1
|
Oliveira JIN, Cabral-de-Mello DC, Valente GT, Martins C. Transcribing the enigma: the B chromosome as a territory of uncharted RNAs. Genetics 2024; 227:iyae026. [PMID: 38513121 DOI: 10.1093/genetics/iyae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 03/23/2024] Open
Abstract
B chromosomes are supernumerary elements found in several groups of eukaryotes, including fungi, plants, and animals. Typically, these chromosomes either originate from their hosts through errors in meiosis or interspecifically through horizontal transfer. While many B chromosomes are primarily heterochromatic and possess a low number of coding genes, these additional elements are still capable of transcribing sequences and exerting influence on the expression of host genes. How B chromosomes escape elimination and which impacts can be promoted in the cell always intrigued the cytogeneticists. In pursuit of understanding the behavior and functional impacts of these extra elements, cytogenetic studies meet the advances of molecular biology, incorporating various techniques into investigating B chromosomes from a functional perspective. In this review, we present a timeline of studies investigating B chromosomes and RNAs, highlighting the advances and key findings throughout their history. Additionally, we identified which RNA classes are reported in the B chromosomes and emphasized the necessity for further investigation into new perspectives on the B chromosome functions. In this context, we present a phylogenetic tree that illustrates which branches either report B chromosome presence or have functional RNA studies related to B chromosomes. We propose investigating other unexplored RNA classes and conducting functional analysis in conjunction with cytogenetic studies to enhance our understanding of the B chromosome from an RNA perspective.
Collapse
Affiliation(s)
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Guilherme T Valente
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, Botucatu 18618-687, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| |
Collapse
|
2
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|
3
|
Boudichevskaia A, Fiebig A, Kumke K, Himmelbach A, Houben A. Rye B chromosomes differently influence the expression of A chromosome-encoded genes depending on the host species. Chromosome Res 2022; 30:335-349. [PMID: 35781770 PMCID: PMC9771852 DOI: 10.1007/s10577-022-09704-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 01/25/2023]
Abstract
The B chromosome (B) is a dispensable component of the genome in many species. To evaluate the impact of Bs on the transcriptome of the standard A chromosomes (A), comparative RNA-seq analyses of rye and wheat anthers with and without additional rye Bs were conducted. In both species, 5-6% of the A-derived transcripts across the entire genomes were differentially expressed in the presence of 2Bs. The GO term enrichment analysis revealed that Bs influence A chromosome encoded processes like "gene silencing"; "DNA methylation or demethylation"; "chromatin silencing"; "negative regulation of gene expression, epigenetic"; "post-embryonic development"; and "chromosome organization." 244 B chromosome responsive A-located genes in + 2B rye and + B wheat shared the same biological function. Positively correlated with the number of Bs, 939 and 1391 B-specific transcripts were identified in + 2B and + 4B wheat samples, respectively. 85% of B-transcripts in + 2B were also found in + 4B transcriptomes. 297 B-specific transcripts were identified in + 2B rye, and 27% were common to the B-derived transcripts identified in + B wheat. Bs encode mobile elements and housekeeping genes, but most B-transcripts were without detectable similarity to known genes. Some of these genes are involved in cell division-related functions like Nuf2 and might indicate their importance in maintaining Bs. The transcriptome analysis provides new insights into the complex interrelationship between standard A chromosomes and supernumerary B chromosomes.
Collapse
Affiliation(s)
- Anastassia Boudichevskaia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
- KWS SAAT SE & Co. KGaA, 37574, Einbeck, Germany.
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Katrin Kumke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
4
|
B Chromosomes’ Sequences in Yellow-Necked Mice Apodemus flavicollis—Exploring the Transcription. Life (Basel) 2021; 12:life12010050. [PMID: 35054443 PMCID: PMC8781039 DOI: 10.3390/life12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
B chromosomes (Bs) are highly polymorphic additional chromosomes in the genomes of many species. Due to the dispensability of Bs and the lack of noticeable phenotypic effects in their carriers, they were considered genetically inert for a long time. Recent studies on Bs in Apodemus flavicollis revealed their genetic composition, potential origin, and spatial organization in the interphase nucleus. Surprisingly, the genetic content of Bs in this species is preserved in all studied samples, even in geographically distinct populations, indicating its biological importance. Using RT-PCR we studied the transcription activity of three genes (Rraga, Haus6, and Cenpe) previously identified on Bs in A. flavicollis. We analysed mRNA isolated from spleen tissues of 34 animals harboring different numbers of Bs (0–3).The products of transcriptional activity of the analysed sequences differ in individuals with and without Bs. We recorded B-genes and/or genes from the standard genome in the presence of Bs, showing sex-dependent higher levels of transcriptional activity. Furthermore, the transcriptional activity of Cenpe varied with the age of the animals differently in the group with and without Bs. With aging, the amount of product was only found to significantly decrease in B carriers. The potential biological significance of all these differences is discussed in the paper.
Collapse
|
5
|
Ma W, Liu Z, Beier S, Houben A, Carpentier S. Identification of rye B chromosome-associated peptides by mass spectrometry. THE NEW PHYTOLOGIST 2021; 230:2179-2185. [PMID: 33503271 DOI: 10.1111/nph.17238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
B chromosomes (Bs) are supernumerary dispensable components of the standard genome (A chromosomes, As) that have been found in many eukaryotes. So far, it is unkown whether the B-derived transcripts translate to proteins or if the host proteome is changed due to the presence of Bs. Comparative mass spectrometry was performed using the protein samples isolated from shoots of rye plants with and without Bs. We aimed to identify B-associated peptides and analyzed the effects of Bs on the total proteome. Our comparative proteome analysis demonstrates that the presence of rye Bs affects the total proteome including different biological function processes. We found 319 of 16 776 quantified features in at least three out of five +B plants but not in 0B plants; 31 of 319 features were identified as B-associated peptide features. According to our data mining, one B-specific protein fragment showed similarity to a glycine-rich RNA binding protein which differed from its A-paralogue by two amino acid insertions. Our result represents a milestone in B chromosome research, because this is the first report to demonstrate the existence of Bs changing the proteome of the host.
Collapse
Affiliation(s)
- Wei Ma
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - ZhaoJun Liu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- School of Life Sciences Life, Science Center Weihenstephan, Crop Physiology, Technical University Munich, Alte Akademie 12, Freising, 85354, Germany
| | - Sebastian Beier
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Sebastien Carpentier
- Department of Biosystems, KU Leuven, Willem Decroylaan 42, 2455-3001 Leuven, Belgium
- SYBIOMA, KULeuven, Herestraat 49, Leuven, 3000, Belgium
- Genetic Resources, Bioversity International, Willem Decroylaan 42, 2455-3001 Leuven, Belgium
| |
Collapse
|
6
|
Park D, Kim JH, Kim NS. De novo transcriptome sequencing and gene expression profiling with/without B-chromosome plants of Lilium amabile. Genomics Inform 2019; 17:e27. [PMID: 31610623 PMCID: PMC6808634 DOI: 10.5808/gi.2019.17.3.e27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/23/2019] [Indexed: 11/20/2022] Open
Abstract
Supernumerary B chromosomes were found in Lilium amabile (2n = 2x = 24), an endemic Korean lily that grows in the wild throughout the Korean Peninsula. The extra B chromosomes do not affect the host-plant morphology; therefore, whole transcriptome analysis was performed in 0B and 1B plants to identify differentially expressed genes. A total of 154,810 transcripts were obtained from over 10 Gbp data by de novo assembly. By mapping the raw reads to the de novo transcripts, we identified 7,852 differentially expressed genes (log2FC > |10|), in which 4,059 and 3,794 were up-and down-regulated, respectively, in 1B plants compared to 0B plants. Functional enrichment analysis revealed that various differentially expressed genes were involved in cellular processes including the cell cycle, chromosome breakage and repair, and microtubule formation; all of which may be related to the occurrence and maintenance of B chromosomes. Our data provide insight into transcriptomic changes and evolution of plant B chromosomes and deliver an informative database for future study of B chromosome transcriptomes in the Korean lily.
Collapse
Affiliation(s)
- Doori Park
- Department of Molecular Biosciences, Kangwon National University, Chuncheon 24341, Korea
| | - Jong-Hwa Kim
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea.,Oriental Bio-herb Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Nam-Soo Kim
- Department of Molecular Biosciences, Kangwon National University, Chuncheon 24341, Korea.,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
7
|
Dhar MK, Kour J, Kaul S. Origin, Behaviour, and Transmission of B Chromosome with Special Reference to Plantago lagopus. Genes (Basel) 2019; 10:E152. [PMID: 30781667 PMCID: PMC6410184 DOI: 10.3390/genes10020152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/30/2022] Open
Abstract
B chromosomes have been reported in many eukaryotic organisms. These chromosomes occur in addition to the standard complement of a species. Bs do not pair with any of the A chromosomes and they have generally been considered to be non-essential and genetically inert. However, due to tremendous advancements in the technologies, the molecular composition of B chromosomes has been determined. The sequencing data has revealed that B chromosomes have originated from A chromosomes and they are rich in repetitive elements. In our laboratory, a novel B chromosome was discovered in Plantago lagopus. Using molecular cytogenetic techniques, the B chromosome was found to be composed of ribosomal DNA sequences. However, further characterization of the chromosome using next generation sequencing (NGS) etc. revealed that the B chromosome is a mosaic of sequences derived from A chromosomes, 5S ribosomal DNA (rDNA), 45S rDNA, and various types of repetitive elements. The transmission of B chromosome through the female sex track did not follow the Mendelian principles. The chromosome was found to have drive due to which it was perpetuating in populations. The present paper attempts to summarize the information on nature, transmission, and origin of B chromosomes, particularly the current status of our knowledge in P. lagopus.
Collapse
Affiliation(s)
- Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| | - Jasmeet Kour
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| |
Collapse
|
8
|
Dalla Benetta E, Akbari OS, Ferree PM. Sequence Expression of Supernumerary B Chromosomes: Function or Fluff? Genes (Basel) 2019; 10:E123. [PMID: 30744010 PMCID: PMC6409846 DOI: 10.3390/genes10020123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022] Open
Abstract
B chromosomes are enigmatic heritable elements found in the genomes of numerous plant and animal species. Contrary to their broad distribution, most B chromosomes are non-essential. For this reason, they are regarded as genome parasites. In order to be stably transmitted through generations, many B chromosomes exhibit the ability to "drive", i.e., they transmit themselves at super-Mendelian frequencies to progeny through directed interactions with the cell division apparatus. To date, very little is understood mechanistically about how B chromosomes drive, although a likely scenario is that expression of B chromosome sequences plays a role. Here, we highlight a handful of previously identified B chromosome sequences, many of which are repetitive and non-coding in nature, that have been shown to be expressed at the transcriptional level. We speculate on how each type of expressed sequence could participate in B chromosome drive based on known functions of RNA in general chromatin- and chromosome-related processes. We also raise some challenges to functionally testing these possible roles, a goal that will be required to more fully understand whether and how B chromosomes interact with components of the cell for drive and transmission.
Collapse
Affiliation(s)
- Elena Dalla Benetta
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA.
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Patrick M Ferree
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA.
| |
Collapse
|
9
|
Gene expression changes elicited by a parasitic B chromosome in the grasshopper Eyprepocnemis plorans are consistent with its phenotypic effects. Chromosoma 2019; 128:53-67. [PMID: 30617552 DOI: 10.1007/s00412-018-00689-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/16/2023]
Abstract
Parasitism evokes adaptive physiological changes in the host, many of which take place through gene expression changes. This response can be more or less local, depending on the organ or tissue affected by the parasite, or else systemic when the parasite affects the entire host body. The most extreme of the latter cases is intragenomic parasitism, where the parasite is present in all host nuclei as any other genomic element. Here, we show the molecular crosstalk between a parasitic chromosome (also named B chromosome) and the host genome, manifested through gene expression changes. The transcriptome analysis of 0B and 1B females of the grasshopper Eyprepocnemis plorans, validated by a microarray experiment performed on four B-lacking and five B-carrying females, revealed changes in gene expression for 188 unigenes being consistent in both experiments. Once discarded B-derived transcripts, there were 46 differentially expressed genes (30 up- and 16 downregulated) related with the adaptation of the host genome to the presence of the parasitic chromosome. Interestingly, the functions of these genes could explain some of the most important effects of B chromosomes, such as nucleotypic effects derived from the additional DNA they represent, chemical defense and detoxification, protein modification and response to stress, ovary function, and regulation of gene expression. Collectively, these changes uncover an intimate host-parasite interaction between A and B chromosomes during crucial steps of gene expression and protein function.
Collapse
|
10
|
Marques A, Klemme S, Houben A. Evolution of Plant B Chromosome Enriched Sequences. Genes (Basel) 2018; 9:genes9100515. [PMID: 30360448 PMCID: PMC6210368 DOI: 10.3390/genes9100515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
B chromosomes are supernumerary chromosomes found in addition to the normal standard chromosomes (A chromosomes). B chromosomes are well known to accumulate several distinct types of repeated DNA elements. Although the evolution of B chromosomes has been the subject of numerous studies, the mechanisms of accumulation and evolution of repetitive sequences are not fully understood. Recently, new genomic approaches have shed light on the origin and accumulation of different classes of repetitive sequences in the process of B chromosome formation and evolution. Here we discuss the impact of repetitive sequences accumulation on the evolution of plant B chromosomes.
Collapse
Affiliation(s)
- André Marques
- Laboratory of Genetic Resources, Federal University of Alagoas, Av. Manoel Severino Barbosa, 57309-005 Arapiraca-AL, Brazil.
| | - Sonja Klemme
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
| |
Collapse
|
11
|
Coan RLB, Martins C. Landscape of Transposable Elements Focusing on the B Chromosome of the Cichlid Fish Astatotilapia latifasciata. Genes (Basel) 2018; 9:genes9060269. [PMID: 29882892 PMCID: PMC6027319 DOI: 10.3390/genes9060269] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/26/2022] Open
Abstract
B chromosomes (Bs) are supernumerary elements found in many taxonomic groups. Most B chromosomes are rich in heterochromatin and composed of abundant repetitive sequences, especially transposable elements (TEs). B origin is generally linked to the A-chromosome complement (A). The first report of a B chromosome in African cichlids was in Astatotilapia latifasciata, which can harbor 0, 1, or 2 Bs Classical cytogenetic studies found high a TE content on this B chromosome. In this study, we aimed to understand TE composition and expression in the A. latifasciata genome and its relation to the B chromosome. We used bioinformatics analysis to explore the genomic organization of TEs and their composition on the B chromosome. The bioinformatics findings were validated by fluorescent in situ hybridization (FISH) and real-time PCR (qPCR). A. latifasciata has a TE content similar to that of other cichlid fishes and several expanded elements on its B chromosome. With RNA sequencing data (RNA-seq), we showed that all major TE classes are transcribed in the brain, muscle, and male and female gonads. An evaluation of TE transcription levels between B- and B+ individuals showed that few elements are differentially expressed between these groups and that the expanded B elements are not highly transcribed. Putative silencing mechanisms may act on the B chromosome of A. latifasciata to prevent the adverse consequences of repeat transcription and mobilization in the genome.
Collapse
Affiliation(s)
- Rafael L B Coan
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), 18618-689 Botucatu, SP, Brazil.
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), 18618-689 Botucatu, SP, Brazil.
| |
Collapse
|
12
|
Harper J, Phillips D, Thomas A, Gasior D, Evans C, Powell W, King J, King I, Jenkins G, Armstead I. B chromosomes are associated with redistribution of genetic recombination towards lower recombination chromosomal regions in perennial ryegrass. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1861-1871. [PMID: 29635481 PMCID: PMC6019035 DOI: 10.1093/jxb/ery052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/10/2018] [Indexed: 05/26/2023]
Abstract
Supernumerary 'B' chromosomes are non-essential components of the genome present in a range of plant and animal species-including many grasses. Within diploid and polyploid ryegrass and fescue species, including the forage grass perennial ryegrass (Lolium perenne L.), the presence of B chromosomes has been reported as influencing both chromosome pairing and chiasma frequencies. In this study, the effects of the presence/absence of B chromosomes on genetic recombination has been investigated through generating DArT (Diversity Arrays Technology) marker genetic maps for six perennial ryegrass diploid populations, the pollen parents of which contained either two B or zero B chromosomes. Through genetic and cytological analyses of these progeny and their parents, we have identified that, while overall cytological estimates of chiasma frequencies were significantly lower in pollen mother cells with two B chromosomes as compared with zero B chromosomes, the recombination frequencies within some marker intervals were actually increased, particularly for marker intervals in lower recombination regions of chromosomes, namely pericentromeric regions. Thus, in perennial ryegrass, the presence of two B chromosomes redistributed patterns of meiotic recombination in pollen mother cells in ways which could increase the range of allelic variation available to plant breeders.
Collapse
Affiliation(s)
- John Harper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Dylan Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Ann Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Dagmara Gasior
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Caron Evans
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | | | - Julie King
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Ian King
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Glyn Jenkins
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Ian Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
13
|
Garrido-Ramos MA. Satellite DNA: An Evolving Topic. Genes (Basel) 2017; 8:genes8090230. [PMID: 28926993 PMCID: PMC5615363 DOI: 10.3390/genes8090230] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.
Collapse
Affiliation(s)
- Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
14
|
Milani D, Ramos É, Loreto V, Martí DA, Cardoso AL, de Moraes KCM, Martins C, Cabral-de-Mello DC. The satellite DNA AflaSAT-1 in the A and B chromosomes of the grasshopper Abracris flavolineata. BMC Genet 2017; 18:81. [PMID: 28851268 PMCID: PMC5575873 DOI: 10.1186/s12863-017-0548-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/22/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Satellite DNAs (satDNAs) are organized in repetitions directly contiguous to one another, forming long arrays and composing a large portion of eukaryote genomes. These sequences evolve according to the concerted evolution model, and homogenization of repeats is observed at the intragenomic level. Satellite DNAs are the primary component of heterochromatin, located primarily in centromeres and telomeres. Moreover, satDNA enrichment in specific chromosomes has been observed, such as in B chromosomes, that can provide clues about composition, origin and evolution of this chromosome. In this study, we isolated and characterized a satDNA in A and B chromosomes of Abracris flavolineata by integrating cytogenetic, molecular and genomics approaches at intra- and inter-population levels, with the aim to understand the evolution of satDNA and composition of B chromosomes. RESULTS AflaSAT-1 satDNA was shared with other species and in A. flavolineata, was associated with another satDNA, AflaSAT-2. Chromosomal mapping revealed centromeric blocks variable in size in almost all chromosomes (except pair 11) of A complement for both satDNAs, whereas for B chromosome, only a small centromeric signal occurred. In distinct populations, variable number of AflaSAT-1 chromosomal sites correlated with variability in copy number. Instead of such variability, low sequence diversity was observed in A complement, but monomers from B chromosome were more variable, presenting also exclusive mutations. AflaSAT-1 was transcribed in five tissues of adults in distinct life cycle phases. CONCLUSIONS The sharing of AflaSAT-1 with other species is consistent with the library hypothesis and indicates common origin in a common ancestor; however, AflaSAT-1 was highly amplified in the genome of A. flavolineata. At the population level, homogenization of repeats in distinct populations was documented, but dynamic expansion or elimination of repeats was also observed. Concerning the B chromosome, our data provided new information on the composition in A. flavolineata. Together with previous results, the sequences of heterochromatic nature were not likely highly amplified in the entire B chromosome. Finally, the constitutive transcriptional activity suggests a possible unknown functional role, which should be further investigated.
Collapse
Affiliation(s)
- Diogo Milani
- Departamento de Biologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo CEP 13506-900 Brazil
| | - Érica Ramos
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | - Vilma Loreto
- Departamento de Genética, UFPE - Univ Federal de Pernambuco, Centro de Biociências/CB, Recife, Pernambuco Brazil
| | | | - Adauto Lima Cardoso
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | | | - Cesar Martins
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | - Diogo Cavalcanti Cabral-de-Mello
- Departamento de Biologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo CEP 13506-900 Brazil
| |
Collapse
|
15
|
Unique sequence organization and small RNA expression of a "selfish" B chromosome. Chromosoma 2017; 126:753-768. [PMID: 28780664 DOI: 10.1007/s00412-017-0641-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
B chromosomes are found in numerous plants and animals. These nonessential, supernumerary chromosomes are often composed primarily of noncoding DNA repeats similar to those found within transcriptionally "silenced" heterochromatin. In order to persist within their resident genomes, many B chromosomes exhibit exceptional cellular behaviors, including asymmetric segregation into gametes and induction of genome elimination during early development. An important goal in understanding these behaviors is to identify unique B chromosome sequences and characterize their transcriptional contributions. We investigated these properties by examining a paternally transmitted B chromosome known as paternal sex ratio (PSR), which is present in natural populations of the jewel wasp Nasonia vitripennis. To facilitate its own transmission, PSR severely biases the sex ratio by disrupting early chromatin remodeling processes. Through cytological mapping and other approaches, we identified multiple DNA repeats unique to PSR, as well as those found on the A chromosomes, suggesting that PSR arose through a merger of sequences from both within and outside the N. vitripennis genome. The majority of PSR-specific repeats are interspersed among each other across PSR's long arm, in contrast with the distinct "blocks" observed in other organisms' heterochromatin. Through transcriptional profiling, we identified a subset of repeat-associated, small RNAs expressed by PSR, most of which map to a single PSR-specific repeat. These RNAs are expressed at much higher levels than those arising from A chromosome-linked repeats, suggesting that in addition to its sequence organization, PSR's transcriptional properties differ substantially from the pericentromeric regions of the normal chromosomes.
Collapse
|
16
|
Dhar MK, Kour G, Kaul S. B chromosome in Plantago lagopus Linnaeus, 1753 shows preferential transmission and accumulation through unusual processes. COMPARATIVE CYTOGENETICS 2017; 11:375-392. [PMID: 28919970 PMCID: PMC5596978 DOI: 10.3897/compcytogen.11i2.11779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
Plantago lagopus is a diploid (2n = 2x =12) weed belonging to family Plantaginaceae. We reported a novel B chromosome in this species composed of 5S and 45S ribosomal DNA and other repetitive elements. In the present work, presence of B chromosome(s) was confirmed through FISH on root tip and pollen mother cells. Several experiments were done to determine the transmission of B chromosome through male and female sex tracks. Progenies derived from the reciprocal crosses between plants with (1B) and without (0B) B chromosomes were studied. The frequency of B chromosome bearing plants was significantly higher than expected, in the progeny of 1B female × 0B male. Thus, the B chromosome seems to have preferential transmission through the female sex track, which may be due to meiotic drive. One of the most intriguing aspects of the present study was the recovery of plants having more chromosomes than the standard complement of 12 chromosomes. Such plants were isolated from the progenies of B chromosome carrying plants. The origin of these plants can be explained on the basis of a two step process; formation of unreduced gametes in 1B plants and fusion of unreduced gametes with the normal gametes or other unreduced gametes. Several molecular techniques were used which unequivocally confirmed similar genetic constitution of 1B (parent) and plants with higher number of chromosomes.
Collapse
Affiliation(s)
- Manoj K. Dhar
- School of Biotechnology, University of Jammu, Jammu-180006, INDIA
| | - Gurmeet Kour
- School of Biotechnology, University of Jammu, Jammu-180006, INDIA
| | - Sanjana Kaul
- School of Biotechnology, University of Jammu, Jammu-180006, INDIA
| |
Collapse
|
17
|
Borisov YM, Kryshchuk IA, Gaiduchenko HS, Cherepanova EV, Zadyra SV, Levenkova ES, Lukashov DV, Orlov VN. Karyotypic differentiation of populations of the common shrew Sorex araneus L. (Mammalia) in Belarus. COMPARATIVE CYTOGENETICS 2017; 11:359-373. [PMID: 28919969 PMCID: PMC5596991 DOI: 10.3897/compcytogen.11i2.11142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
The common shrews, Sorex araneus Linnaeus, 1758, inhabiting the territory of Belarus, are characterized by a significant variation in the frequency of Robertsonian (Rb) translocations. The frequency clines for translocations specific of three chromosome races: the West Dvina (gm, hk, ip, no, qr), Kiev (g/m, hi, k/o, n, p, q, r), and Białowieża (g/r, hn, ik, m/p, o, q) have already been studied in this territory. In this communication we report new data on polymorphic populations with Rb metacentrics specific of the Neroosa race (go, hi, kr, mn, p/q) in south-eastern Belarus, analyse the distribution of karyotypes in southern and central Belarus and draw particular attention to the fixation of the acrocentric variants of chromosomes in this area. The results show that certain Rb metacentrics specific of the Neroosa, West Dvina, Kiev, and Białowieża races (namely, go and pq; ip; ko; hn and ik, respectively) are absent in many polymorphic populations. Thus, the karyotypic differentiation of S. araneus in the studied area is determined by unequal spread of different Rb translocations and by fixation of acrocentric variants of specific chromosomes.
Collapse
Affiliation(s)
- Yury M. Borisov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, 119071 Moscow, Russia
| | - Iryna A. Kryshchuk
- Scientific and Practical Center for Bioresources, National Academy of Sciences of Belarus, Akademicheskaya St. 27, 220072 Minsk, Republic of Belarus
| | - Helen S. Gaiduchenko
- Scientific and Practical Center for Bioresources, National Academy of Sciences of Belarus, Akademicheskaya St. 27, 220072 Minsk, Republic of Belarus
| | - Elena V. Cherepanova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, 119071 Moscow, Russia
| | - Svetlana V. Zadyra
- Shevchenko Kiev National University, Educational–Scientific Center Institute of Biology, Kiev, 03187 Ukraine
| | - Elena S. Levenkova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, 119071 Moscow, Russia
| | - Dmitriy V. Lukashov
- Shevchenko Kiev National University, Educational–Scientific Center Institute of Biology, Kiev, 03187 Ukraine
| | - Victor N. Orlov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, 119071 Moscow, Russia
| |
Collapse
|
18
|
Navarro-Domínguez B, Ruiz-Ruano FJ, Cabrero J, Corral JM, López-León MD, Sharbel TF, Camacho JPM. Protein-coding genes in B chromosomes of the grasshopper Eyprepocnemis plorans. Sci Rep 2017; 7:45200. [PMID: 28367986 PMCID: PMC5377258 DOI: 10.1038/srep45200] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/22/2017] [Indexed: 01/20/2023] Open
Abstract
For many years, parasitic B chromosomes have been considered genetically inert elements. Here we show the presence of ten protein-coding genes in the B chromosome of the grasshopper Eyprepocnemis plorans. Four of these genes (CIP2A, GTPB6, KIF20A, and MTG1) were complete in the B chromosome whereas the six remaining (CKAP2, CAP-G, HYI, MYCB2, SLIT and TOP2A) were truncated. Five of these genes (CIP2A, CKAP2, CAP-G, KIF20A, and MYCB2) were significantly up-regulated in B-carrying individuals, as expected if they were actively transcribed from the B chromosome. This conclusion is supported by three truncated genes (CKAP2, CAP-G and MYCB2) which showed up-regulation only in the regions being present in the B chromosome. Our results indicate that B chromosomes are not so silenced as was hitherto believed. Interestingly, the five active genes in the B chromosome code for functions related with cell division, which is the main arena where B chromosome destiny is played. This suggests that B chromosome evolutionary success can lie on its gene content.
Collapse
Affiliation(s)
| | - Francisco J. Ruiz-Ruano
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - José María Corral
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
- Department of Bioanalytics, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | | | - Timothy F. Sharbel
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
- Global Institute for Food Security, 110 Gymnasium Place, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 4J8, Canada
| | - Juan Pedro M. Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
19
|
Ma W, Gabriel TS, Martis MM, Gursinsky T, Schubert V, Vrána J, Doležel J, Grundlach H, Altschmied L, Scholz U, Himmelbach A, Behrens SE, Banaei-Moghaddam AM, Houben A. Rye B chromosomes encode a functional Argonaute-like protein with in vitro slicer activities similar to its A chromosome paralog. THE NEW PHYTOLOGIST 2017; 213:916-928. [PMID: 27468091 DOI: 10.1111/nph.14110] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/18/2016] [Indexed: 05/21/2023]
Abstract
B chromosomes (Bs) are supernumerary, dispensable parts of the nuclear genome, which appear in many different species of eukaryote. So far, Bs have been considered to be genetically inert elements without any functional genes. Our comparative transcriptome analysis and the detection of active RNA polymerase II (RNAPII) in the proximity of B chromatin demonstrate that the Bs of rye (Secale cereale) contribute to the transcriptome. In total, 1954 and 1218 B-derived transcripts with an open reading frame were expressed in generative and vegetative tissues, respectively. In addition to B-derived transposable element transcripts, a high percentage of short transcripts without detectable similarity to known proteins and gene fragments from A chromosomes (As) were found, suggesting an ongoing gene erosion process. In vitro analysis of the A- and B-encoded AGO4B protein variants demonstrated that both possess RNA slicer activity. These data demonstrate unambiguously the presence of a functional AGO4B gene on Bs and that these Bs carry both functional protein coding genes and pseudogene copies. Thus, B-encoded genes may provide an additional level of gene control and complexity in combination with their related A-located genes. Hence, physiological effects, associated with the presence of Bs, may partly be explained by the activity of B-located (pseudo)genes.
Collapse
Affiliation(s)
- Wei Ma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Tobias Sebastian Gabriel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Mihaela Maria Martis
- Institute of Bioinformatics and Systems Biology/Munich Information Center for Protein Sequences, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- National Bioinformatics Infrastructure Sweden, Department of Clinical and Experimental Medicine, Linköping University, SE-558185, Linköping, Sweden
| | - Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Faculty of Life Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Heidrun Grundlach
- Institute of Bioinformatics and Systems Biology/Munich Information Center for Protein Sequences, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Faculty of Life Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany
| | - Ali Mohammad Banaei-Moghaddam
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, PO Box 13145-1384, Tehran, Iran
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| |
Collapse
|
20
|
Zhang Y, Fan C, Li S, Chen Y, Wang RRC, Zhang X, Han F, Hu Z. The Diversity of Sequence and Chromosomal Distribution of New Transposable Element-Related Segments in the Rye Genome Revealed by FISH and Lineage Annotation. FRONTIERS IN PLANT SCIENCE 2017; 8:1706. [PMID: 29046683 PMCID: PMC5632726 DOI: 10.3389/fpls.2017.01706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/19/2017] [Indexed: 05/18/2023]
Abstract
Transposable elements (TEs) in plant genomes exhibit a great variety of structure, sequence content and copy number, making them important drivers for species diversity and genome evolution. Even though a genome-wide statistic summary of TEs in rye has been obtained using high-throughput DNA sequencing technology, the accurate diversity of TEs in rye, as well as their chromosomal distribution and evolution, remains elusive due to the repetitive sequence assembling problems and the high dynamic and nested nature of TEs. In this study, using genomic plasmid library construction combined with dot-blot hybridization and fluorescence in situ hybridization (FISH) analysis, we successfully isolated 70 unique FISH-positive TE-related sequences including 47 rye genome specific ones: 30 showed homology or partial homology with previously FISH characterized sequences and 40 have not been characterized. Among the 70 sequences, 48 sequences carried Ty3/gypsy-derived segments, 7 sequences carried Ty1/copia-derived segments and 15 sequences carried segments homologous with multiple TE families. 26 TE lineages were found in the 70 sequences, and among these lineages, Wilma was found in sequences dispersed in all chromosome regions except telomeric positions; Abiba was found in sequences predominantly located at pericentromeric and centromeric positions; Wis, Carmilla, and Inga were found in sequences displaying signals dispersed from distal regions toward pericentromeric positions; except DNA transposon lineages, all the other lineages were found in sequences displaying signals dispersed from proximal regions toward distal regions. A high percentage (21.4%) of chimeric sequences were identified in this study and their high abundance in rye genome suggested that new TEs might form through recombination and nested transposition. Our results also gave proofs that diverse TE lineages were arranged at centromeric and pericentromeric positions in rye, and lineages like Abiba might play a role in their structural organization and function. All these results might help in understanding the diversity and evolution of TEs in rye, as well as their driving forces in rye genome organization and evolution.
Collapse
Affiliation(s)
- Yingxin Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Center for Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chengming Fan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Chengming Fan, Zanmin Hu,
| | - Shuangshuang Li
- Department of Life Science, Henan Normal University, Xinxiang, China
| | - Yuhong Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Richard R.-C. Wang
- Forage and Range Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Utah State University, Logan, UT, United States
| | - Xiangqi Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fangpu Han
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Center for Life Science, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Chengming Fan, Zanmin Hu,
| |
Collapse
|
21
|
Valente GT, Nakajima RT, Fantinatti BEA, Marques DF, Almeida RO, Simões RP, Martins C. B chromosomes: from cytogenetics to systems biology. Chromosoma 2016; 126:73-81. [PMID: 27558128 DOI: 10.1007/s00412-016-0613-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 01/01/2023]
Abstract
Though hundreds to thousands of reports have described the distribution of B chromosomes among diverse eukaryote groups, a comprehensive theory of their biological role has not yet clearly emerged. B chromosomes are classically understood as a sea of repetitive DNA sequences that are poor in genes and are maintained by a parasitic-drive mechanism during cell division. Recent developments in high-throughput DNA/RNA analyses have increased the resolution of B chromosome biology beyond those of classical and molecular cytogenetic methods; B chromosomes contain many transcriptionally active sequences, including genes, and can modulate the activity of autosomal genes. Furthermore, the most recent knowledge obtained from omics analyses, which is associated with a systemic view, has demonstrated that B chromosomes can influence cell biology in a complex way, possibly favoring their own maintenance and perpetuation.
Collapse
Affiliation(s)
- Guilherme T Valente
- Department of Bioprocess and Biotechnology, Agronomic Science School, UNESP - Sao Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Rafael T Nakajima
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil
| | - Bruno E A Fantinatti
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil
| | - Diego F Marques
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil
| | - Rodrigo O Almeida
- Department of Bioprocess and Biotechnology, Agronomic Science School, UNESP - Sao Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Rafael P Simões
- Department of Bioprocess and Biotechnology, Agronomic Science School, UNESP - Sao Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil.
| |
Collapse
|
22
|
Exploring Supernumeraries - A New Marker for Screening of B-Chromosomes Presence in the Yellow Necked Mouse Apodemus flavicollis. PLoS One 2016; 11:e0160946. [PMID: 27551940 PMCID: PMC4994964 DOI: 10.1371/journal.pone.0160946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/27/2016] [Indexed: 11/19/2022] Open
Abstract
Since the density of simple sequence repeats (SSRs) may vary between different chromosomes of the same species in eukaryotic genomes, we screened SSRs of the whole genome of the yellow necked mouse, Apodemus flavicollis, in order to reveal SSR profiles specific for animals carrying B chromosomes. We found that the 2200 bp band was amplified by primer (CAG)4AC to a highly increased level in samples with B chromosomes. This quantitative difference (B-marker) between animals with (+B) and without (0B) B chromosomes was used to screen 20 populations (387 animals). The presence/absence of Bs was confirmed in 96.5% of 342 non mosaic individuals, which recommends this method for noninvasive B-presence detection. A group of 45 animals with mosaic and micro B (μB) karyotypes was considered separately and showed 55.6% of overall congruence between karyotyping and molecular screening results. Relative quantification by qPCR of two different targeted sequences from B-marker indicated that these B-specific fragments are multiplied on B chromosomes. It also confirms our assumption that different types of Bs with variable molecular composition may exist in the same individual and between individuals of this species. Our results substantiate the origin of Bs from the standard chromosomal complement. The B-marker showed 98% sequence identity with the serine/threonine protein kinase VRK1 gene, similarly to findings reported for Bs from phylogenetically highly distant mammalian species. Evolutionarily conserved protein-coding genes found in Bs, including this one in A. flavicollis, could suggest a common evolutionary pathway.
Collapse
|
23
|
Fantinatti BEA, Martins C. Development of chromosomal markers based on next-generation sequencing: the B chromosome of the cichlid fish Astatotilapia latifasciata as a model. BMC Genet 2016; 17:119. [PMID: 27539214 PMCID: PMC4991083 DOI: 10.1186/s12863-016-0427-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/14/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND B chromosomes (Bs) are additional chromosomal elements found in a wide range of eukaryotes including fungi, plants and animals. B chromosomes are still enigmatic despite being the subject of hundreds, even thousands of reports. As yet there is no comprehensive theory for the biological role of B chromsomes thus, new studies are needed. Next-generation sequencing (NGS) holds promise for investigating classical issues in chromosome biology. NGS uses a large-scale approach that is required for advancing classical cytogenetic studies. Based on 454 sequencing data of a microdissected B chromosome and Illumina whole-genome sequencing data generated for 0B, 1B and 2B animals, we developed PCR- and qPCR-based markers for the B chromosomes of the cichlid fish Astatotilapia latifasciata (that possess 0, 1 or 2 B chromosomes). RESULTS Specific PCR primers were designed to produce two amplified fragments for B-positive samples and the control fragment for B-negative samples. Thus, PCR markers detected the presence/absence of Bs but did not provide information about the number of Bs. However, quantitative PCR (qPCR) markers clearly discriminated between 1B and 2B samples. The high copy number of the marker identified in the B chromosomes was confirmed by chromosome mapping. CONCLUSIONS The analysis of chromosome polymorphisms based on a NGS approach is a powerful strategy to obtain markers that detect the presence/absence of extra chromosomes or the gain or loss of genomic blocks. Further, qPCR can also provide information regarding the relative copy number of specific DNA fragments. These methods are useful to investigate various chromosome polymorphisms, including B and sex chromosomes, as well as chromosomal duplications and deletions. NGS data provide a detailed analysis of the composition of genomic regions that are thought to be present in B chromosomes.
Collapse
Affiliation(s)
- Bruno E A Fantinatti
- Departamento de Morfologia, Instituto de Biociências, UNESP - Universidade Estadual Paulista, CEP 18618-689, Botucatu, SP, Brazil
| | - Cesar Martins
- Departamento de Morfologia, Instituto de Biociências, UNESP - Universidade Estadual Paulista, CEP 18618-689, Botucatu, SP, Brazil.
| |
Collapse
|
24
|
Ramos É, Cardoso AL, Brown J, Marques DF, Fantinatti BEA, Cabral-de-Mello DC, Oliveira RA, O'Neill RJ, Martins C. The repetitive DNA element BncDNA, enriched in the B chromosome of the cichlid fish Astatotilapia latifasciata, transcribes a potentially noncoding RNA. Chromosoma 2016; 126:313-323. [PMID: 27169573 DOI: 10.1007/s00412-016-0601-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/03/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022]
Abstract
Supernumerary chromosomes have been studied in many species of eukaryotes, including the cichlid fish, Astatotilapia latifasciata. However, there are many unanswered questions about the maintenance, inheritance, and functional aspects of supernumerary chromosomes. The cichlid family has been highlighted as a model for evolutionary studies, including those that focus on mechanisms of chromosome evolution. Individuals of A. latifasciata are known to carry up to two B heterochromatic isochromosomes that are enriched in repetitive DNA and contain few intact gene sequences. We isolated and characterized a transcriptionally active repeated DNA, called B chromosome noncoding DNA (BncDNA), highly represented across all B chromosomes of A. latifasciata. BncDNA transcripts are differentially processed among six different tissues, including the production of smaller transcripts, indicating transcriptional variation may be linked to B chromosome presence and sexual phenotype. The transcript lengths and lack of similarity with known protein/gene sequences indicate BncRNA might represent a novel long noncoding RNA family (lncRNA). The potential for interaction between BncRNA and known miRNAs were computationally predicted, resulting in the identification of possible binding of this sequence in upregulated miRNAs related to the presence of B chromosomes. In conclusion, Bnc is a transcriptionally active repetitive DNA enriched in B chromosomes with potential action over B chromosome maintenance in somatic cells and meiotic drive in gametic cells.
Collapse
Affiliation(s)
- Érica Ramos
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Adauto L Cardoso
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Judith Brown
- Allied Health Sciences Department and Institute for Systems Genomics, University of Connecticut, 06269, Storrs, CT, USA
| | - Diego F Marques
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Bruno E A Fantinatti
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Diogo C Cabral-de-Mello
- Department of Biology, Institute of Biosciences, Sao Paulo State University, 13506-900, Rio Claro, SP, Brazil
| | - Rogério A Oliveira
- Department of Biostatistics, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, 06269, Storrs, CT, USA
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil.
| |
Collapse
|
25
|
Huang W, Du Y, Zhao X, Jin W. B chromosome contains active genes and impacts the transcription of A chromosomes in maize (Zea mays L.). BMC PLANT BIOLOGY 2016; 16:88. [PMID: 27083560 PMCID: PMC4833949 DOI: 10.1186/s12870-016-0775-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/11/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND The dispensable maize (Zea mays L.) B chromosome is highly heterochromatic and widely believed to be devoid of functional genes. Although low-copy B chromosome causes no obvious phenotype variation, its existence might influence A genome gene expression. Previous studies suggested that B chromosomes are evolved from standard chromosomes; therefore, they might contain genic regions showing homology with A chromosome sequences. RESULTS Our data suggested that maize B chromosome influences the A-genome transcription with stronger effect associated with an increase in copy number of B chromosome. In total 130 differently expressed genes were detected in comparison between with and without B chromosome lines. These differentially expressed genes are mainly involved in cell metabolism and nucleotide binding. Using Starter + B, we amplified ten B chromosome loci with high sequence similarity to A-genome genes. Fluorescence in situ hybridization (FISH) confirmed that at least four ~5 kb-sized genes are located on the B chromosome. In addition, through de novo assembly of the reads not unmapped to maize B73 reference genome together with PCR validation, we found three B-located LTR; in particular, one of them, the 3.2 kb comp75688, is expressed in a B-dosage dependent manner. CONCLUSION We found that in the presence of maize B chromosome, the transcription of A genome genes was altered, with more impact by the increase of the B chromosome number. The B-located transcriptionally active genes showed high similarity to their A-genome homologues, and retrotransposons on B chromosome also have partial homologous to A genome sequences. Our data shed more lights on the genome structure and evolution of the maize B chromosome.
Collapse
Affiliation(s)
- Wei Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Yan Du
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Xin Zhao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
26
|
Jang T, Parker JS, Weiss‐Schneeweiss H. Structural polymorphisms and distinct genomic composition suggest recurrent origin and ongoing evolution of B chromosomes in the Prospero autumnale complex (Hyacinthaceae). THE NEW PHYTOLOGIST 2016; 210:669-79. [PMID: 26643365 PMCID: PMC4949986 DOI: 10.1111/nph.13778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/28/2015] [Indexed: 05/29/2023]
Abstract
Supernumerary B chromosomes (Bs) are genomic parasitic components, originating from the A complement via chromosomal rearrangements, which follow their own evolutionary trajectories. They often contain repetitive DNAs, some shared with regular chromosomes and some newly evolved. Genomic composition, origin and evolution of Bs have been analysed in the chromosomally variable Prospero autumnale complex. Two rDNAs and a satellite DNA (PaB6) from regular chromosomes were mapped to Bs of 26 plants from three diploid cytotypes, their hybrids and polyploid derivatives. In homoploid diploid hybrids, genomic in situ hybridization (GISH) allowed B painting with the parental DNAs. Bs were structurally variable and highly enriched in 5S rDNA and satDNA PaB6, and rarely in 35S rDNA. Eleven combinations of rDNA and PaB6 localization were observed. The quantities of PaB6 in Bs and regular chromosomes were not correlated, suggesting amplification mechanisms other than recombination. PaB6 and 5S rDNA amounts increased with increasing ploidy level. GISH revealed two independent origins of Bs. The structural variation, repeat content, repeat-type fluctuations and differing genomic affinities of Bs in different cytotypes suggest that they represent young proto-B chromosomes. Bs in P. autumnale probably form recurrently as by-products of the extensive genome restructuring within this chromosomally variable species complex.
Collapse
Affiliation(s)
- Tae‐Soo Jang
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
| | | | - Hanna Weiss‐Schneeweiss
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
| |
Collapse
|
27
|
Banaei-Moghaddam AM, Martis MM, Macas J, Gundlach H, Himmelbach A, Altschmied L, Mayer KF, Houben A. Genes on B chromosomes: Old questions revisited with new tools. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:64-70. [DOI: 10.1016/j.bbagrm.2014.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
28
|
Characterization of four B-chromosome-specific RAPDs and the development of SCAR markers on the maize B-chromosome. Mol Genet Genomics 2014; 290:431-41. [PMID: 25258187 DOI: 10.1007/s00438-014-0926-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
Abstract
Understanding the molecular organization of the maize B-chromosome is hindered by its high homology with A-chromosomes. Recently, various approaches have been employed to overcome this hindrance, and several B-chromosome-specific sequences have been identified. Here, we cloned and characterized four previously published B-chromosome-specific RAPD fragments in detail. The results of sequence analysis, Southern hybridization and fluorescence in situ hybridization revealed that the four RAPD fragments are repetitive and present on both the B- and A-chromosomes, which supports an A-chromosome origin of the B-chromosome. We further developed four sequence-characterized amplified region (SCAR) markers derived from the four B-chromosome-specific RAPDs. These markers amplified PCR products exclusively in plants with B-chromosomes and were further mapped to definite distal heterochromatic regions of the B-chromosome by 15 B-A translocations. Furthermore, reverse transcriptase-PCR revealed that two of the four B-chromosome-specific RAPD fragments are transcriptionally active. These results demonstrate the feasibility of using B-chromosome-specific RAPD sequences to generate SCAR markers specific to the B-chromosome and might apply to other sequences of the maize B-chromosome.
Collapse
|
29
|
Lin HZ, Lin WD, Lin CY, Peng SF, Cheng YM. Characterization of maize B-chromosome-related transcripts isolated via cDNA-AFLP. Chromosoma 2014; 123:597-607. [PMID: 25082399 DOI: 10.1007/s00412-014-0476-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 12/26/2022]
Abstract
The maize B-chromosome consists mainly of heterochromatin and is considered to be genetically inert. However, the B-chromosome contains euchromatin that carries control elements that direct its behaviors during cell division, such as nondisjunction during the second pollen mitosis. To determine the transcriptional activity of the B-chromosome, complementary DNA-amplified fragment length polymorphism analysis was applied to five inbred maize lines with and without B-chromosomes. Six putative B-chromosome-related transcripts were identified, four of which were cloned and characterized via Southern hybridization, fluorescence in situ hybridization, and sequence comparison to further confirm their B-chromosome origin. All the analyzed B-chromosome-related transcript sequences were repetitive and showed homology to A-chromosomes. Quantitative real-time reverse transcriptase-polymerase chain reaction revealed that the B-chromosome-specific transcribed sequences B3547-179 and B3849-212 were transcribed in a B-chromosome-dosage-dependent manner. Expression of B3849-189 and B3849-147 was not specific to the B-chromosome; however, the former showed a transcriptional pattern with B-chromosome dosage compensation, and the latter displayed down-regulation of transcription due to higher B-chromosome numbers. Using four B-10L translocations, B3849-212 was mapped to the B-chromosome region that contains the nondisjunction control elements of the B-chromosome. Taken together, our results suggested that the maize B-chromosome harbors few transcriptionally active sequences and might influence the transcription of A-chromosomes.
Collapse
Affiliation(s)
- Huan-Zhi Lin
- Department of Agronomy, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 402, Taiwan
| | | | | | | | | |
Collapse
|
30
|
Ruiz-Estévez M, Badisco L, Broeck JV, Perfectti F, López-León MD, Cabrero J, Camacho JPM. B chromosomes showing active ribosomal RNA genes contribute insignificant amounts of rRNA in the grasshopper Eyprepocnemis plorans. Mol Genet Genomics 2014; 289:1209-16. [PMID: 24997085 DOI: 10.1007/s00438-014-0880-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/14/2014] [Indexed: 11/25/2022]
Abstract
The genetic inertness of supernumerary (B) chromosomes has recently been called into question after finding several cases of gene activity on them. The grasshopper Eyprepocnemis plorans harbors B chromosomes containing large amounts of ribosomal DNA (rDNA) units, some of which are eventually active, but the amount of rRNA transcripts contributed by B chromosomes, compared to those of the standard (A) chromosomes, is unknown. Here, we address this question by means of quantitative PCR (qPCR) for two different ITS2 amplicons, one coming from rDNA units located in both A and B chromosomes (ITS2(A+B)) and the other being specific to B chromosomes (ITS2(B)). We analyzed six body parts in nine males showing rDNA expression in their B chromosomes in the testis. Amplification of the ITS2(B) amplicon was successful in RNA extracted from all six body parts analyzed, but showed relative quantification (RQ) values four orders of magnitude lower than those obtained for the ITS(A+B) amplicon. RQ values differed significantly between body parts for the two amplicons, with testis, accessory gland and wing muscle showing threefold higher values than head, gastric cecum and hind leg. We conclude that the level of B-specific rDNA expression is extremely low even in individuals where B chromosome rDNA is not completely silenced. Bearing in mind that B chromosomes carry the largest rDNA cluster in the E. plorans genome, we also infer that the relative contribution of B chromosome rRNA genes to ribosome biogenesis is insignificant, at least in the body parts analyzed.
Collapse
Affiliation(s)
- Mercedes Ruiz-Estévez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Silva DMZDA, Pansonato-Alves JC, Utsunomia R, Araya-Jaime C, Ruiz-Ruano FJ, Daniel SN, Hashimoto DT, Oliveira C, Camacho JPM, Porto-Foresti F, Foresti F. Delimiting the origin of a B chromosome by FISH mapping, chromosome painting and DNA sequence analysis in Astyanax paranae (Teleostei, Characiformes). PLoS One 2014; 9:e94896. [PMID: 24736529 PMCID: PMC3988084 DOI: 10.1371/journal.pone.0094896] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022] Open
Abstract
Supernumerary (B) chromosomes have been shown to contain a wide variety of repetitive sequences. For this reason, fluorescent in situ hybridisation (FISH) is a useful tool for ascertaining the origin of these genomic elements, especially when combined with painting from microdissected B chromosomes. In order to investigate the origin of B chromosomes in the fish species Astyanax paranae, these two approaches were used along with PCR amplification of specific DNA sequences obtained from the B chromosomes and its comparison with those residing in the A chromosomes. Remarkably, chromosome painting with the one-arm metacentric B chromosome probe showed hybridization signals on entire B chromosome, while FISH mapping revealed the presence of H1 histone and 18S rDNA genes symmetrically placed in both arms of the B chromosome. These results support the hypothesis that the B chromosome of A. paranae is an isochromosome. Additionally, the chromosome pairs Nos. 2 or 23 are considered the possible B chromosome ancestors since both contain syntenic H1 and 18S rRNA sequences. The analysis of DNA sequence fragments of the histone and rRNA genes obtained from the microdissected B chromosomes showed high similarity with those obtained from 0B individuals, which supports the intraspecific origin of B chromosomes in A. paranae. Finally, the population hereby analysed showed a female-biased B chromosome presence suggesting that B chromosomes in this species could influence sex determinism.
Collapse
Affiliation(s)
- Duílio M. Z. de A. Silva
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil
| | - José Carlos Pansonato-Alves
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil
| | - Ricardo Utsunomia
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil
| | - Cristian Araya-Jaime
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil
| | | | - Sandro Natal Daniel
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Campus de Bauru, Bauru, São Paulo, Brazil
| | - Diogo Teruo Hashimoto
- CAUNESP, Universidade Estadual Paulista, Campus Jaboticabal, Jaboticabal, São Paulo, Brazil
| | - Cláudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil
| | | | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Campus de Bauru, Bauru, São Paulo, Brazil
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil
| |
Collapse
|
32
|
Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN. Evolution and biology of supernumerary B chromosomes. Cell Mol Life Sci 2014; 71:467-78. [PMID: 23912901 PMCID: PMC11113615 DOI: 10.1007/s00018-013-1437-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/02/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022]
Abstract
B chromosomes (Bs) are dispensable components of the genome exhibiting non-Mendelian inheritance and have been widely reported on over several thousand eukaryotes, but still remain an evolutionary mystery ever since their first discovery over a century ago [1]. Recent advances in genome analysis have significantly improved our knowledge on the origin and composition of Bs in the last few years. In contrast to the prevalent view that Bs do not harbor genes, recent analysis revealed that Bs of sequenced species are rich in gene-derived sequences. We summarize the latest findings on supernumerary chromosomes with a special focus on the origin, DNA composition, and the non-Mendelian accumulation mechanism of Bs.
Collapse
Affiliation(s)
- Andreas Houben
- Chromosome Structure and Function Laboratory, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany,
| | | | | | | |
Collapse
|
33
|
HP1 knockdown is associated with abnormal condensation of almost all chromatin types in a grasshopper (Eyprepocnemis plorans). Chromosome Res 2014; 22:253-66. [PMID: 24398928 DOI: 10.1007/s10577-013-9399-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Heterochromatin protein 1 (HP1) is a highly conserved family of eukaryotic proteins required for heterochromatic gene silencing and euchromatic gene transcription regulation. In addition, HP1 is involved in chromatin organization and protection of chromosome integrity during cell division. Here, we present a cytological and molecular analysis of the effects of HP1 knockdown in Eyprepocnemis plorans, a grasshopper species polymorphic for supernumerary heterochromatic chromosomes. Our results revealed contrasting effects of HP1 knockdown on gene activity. While the Bub1 gene decreased in expression level in HP1 knockdown animals, NOR activity, rRNA and, contrarily to previous reports in Drosophila, Hsp70 gene expression remained unchanged. Furthermore, HP1 knockdown resulted in abnormal chromatin condensation, chromosomal bridges, higher frequency of macrospermatids, loss of muscle mass and hemolymph amount as well as a low number of dividing cells and survival reduction. All these phenotypes are very likely due to the chromatin condensation disruption observed for almost all kinds of chromatin.
Collapse
|
34
|
Ruíz-Estévez M, López-León MD, Cabrero J, Camacho JPM. Ribosomal DNA is active in different B chromosome variants of the grasshopper Eyprepocnemis plorans. Genetica 2013; 141:337-45. [PMID: 24008810 DOI: 10.1007/s10709-013-9733-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/31/2013] [Indexed: 11/26/2022]
Abstract
B chromosomes are considered to be genetically inert elements. However, some of them are able to show nucleolus organizer region (NOR) activity, as detected by both cytological and molecular means. The grasshopper Eyprepocnemis plorans shows a B chromosome polymorphism characterized by the existence of many B variants. One of them, B24, shows NOR activity in about half of B-carrying males in the Torrox population. Molecular data have suggested the recent origin for B chromosomes in this species, and on this basis it would be expected that NOR activity was widespread among the different B variants. Here we test this hypothesis in four different B chromosome variants (B1, B2, B5, and B24) from 11 natural populations of the grasshopper E. plorans covering the south and east of the Iberian Peninsula plus the Balearic Islands. We used two different approaches: (1) the cytological observation of nucleoli attached to the distal region of the B chromosome (where the rDNA is located), and (2) the molecular detection of the rDNA transcripts carrying an adenine insertion characteristic of B chromosome ITS2 sequences. The results showed NOR expression not only for B24 but also for the B1 and B2 variants. However, the level of B-NOR expression in these latter variants, measured by the proportion of cells showing nucleoli attached to the B chromosomes, was much lower than that previously reported for B24. This suggests the possibility that structural or genetic background conditions are enhancing the expressivity of the rDNA in the B24 variant.
Collapse
Affiliation(s)
- Mercedes Ruíz-Estévez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | | | | | | |
Collapse
|
35
|
Klemme S, Banaei-Moghaddam AM, Macas J, Wicker T, Novák P, Houben A. High-copy sequences reveal distinct evolution of the rye B chromosome. THE NEW PHYTOLOGIST 2013; 199:550-558. [PMID: 23614816 DOI: 10.1111/nph.12289] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/16/2013] [Indexed: 05/02/2023]
Abstract
B chromosomes (Bs) are supernumerary chromosomes that vary in number among individuals of the same species. Because of their dispensable nature, their non-Mendelian inheritance and their origin from A chromosomes (As), one might assume that Bs followed a different evolutionary pathway from As, this being reflected in differences in their high-copy DNA constitution. We provide detailed insight into the composition and distribution of rye (Secale cereale) B-located high-copy sequences. A- and B-specific high-copy sequences were identified in silico. Mobile elements and satellite sequences were verified by fluorescence in situ hybridization (FISH). Replication was analyzed via EdU incorporation. Although most repeats are similarly distributed along As and Bs, several transposons are either amplified or depleted on the B. An accumulation of B-enriched satellites was found mostly in the nondisjunction control region of the B, which is transcriptionally active and late-replicating. All B-enriched sequences are not unique to the B but are also present in other Secale species, suggesting the origin of the B from As of the same genus. Our findings highlight the differences between As and Bs. Although Bs originated from As, they have since taken a separate evolutionary pathway.
Collapse
Affiliation(s)
- Sonja Klemme
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466, Germany
| | | | - Jiri Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31/1160, České Budějovice, 370 05, Czech Republic
| | - Thomas Wicker
- University of Zurich, Institute of Plant Biology, Zurich, 8008, Switzerland
| | - Petr Novák
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31/1160, České Budějovice, 370 05, Czech Republic
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466, Germany
| |
Collapse
|
36
|
Belyayev A, Raskina O. Chromosome evolution in marginal populations of Aegilops speltoides: causes and consequences. ANNALS OF BOTANY 2013; 111:531-8. [PMID: 23393097 PMCID: PMC3605956 DOI: 10.1093/aob/mct023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/20/2012] [Indexed: 05/24/2023]
Abstract
BACKGROUND Genome restructuring is an ongoing process in natural plant populations. The influence of environmental changes on the genome is crucial, especially during periods of extreme climatic fluctuations. Interactions between the environment and the organism manifest to the greatest extent at the limits of the species' ecological niche. Thus, marginal populations are expected to exhibit lower genetic diversity and higher genetic differentiation than central populations, and some models assume that marginal populations play an important role in the maintenance and generation of biological diversity. SCOPE In this review, long-term data on the cytogenetic characteristics of diploid Aegilops speltoides Tauch populations are summarized and discussed. This species is distributed in and around the Fertile Crescent and is proposed to be the wild progenitor of a number of diploid and polyploid wheat species. In marginal populations of Ae. speltoides, numerical chromosomal aberrations, spontaneous aneuploidy, B-chromosomes, rDNA cluster repatterning and reduction in the species-specific and tribe-specific tandem repeats have been detected. Significant changes were observed and occurred in parallel with changes in plant morphology and physiology. CONCLUSIONS Considerable genomic variation at the chromosomal level was found in the marginal populations of Ae. speltoides. It is likely that a specific combination of gene mutations and chromosomal repatterning has produced the evolutionary trend in each specific case, i.e. for a particular species or group of related species in a given period of time and in a certain habitat. The appearance of a new chromosomal pattern is considered an important factor in promoting the emergence of interbreeding barriers.
Collapse
|
37
|
Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc Natl Acad Sci U S A 2012; 109:13343-6. [PMID: 22847450 DOI: 10.1073/pnas.1204237109] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Supernumerary B chromosomes are optional additions to the basic set of A chromosomes, and occur in all eukaryotic groups. They differ from the basic complement in morphology, pairing behavior, and inheritance and are not required for normal growth and development. The current view is that B chromosomes are parasitic elements comparable to selfish DNA, like transposons. In contrast to transposons, they are autonomously inherited independent of the host genome and have their own mechanisms of mitotic or meiotic drive. Although B chromosomes were first described a century ago, little is known about their origin and molecular makeup. The widely accepted view is that they are derived from fragments of A chromosomes and/or generated in response to interspecific hybridization. Through next-generation sequencing of sorted A and B chromosomes, we show that B chromosomes of rye are rich in gene-derived sequences, allowing us to trace their origin to fragments of A chromosomes, with the largest parts corresponding to rye chromosomes 3R and 7R. Compared with A chromosomes, B chromosomes were also found to accumulate large amounts of specific repeats and insertions of organellar DNA. The origin of rye B chromosomes occurred an estimated ∼1.1-1.3 Mya, overlapping in time with the onset of the genus Secale (1.7 Mya). We propose a comprehensive model of B chromosome evolution, including its origin by recombination of several A chromosomes followed by capturing of additional A-derived and organellar sequences and amplification of B-specific repeats.
Collapse
|
38
|
Ruiz-Estévez M, M a Dolores López-León, Cabrero J, Camacho JPM. B-chromosome ribosomal DNA is functional in the grasshopper Eyprepocnemis plorans. PLoS One 2012; 7:e36600. [PMID: 22570730 PMCID: PMC3343036 DOI: 10.1371/journal.pone.0036600] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/09/2012] [Indexed: 11/19/2022] Open
Abstract
B-chromosomes are frequently argued to be genetically inert elements, but activity for some particular genes has been reported, especially for ribosomal RNA (rRNA) genes whose expression can easily be detected at the cytological level by the visualization of their phenotypic expression, i.e., the nucleolus. The B(24) chromosome in the grasshopper Eyprepocnemis plorans frequently shows a nucleolus attached to it during meiotic prophase I. Here we show the presence of rRNA transcripts that unequivocally came from the B(24) chromosome. To detect these transcripts, we designed primers specifically anchoring at the ITS-2 region, so that the reverse primer was complementary to the B chromosome DNA sequence including a differential adenine insertion being absent in the ITS2 of A chromosomes. PCR analysis carried out on genomic DNA showed amplification in B-carrying males but not in B-lacking ones. PCR analyses performed on complementary DNA showed amplification in about half of B-carrying males. Joint cytological and molecular analysis performed on 34 B-carrying males showed a close correspondence between the presence of B-specific transcripts and of nucleoli attached to the B chromosome. In addition, the molecular analysis revealed activity of the B chromosome rDNA in 10 out of the 13 B-carrying females analysed. Our results suggest that the nucleoli attached to B chromosomes are actively formed by expression of the rDNA carried by them, and not by recruitment of nucleolar materials formed in A chromosome nucleolar organizing regions. Therefore, B-chromosome rDNA in E. plorans is functional since it is actively transcribed to form the nucleolus attached to the B chromosome. This demonstrates that some heterochromatic B chromosomes can harbour functional genes.
Collapse
Affiliation(s)
| | | | - Josefa Cabrero
- Departamento de Genética, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
39
|
Kousaka R, Endo TR. Effect of a rye B chromosome and its segments on homoeologous pairing in hybrids between common wheat and Aegilops variabilis. Genes Genet Syst 2012; 87:1-7. [DOI: 10.1266/ggs.87.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ryota Kousaka
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University
| | - Takashi R. Endo
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
40
|
Golczyk H. Structural heterozygosity, duplication of telomeric (TTTAGGG)(n) clusters and B chromosome architecture in Tradescantia virginiana L. Cytogenet Genome Res 2011; 134:234-42. [PMID: 21709415 DOI: 10.1159/000328915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fluorescent in situ hybridization, C-banding/DAPI, and CMA(3)-fluorescence were performed to reveal the cytomolecular constitution of the standard (A) and supernumerary (B) chromosomes of an autotetraploid Tradescantia virginiana L. The analyses show that translocations and/or inversions have occurred during the evolution of the T. virginiana karyotype, generating a significant level of structural heterozygosity. Regarding the structural level, the present paper confirms the occurrence of small subterminal duplications and/or inversions in T. virginiana already suggested by previous authors. Interestingly, many of the distal chromosome segments in T. virginiana possess duplicated subterminal telomere clusters, heterochromatin, 5S and 45S rDNAs orderly intermixed and share this complex cytomolecular architecture with the common type of a B chromosome. Based on the obtained results, it is proposed that in T. virginiana the B chromosome may have arisen via excision from the distal region of an A chromosome. The nascent B could have retained much of the ancestral sequence arrangement, including duplicated telomeric cluster(s), heterochromatin and rDNA, but developed a new centromere/kinetochore to successfully propagate through the cell cycle.
Collapse
Affiliation(s)
- H Golczyk
- Department of Molecular Biology, Institute of Biotechnology, John Paul II Catholic University of Lublin, Lublin, Poland.
| |
Collapse
|
41
|
Similar rye A and B chromosome organization in meristematic and differentiated interphase nuclei. Chromosome Res 2011; 19:645-55. [PMID: 21674259 DOI: 10.1007/s10577-011-9224-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/26/2011] [Accepted: 05/26/2011] [Indexed: 12/28/2022]
Abstract
Supernumerary (B) chromosomes of rye are not required for plant development and exhibit a reduced transcription activity. These special features inspired us to analyse whether there are differences between A and B chromatin organization in interphase nuclei. Applying fluorescence in situ hybridization, we found that both rye A and B chromosomes added to hexaploid wheat showed in meristematic nuclei a string-like shape and a clear Rabl orientation. In 4C differentiated leaf nuclei, a more relaxed chromatin structure, round-shaped chromosome territories and a less pronounced Rabl configuration were found. Also, the observed random association of homologues in 2C and 4C nuclei indicated in general a similar behaviour of A and B chromosomes. Whereas in differentiated 4C nuclei A sister centromeres are separated, B sister centromeres align in nearly all nuclei. In short, despite the different transcription activity of A and B chromosomes, both types of chromosomes exhibit a similar organization in meristematic and differentiated interphase nuclei. But the deletion of a B chromosome segment responsible for non-disjunction during gametogenesis induces released sister centromeres also in some interphase nuclei of somatic tissue. Hence, the control of rye B chromosome non-disjunction is also active in sporophytic cells.
Collapse
|
42
|
Raskina O, Brodsky L, Belyayev A. Tandem repeats on an eco-geographical scale: outcomes from the genome of Aegilops speltoides. Chromosome Res 2011; 19:607-23. [PMID: 21656077 DOI: 10.1007/s10577-011-9220-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/21/2011] [Accepted: 05/12/2011] [Indexed: 11/30/2022]
Abstract
The chromosomal pattern of tandem repeat fractions of repetitive DNA is one of the most important characteristics of a species. In the present research, we aimed to detect and evaluate the level of intraspecific variability in the chromosomal distribution of species-specific Spelt 1 and Aegilops-Triticum-specific Spelt 52 tandem repeats in Aegilops speltoides and in closely related diploid and polyploid species. There is a distinct eco-geographical gradient in Spelt 1 and Spelt 52 blocks abundance in Ae. speltoides. In marginal populations, the number of Spelt 1 chromosomal blocks could be 12-14 times lower than in the center of the species distribution. Also, in related diploid species, the abundance of Spelt 52 correlates with evolutionary proximity to Ae. speltoides. Finally, the B- and G-genomes of allopolyploid wheats have Spelt 1 chromosomal distribution patterns similar to those of the types of Ae. speltoides with poor and rich contents of Spelt 1, respectively. The observed changes in numbers of blocks of Spelt 1 and Spelt 52 tandem repeats along the eco-geographical gradient may due to their depletion in the marginal populations as a result of increased recombination frequency under stressful conditions. Alternatively, it may be accumulation of tandem repeats in conducive climatic/edaphic environments in the center of the species' geographical distribution. Anyway, we observe a bidirectional shift of repetitive DNA genomic patterns on the population level leading to the formation of population-specific chromosomal patterns of tandem repeats. The appearance of a new chromosomal pattern is considered an important factor in promoting the emergence of interbreeding barriers.
Collapse
Affiliation(s)
- Olga Raskina
- Laboratory of Plant Molecular Cytogenetics, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel.
| | | | | |
Collapse
|
43
|
Abstract
B chromosomes are dispensable elements of the genome that do not recombine with the A chromosomes of the regular complement and that follow their own evolutionary pathway. Here, we survey current knowledge on the DNA/chromatin composition, origin, and drive mechanisms of B chromosomes and discuss the potential research applications of supernumerary chromosomes.
Collapse
Affiliation(s)
- Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | |
Collapse
|
44
|
Cheng YM. Evolution of the heterochromatic regions on maize B long arm based on the sequence structure of CL-repeat variants. Chromosome Res 2010; 18:605-19. [PMID: 20544269 DOI: 10.1007/s10577-010-9136-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/18/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
Evolution of heterochromatic regions in the B long arm was studied in two directions: construction of a phylogenetic tree from mutational variants of CL-repeat and analysis of the XbaI fragments carrying CL-repeat and the repeat structural variants. Using tertiary trisomes and hypoploids of a set of B-10L translocations, the fragments associated with CL-repeat and the variants in each of the three distal heterochromatic (DH) regions were identified. Twenty fragments comprising the CL-repeat were observed in the B-chromosome, and each was assigned to an individual DH region. Four deletions, one insertion, and a large number of mutational variants from each of the three DH regions were isolated and sequenced. The sequences of 27 mutational variants were used to establish a phylogenetic tree which divided the 27 variants into three groups, each of which was associated with a distinct DH region and elucidated an evolution order of the three DH regions. According to the tree, the DH2 was the earliest DH region, which gave rise to the DH3 to be followed by the DH1. The distributions of the fragments including CL-repeat and structural variants in the three DH regions were consistent with such evolution order.
Collapse
Affiliation(s)
- Ya-Ming Cheng
- Department of Agronomy, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402, Taiwan, Republic of China.
| |
Collapse
|