated metazoan tissue, we find that ORC binding is dramatically reduced within these large domains, suggesting reduced initiation as one mechanism leading to under-replication. Inhibition of replication fork progression by the chromatin protein SUUR is an additional repression mechanism to reduce copy number. Although repressive histone marks are removed when SUUR is mutated and copy number restored, neither transcription nor ORC binding is reinstated. Tethering of the SUUR protein to a specific site is insufficient to block replication, however. These results establish that developmental control of DNA replication, at both the initiation and elongation stages, is a mechanism to change gene copy number during differentiation.
Collapse
Affiliation(s)
- Noa Sher
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Riddle NC, Minoda A, Kharchenko PV, Alekseyenko AA, Schwartz YB, Tolstorukov MY, Gorchakov AA, Jaffe JD, Kennedy C, Linder-Basso D, Peach SE, Shanower G, Zheng H, Kuroda MI, Pirrotta V, Park PJ, Elgin SC, Karpen GH. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res 2011; 21:147-63. [PMID: 21177972 PMCID: PMC3032919 DOI: 10.1101/gr.110098.110] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 12/08/2010] [Indexed: 12/18/2022]
Abstract
Eukaryotic genomes are packaged in two basic forms, euchromatin and heterochromatin. We have examined the composition and organization of Drosophila melanogaster heterochromatin in different cell types using ChIP-array analysis of histone modifications and chromosomal proteins. As anticipated, the pericentric heterochromatin and chromosome 4 are on average enriched for the "silencing" marks H3K9me2, H3K9me3, HP1a, and SU(VAR)3-9, and are generally depleted for marks associated with active transcription. The locations of the euchromatin-heterochromatin borders identified by these marks are similar in animal tissues and most cell lines, although the amount of heterochromatin is variable in some cell lines. Combinatorial analysis of chromatin patterns reveals distinct profiles for euchromatin, pericentric heterochromatin, and the 4th chromosome. Both silent and active protein-coding genes in heterochromatin display complex patterns of chromosomal proteins and histone modifications; a majority of the active genes exhibit both "activation" marks (e.g., H3K4me3 and H3K36me3) and "silencing" marks (e.g., H3K9me2 and HP1a). The hallmark of active genes in heterochromatic domains appears to be a loss of H3K9 methylation at the transcription start site. We also observe complex epigenomic profiles of intergenic regions, repeated transposable element (TE) sequences, and genes in the heterochromatic extensions. An unexpectedly large fraction of sequences in the euchromatic chromosome arms exhibits a heterochromatic chromatin signature, which differs in size, position, and impact on gene expression among cell types. We conclude that patterns of heterochromatin/euchromatin packaging show greater complexity and plasticity than anticipated. This comprehensive analysis provides a foundation for future studies of gene activity and chromosomal functions that are influenced by or dependent upon heterochromatin.
Collapse
Affiliation(s)
- Nicole C. Riddle
- Department of Biology, Washington University St. Louis, Missouri 63130, USA
| | - Aki Minoda
- Department of Molecular and Cell Biology, University of California at Berkeley and Department of Genome Dynamics, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| | - Peter V. Kharchenko
- Center for Biomedical Informatics, Harvard Medical School and Informatics Program, Children's Hospital, Boston, Massachusetts 02115, USA
| | - Artyom A. Alekseyenko
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yuri B. Schwartz
- Department of Molecular Biology & Biochemistry, Rutgers University, Piscataway, New Jersey 08901, USA
- Department of Molecular Biology, Umea University, 90187 Umea, Sweden
| | - Michael Y. Tolstorukov
- Center for Biomedical Informatics, Harvard Medical School and Informatics Program, Children's Hospital, Boston, Massachusetts 02115, USA
| | - Andrey A. Gorchakov
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jacob D. Jaffe
- Proteomics Group, The Broad Institute, Cambridge, Massachusetts 02139, USA
| | - Cameron Kennedy
- Department of Molecular and Cell Biology, University of California at Berkeley and Department of Genome Dynamics, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| | - Daniela Linder-Basso
- Department of Molecular Biology & Biochemistry, Rutgers University, Piscataway, New Jersey 08901, USA
| | - Sally E. Peach
- Proteomics Group, The Broad Institute, Cambridge, Massachusetts 02139, USA
| | - Gregory Shanower
- Department of Molecular Biology & Biochemistry, Rutgers University, Piscataway, New Jersey 08901, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Resource, Center for Advanced Biotechnology and Medicine, University of Dentistry and Medicine of New Jersey, Piscataway, New Jersey 08854, USA
| | - Mitzi I. Kuroda
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Vincenzo Pirrotta
- Department of Molecular Biology & Biochemistry, Rutgers University, Piscataway, New Jersey 08901, USA
| | - Peter J. Park
- Center for Biomedical Informatics, Harvard Medical School and Informatics Program, Children's Hospital, Boston, Massachusetts 02115, USA
| | - Sarah C.R. Elgin
- Department of Biology, Washington University St. Louis, Missouri 63130, USA
| | - Gary H. Karpen
- Department of Molecular and Cell Biology, University of California at Berkeley and Department of Genome Dynamics, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| |
Collapse
|
23
|
Huang H, Yu Z, Zhang S, Liang X, Chen J, Li C, Ma J, Jiao R. Drosophila CAF-1 regulates HP1-mediated epigenetic silencing and pericentric heterochromatin stability. J Cell Sci 2010; 123:2853-61. [PMID: 20663913 DOI: 10.1242/jcs.063610] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chromatin assembly factor 1 (CAF-1) was initially characterized as a histone deliver in the process of DNA-replication-coupled chromatin assembly in eukaryotic cells. Here, we report that CAF-1 p180, the largest subunit of Drosophila CAF-1, participates in the process of heterochromatin formation and functions to maintain pericentric heterochromatin stability. We provide evidence that Drosophila CAF-1 p180 plays a role in both classes of position effect variegation (PEV) and in the expression of heterochromatic genes. A decrease in the expression of Drosophila CAF-1 p180 leads to a decrease in both H3K9 methylation at pericentric heterochromatin regions and the recruitment of heterochromatin protein 1 (HP1) to the chromocenter of the polytene chromosomes. The artificial targeting of HP1 to a euchromatin location leads to the enrichment of Drosophila CAF-1 p180 at this ectopic heterochromatin, suggesting the mutual recruitment of HP1 and CAF-1 p180. We also show that the spreading of heterochromatin is compromised in flies that have reduced CAF-1 p180. Furthermore, reduced CAF-1 p180 causes a defect in the dynamics of heterochromatic markers in early Drosophila embryos. Together, these findings suggest that Drosophila CAF-1 p180 is an essential factor in the epigenetic control of heterochromatin formation and/or maintenance.
Collapse
Affiliation(s)
- Hai Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Babenko VN, Makunin IV, Brusentsova IV, Belyaeva ES, Maksimov DA, Belyakin SN, Maroy P, Vasil'eva LA, Zhimulev IF. Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome. BMC Genomics 2010; 11:318. [PMID: 20492674 PMCID: PMC2887417 DOI: 10.1186/1471-2164-11-318] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/21/2010] [Indexed: 01/17/2023] Open
Abstract
Background Eukaryotic genomes are organized in extended domains with distinct features intimately linking genome structure, replication pattern and chromatin state. Recently we identified a set of long late replicating euchromatic regions that are underreplicated in salivary gland polytene chromosomes of D. melanogaster. Results Here we demonstrate that these underreplicated regions (URs) have a low density of P-element and piggyBac insertions compared to the genome average or neighboring regions. In contrast, Minos-based transposons show no paucity in URs but have a strong bias to testis-specific genes. We estimated the suppression level in 2,852 stocks carrying a single P-element by analysis of eye color determined by the mini-white marker gene and demonstrate that the proportion of suppressed transgenes in URs is more than three times higher than in the flanking regions or the genomic average. The suppressed transgenes reside in intergenic, genic or promoter regions of the annotated genes. We speculate that the low insertion frequency of P-elements and piggyBacs in URs partially results from suppression of transgenes that potentially could prevent identification of transgenes due to complete suppression of the marker gene. In a similar manner, the proportion of suppressed transgenes is higher in loci replicating late or very late in Kc cells and these loci have a lower density of P-elements and piggyBac insertions. In transgenes with two marker genes suppression of mini-white gene in eye coincides with suppression of yellow gene in bristles. Conclusions Our results suggest that the late replication domains have a high inactivation potential apparently linked to the silenced or closed chromatin state in these regions, and that such inactivation potential is largely maintained in different tissues.
Collapse
Affiliation(s)
- Vladimir N Babenko
- Department of Molecular and Cellular Biology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Santos J, Serra L, Solé E, Pascual M. FISH mapping of microsatellite loci from Drosophila subobscura and its comparison to related species. Chromosome Res 2010; 18:213-26. [PMID: 20198419 DOI: 10.1007/s10577-010-9112-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 01/06/2010] [Accepted: 01/08/2010] [Indexed: 12/24/2022]
Abstract
Microsatellites are highly polymorphic markers that are distributed through all the genome being more abundant in non-coding regions. Whether they are neutral or under selection, these markers if localized can be used as co-dominant molecular markers to explore the dynamics of the evolutionary processes. Their cytological localization can allow identifying genes under selection, inferring recombination from a genomic point of view, or screening for the genomic reorganizations occurring during the evolution of a lineage, among others. In this paper, we report for the first time the localization of microsatellite loci by fluorescent in situ hybridization on Drosophila polytene chromosomes. In Drosophila subobscura, 72 dinucleotide microsatellite loci were localized by fluorescent in situ hybridization yielding unique hybridization signals. In the sex chromosome, microsatellite distribution was not uniform and its density was higher than in autosomes. We identified homologous segments to the sequence flanking the microsatellite loci by browsing the genome sequence of Drosophila pseudoobscura and Drosophila melanogaster. Their localization supports the conservation of Muller's chromosomal elements among Drosophila species and the existence of multiple intrachromosomal rearrangements within each evolutionary lineage. Finally, the lack of microsatellite repeats in the homologous D. melanogaster sequences suggests convergent evolution for high microsatellite density in the distal part of the X chromosome.
Collapse
Affiliation(s)
- Josiane Santos
- Departament de Genètica, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
26
|
Andreyenkova NG, Kokoza EB, Semeshin VF, Belyaeva ES, Demakov SA, Pindyurin AV, Andreyeva EN, Volkova EI, Zhimulev IF. Localization and characteristics of DNA underreplication zone in the 75C region of intercalary heterochromatin in Drosophila melanogaster polytene chromosomes. Chromosoma 2009; 118:747-61. [PMID: 19685068 DOI: 10.1007/s00412-009-0232-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/16/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
Abstract
In Drosophila polytene chromosomes, regions of intercalary heterochromatin are scattered throughout the euchromatic arms. Here, we present data on the first fine analysis of the individual intercalary heterochromatin region, 75C1-2, located in the 3L chromosome. By using electron microscopy, we demonstrated that this region appears as three closely adjacent condensed bands. Mapping of the region on the physical map by means of the chromosomal rearrangements with known breakpoints showed that the length of the region is about 445 kb. Although it seems that the SUUR protein binds to the whole 75C1-2 region, the proximal part of the region is fully polytenized, so the DNA underreplication zone is asymmetric and located in the distal half of the region. Finally, we speculate that intercalary heterochromatin regions of Drosophila polytene chromosomes are organized into three different types with respect to the localization of the underreplication zone.
Collapse
Affiliation(s)
- Natalya G Andreyenkova
- Department of Molecular and Cellular Biology, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|