1
|
Cao L, Wang J, Ren S, Jia Y, Liu Y, Yang S, Yu J, Guo X, Hou X, Xu J, Li S, Xing G. Genome-wide identification of the NAC family in Hemerocallis citrina and functional analysis of HcNAC35 in response to abiotic stress in watermelon. FRONTIERS IN PLANT SCIENCE 2024; 15:1474589. [PMID: 39469056 PMCID: PMC11513300 DOI: 10.3389/fpls.2024.1474589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
Introduction NAC (NAM, ATAF, and CUC) transcription factor family, one of the important switches of transcription networks in plants, functions in plant growth, development, and stress resistance. Night lily (Hemerocallis citrina) is an important horticultural perennial monocot plant that has edible, medicinal, and ornamental values. However, the NAC gene family of night lily has not yet been analyzed systematically to date. Methods Therefore, we conducted a genome-wide study of the HcNAC gene family and identified a total of 113 HcNAC members from the Hemerocallis citrina genome. Results We found that 113 HcNAC genes were unevenly distributed on 11 chromosomes. Phylogenetic analysis showed that they could be categorized into 16 instinct subgroups. Proteins clustering together exhibited similar conserved motifs and intron-exon structures. Collinearity analysis indicated that segmental and tandem duplication might contribute to the great expansion of the NAC gene family in night lily, whose relationship was closer with rice than Arabidopsis. Additionally, tissue-specific pattern analysis indicated that most HcNAC genes had relatively higher expression abundances in roots. RNA-Seq along with RT-qPCR results jointly showed HcNAC genes expressed differently under drought and salinity stresses. Interestingly, HcNAC35 was overexpressed in watermelon, and the stress resilience of transgenic lines was much higher than that of wild-type watermelon, which revealed its wide participation in abiotic stress response. Conclusion In conclusion, our findings provide a new prospect for investigating the biological roles of NAC genes in night lily.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sen Li
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable
and Flower, College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Guoming Xing
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable
and Flower, College of Horticulture, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
2
|
Li Y, Fu M, Li J, Wu J, Shua Z, Chen T, Yao W, Huai D. Genome-wide identification of SWEET genes reveals their roles during seed development in peanuts. BMC Genomics 2024; 25:259. [PMID: 38454335 PMCID: PMC10921654 DOI: 10.1186/s12864-024-10173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Sugar Will Eventually be Exported Transporter (SWEET) proteins are highly conserved in various organisms and play crucial roles in sugar transport processes. However, SWEET proteins in peanuts, an essential leguminous crop worldwide, remain lacking in systematic characterization. Here, we identified 94 SWEET genes encoding the conservative MtN3/saliva domains in three peanut species, including 47 in Arachis hypogea, 23 in Arachis duranensis, and 24 in Arachis ipaensis. We observed significant variations in the exon-intron structure of these genes, while the motifs and domain structures remained highly conserved. Phylogenetic analysis enabled us to categorize the predicted 286 SWEET proteins from eleven species into seven distinct groups. Whole genome duplication/segment duplication and tandem duplication were the primary mechanisms contributing to the expansion of the total number of SWEET genes. In addition, an investigation of cis-elements in the potential promoter regions and expression profiles across 22 samples uncovered the diverse expression patterns of AhSWEET genes in peanuts. AhSWEET24, with the highest expression level in seeds from A. hypogaea Tifrunner, was observed to be localized on both the plasma membrane and endoplasmic reticulum membrane. Moreover, qRT-PCR results suggested that twelve seed-expressed AhSWEET genes were important in the regulation of seed development across four different peanut varieties. Together, our results provide a foundational basis for future investigations into the functions of SWEET genes in peanuts, especially in the process of seed development.
Collapse
Affiliation(s)
- Yang Li
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China.
| | - Mengjia Fu
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Jiaming Li
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Jie Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhenyang Shua
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Tiantian Chen
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Wen Yao
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
3
|
Xu M, Guo H, Wang Y, Zhou B. Identification of chromosomes by fluorescence in situ hybridization in Gossypium hirsutum via developing oligonucleotide probes. Genome 2024; 67:64-77. [PMID: 37922519 DOI: 10.1139/gen-2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Discrimination of chromosome is essential for chromosome manipulation or visual chromosome characterization. Oligonucleotide probes can be employed to simplify the procedures of chromosome identification in molecular cytogenetics due to its simplicity, fastness, cost-effectiveness, and high efficiency. So far, however, visual identification of cotton chromosomes remains unsolved. Here, we developed 16 oligonucleotide probes for rapid and accurate identification of chromosomes in Gossypium hirsutum: 9 probes, of which each is able to distinguish individually one pair of chromosomes, and seven probes, of which each distinguishes multiple pairs of chromosomes. Besides the identification of Chrs. A09 and D09, we first find Chr. D08, which carries both 45S and 5S rDNA sequences. Interestingly, we also find Chr. A07 has a small 45S rDNA size, suggesting that the size of this site on Chr. A07 may have reduced during evolution. By the combination of 45S and 5S rDNA sequences and oligonucleotide probes developed, 10 chromosomes (Chrs. 3-7, and 9-13) in A subgenome and 7 (Chrs. 1-2, 4-5, and 7-9) in D subgenome of cotton are able to be recognized. This study establishes cotton oligonucleotide fluorescence in situ hybridization technology for discrimination of chromosomes, which supports and guides for sequence assembling, particularly, for tandem repeat sequences in cotton.
Collapse
Affiliation(s)
- Min Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyue Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Song H, Liu Y, Dong G, Zhang M, Wang Y, Xin J, Su Y, Sun H, Yang M. Genome-Wide Characterization and Comprehensive Analysis of NAC Transcription Factor Family in Nelumbo nucifera. Front Genet 2022; 13:901838. [PMID: 35754820 PMCID: PMC9214227 DOI: 10.3389/fgene.2022.901838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
NAC (NAM, ATAF, and CUC) is a ubiquitously expressed plant-specific transcription factor (TF) family which is involved in the regulation of various biological processes. However, a systematic characterization of NAC gene family is yet to be reported in lotus. Here, 82 NnNAC genes which included five predicted membrane-bound NAC proteins were identified in the lotus genome. Phylogenetic analysis revealed seven-subfamily clusters (I–VII) of NnNAC proteins, with homologous gene pairs displaying similar conserved motifs and gene structure characteristics. Transactivation assay of NnNAC proteins revealed an extensive transcriptional activation capacity which is mediated by the highly divergent C-terminal activation domain (AD). Expression analysis of NnNAC genes in lotus tissues showed high transcript levels in root, stamen, petal and seed coat. In addition, 30 and 29 differentially expressed NnNAC candidate genes putatively involved in lotus seed development and response to complete submergence stress, respectively, were identified. Overall, our study provides potentially useful candidate gene resources for future molecular breeding of lotus varieties with novel agronomic traits.
Collapse
Affiliation(s)
- Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanling Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | | | - Minghua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jia Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Su
- Amway (China) Botanical R&D Centre, Wuxi, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
5
|
Meng Z, Wang Q, Khurshid H, Raza G, Han J, Wang B, Wang K. Chromosome Painting Provides Insights Into the Genome Structure and Evolution of Sugarcane. FRONTIERS IN PLANT SCIENCE 2021; 12:731664. [PMID: 34512706 PMCID: PMC8429501 DOI: 10.3389/fpls.2021.731664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The genus Saccharum is composed of species with high polyploidy and highly varied chromosome numbers, laying a challenge for uncovering its genomic structure and evolution. We developed a chromosome 2 painting (CP2) probe by designing oligonucleotides covering chromosome 2 of Saccharum spontaneum (2n = 8x = 64). Fluorescence in situ hybridization (FISH) using this CP2 probe revealed six types of ploidies from twenty S. spontaneum clones, including 6x, 8x, 10x, 11x, 12x, and 13x clones. The finding of S. spontaneum clones with uneven of ploid suggested that certain S. spontaneum clones come from hybridization. It renews our knowledge that S. spontaneum is derived from autopolyploidization. Combined with a S. spontaneum-specific probe, chromosome 2-derived chromosome or fragments from either S. spontaneum or Saccharum officinarum can be identified in sugarcane modern cultivars. We revealed unexpected high level of interspecific recombination from introgressive S. spontaneum chromosomes (>50.0%) in cultivars ROC22 and ZZ1, indicating frequent chromosome exchange in cultivars. Intriguingly, we observed interspecific recombination recurring among either homoeologous or non-homoeologous chromosomes in sugarcane cultivars. These results demonstrated that chromosome painting FISH is a powerful tool in the genome dissection of sugarcane and provide new insights into the genome structure and evolution of the complex genus Saccharum.
Collapse
Affiliation(s)
- Zhuang Meng
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinnan Wang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, Pakistan
| | - Ghulam Raza
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Sun H, Hu M, Li J, Chen L, Li M, Zhang S, Zhang X, Yang X. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC PLANT BIOLOGY 2018; 18:150. [PMID: 30041622 PMCID: PMC6057059 DOI: 10.1186/s12870-018-1367-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/17/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Transcription factors operate as important switches of transcription networks, and NAC (NAM, ATAF, and CUC) transcription factors are a plant-specific family involved in multiple biological processes. However, this gene family has not been systematically characterized in cotton. RESULTS Here we identify a large number of genes with conservative NAC domains in four cotton species, with 147 found in Gossypium arboreum, 149 in G. raimondii, 267 in G. barbadense and 283 in G. hirsutum. Predicted membrane-bound NAC genes were also identified. Phylogenetic analysis showed that cotton NAC proteins clustered into seven subfamilies and homologous protein pairs showed similar characteristics. Evolutionary property analysis revealed that purifying selection of NAC genes occurred between diploid and polyploid cotton species, and variation analysis showed GhNAC genes may have been subjected to selection and domestication. NAC proteins showed extensive transactivation and this was dependent on the C-terminus. Some development and stress related cis-elements were enriched in the promoters of GhNAC genes. Comprehensive expression analysis indicated that 38 GhNAC genes were candidates for involvement in fiber development, and 120 in stress responses. Gene co-expression network analysis revealed relationships between fiber-associated NAC genes and secondary cell wall (SCW) biosynthesis genes. CONCLUSIONS NAC genes were identified in diploid and tetraploid cotton, revealing new insights into their evolution, variation and homology relationships. Transcriptome analysis and co-expression network indicated roles for GhNAC genes in cotton fiber development and stress response, and NAC genes may prove useful in molecular breeding programmes.
Collapse
Affiliation(s)
- Heng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | - Meiling Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | - Lin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | - Meng Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | - Shuqin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| |
Collapse
|
7
|
Liu Y, Zhang B, Wen X, Zhang S, Wei Y, Lu Q, Liu Z, Wang K, Liu F, Peng R. Construction and characterization of a bacterial artificial chromosome library for Gossypium mustelinum. PLoS One 2018; 13:e0196847. [PMID: 29771937 PMCID: PMC5957370 DOI: 10.1371/journal.pone.0196847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/20/2018] [Indexed: 11/18/2022] Open
Abstract
A bacterial artificial chromosome (BAC) library for G. mustelinum Miers ex G. Watt (AD4) was constructed. Intact nuclei from G. mustelinum (AD4) were used to isolate high molecular weight DNA, which was partially cleaved with Hind III and cloned into pSMART BAC (Hind III) vectors. The BAC library consisted of 208,182 clones arrayed in 542 384-microtiter plates, with an average insert size of 121.72 kb ranging from 100 to 150 kb. About 2% of the clones did not contain inserts. Based on an estimated genome size of 2372 Mb for G. mustelinum, the BAC library was estimated to have a total coverage of 10.50 × genome equivalents. The high capacity library of G. mustelinum will serve as a giant gene resource for map-based cloning of quantitative trait loci or genes associated with important agronomic traits or resistance to Verticillium wilt, physical mapping and comparative genome analysis.
Collapse
Affiliation(s)
- Yuling Liu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States of America
| | - Xinpeng Wen
- Anyang Institute of Technology, Anyang, Henan, China
| | - Shulin Zhang
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, Henan, China
| | - Quanwei Lu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Zhen Liu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
- * E-mail: (FL); (RP)
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, Henan, China
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
- * E-mail: (FL); (RP)
| |
Collapse
|
8
|
Sun H, Chen L, Li J, Hu M, Ullah A, He X, Yang X, Zhang X. The JASMONATE ZIM-Domain Gene Family Mediates JA Signaling and Stress Response in Cotton. PLANT & CELL PHYSIOLOGY 2017; 58:2139-2154. [PMID: 29036515 DOI: 10.1093/pcp/pcx148] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/26/2017] [Indexed: 05/18/2023]
Abstract
JASMONATE ZIM-domain (JAZ) family proteins are involved in regulating diverse biological processes in plants. However, their functions have not been well characterized in cotton (Gossypium spp.). In the present study, 13, 15, 25 and 30 JAZ genes were identified in Gossypium arboretum, Gossypium raimondii, Gossypium barbadense and Gossypium hirsutum, respectively, based on gene homology. Selection and variation analyses showed that the single nucleotide polymorphism (SNP) density of GhJAZ genes in wild species was much higher than that in domesticated species. Expression pattern analysis showed that all the GhJAZ genes are expressed in at least one tissue and respond to one or more stress factors, as well as being induced by some phytohormones. The co-expression network indicated that GhJAZ genes might mediate multiple stress response pathways. Yeast two-hybrid (Y2H) experiments showed extensive interactions among GhJAZ proteins, including homo- and heteromeric interactions. Overexpressing one member of the JAZ gene family, GhJAZ2 (Gh_D06G0810), significantly enhanced sensitivity to salt stress in transgenic cotton. Transcriptome analysis indicated that GhJAZ2 regulates stress responses possibly by participating in α-linolenic acid metabolism and jasmonate signaling, and is involved in the repression of GhMYC2 regulated by GhJAZ2. Our data provide important clues for further elucidating the functions of JAZ genes in cotton.
Collapse
Affiliation(s)
- Heng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meiling Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Abid Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
9
|
Comprehensive cytological characterization of the Gossypium hirsutum genome based on the development of a set of chromosome cytological markers. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Soltis DE, Visger CJ, Marchant DB, Soltis PS. Polyploidy: Pitfalls and paths to a paradigm. AMERICAN JOURNAL OF BOTANY 2016; 103:1146-66. [PMID: 27234228 DOI: 10.3732/ajb.1500501] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/25/2016] [Indexed: 05/22/2023]
Abstract
Investigators have long searched for a polyploidy paradigm-rules or principles that might be common following polyploidization (whole-genome duplication, WGD). Here we attempt to integrate what is known across the more thoroughly investigated polyploid systems on topics ranging from genetics to ecology. We found that while certain rules may govern gene retention and loss, systems vary in the prevalence of gene silencing vs. homeolog loss, chromosomal change, the presence of a dominant genome (in allopolyploids), and the relative importance of hybridization vs. genome doubling per se. In some lineages, aspects of polyploidization are repeated across multiple origins, but in other species multiple origins behave more stochastically in terms of genetic and phenotypic change. Our investigation also reveals that the path to synthesis is hindered by numerous gaps in our knowledge of even the best-known systems. Particularly concerning is the absence of linkage between genotype and phenotype. Moreover, most recent studies have focused on the genetic and genomic attributes of polyploidy, but rarely is there an ecological or physiological context. To promote a path to a polyploidy paradigm (or paradigms), we propose a major community goal over the next 10-20 yr to fill the gaps in our knowledge of well-studied polyploids. Before a meaningful synthesis is possible, more complete data sets are needed for comparison-systems that include comparable genetic, genomic, chromosomal, proteomic, as well as morphological, physiological, and ecological data. Also needed are more natural evolutionary model systems, as most of what we know about polyploidy continues to come from a few crop and genetic models, systems that often lack the ecological context inherent in natural systems and necessary for understanding the drivers of biodiversity.
Collapse
Affiliation(s)
- Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| | - Clayton J Visger
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - D Blaine Marchant
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| |
Collapse
|
11
|
Lv Y, Ma D, Liang W, Lv Y, Guo W, Hu Y, Zhang T. Construction of BAC contig maps of homoeologous chromosomes A12 and D12 of Gossypium hirsutum L. acc. TM-1. Mol Cytogenet 2015. [PMID: 26221184 PMCID: PMC4517413 DOI: 10.1186/s13039-015-0158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The Gossypium hirsutum homoeologous chromosome 12 encodes important genes that contribute to fiber fuzz, lethality, gland development and male sterility. In this study a physical map of the cotton TM-1 chromosome 12 was constructed. A number of large-insert cotton genome libraries are available, and genome-wide physical mapping using large insert segments combined with bacterial cloning is a thriving area of genome research. However, sequencing of the cotton genome is difficult due to sequence repeats and homoeologous regions. In order to effectively distinguish the homologous segments, a new method for adjusting the parameters of the FPC software was applied for contig map construction. Results All available markers on chromosomes A12 and D12 were used to screen the TM-1 BAC library by PCR. A total of 775 clones (387 for A12, 388 for D12) were obtained using Hind III fingerprinting and used for construction of the contig map. Seven pairs of SSR markers located on A12 and D12 were chosen for contig analysis. Following optimization of the tolerance (10) and cutoff (1e-12) parameters, combining all clones from A12 and D12 produced two separate contigs. Conclusions The BAC contig map of chromosomes A12 and D12 was constructed and FPC software parameters were optimized for analysis. The resulting approach is a powerful platform for genome-wide and evolutionary research on cotton.
Collapse
Affiliation(s)
- Yanhui Lv
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dan Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenhua Liang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuanda Lv
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yan Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
12
|
Wang S, Chen J, Zhang W, Hu Y, Chang L, Fang L, Wang Q, Lv F, Wu H, Si Z, Chen S, Cai C, Zhu X, Zhou B, Guo W, Zhang T. Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol 2015; 16:108. [PMID: 26003111 PMCID: PMC4469577 DOI: 10.1186/s13059-015-0678-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/18/2015] [Indexed: 11/23/2022] Open
Abstract
Background SNPs are the most abundant polymorphism type, and have been explored in many crop genomic studies, including rice and maize. SNP discovery in allotetraploid cotton genomes has lagged behind that of other crops due to their complexity and polyploidy. In this study, genome-wide SNPs are detected systematically using next-generation sequencing and efficient SNP genotyping methods, and used to construct a linkage map and characterize the structural variations in polyploid cotton genomes. Results We construct an ultra-dense inter-specific genetic map comprising 4,999,048 SNP loci distributed unevenly in 26 allotetraploid cotton linkage groups and covering 4,042 cM. The map is used to order tetraploid cotton genome scaffolds for accurate assembly of G. hirsutum acc. TM-1. Recombination rates and hotspots are identified across the cotton genome by comparing the assembled draft sequence and the genetic map. Using this map, genome rearrangements and centromeric regions are identified in tetraploid cotton by combining information from the publicly-available G. raimondii genome with fluorescent in situ hybridization analysis. Conclusions We report the genotype-by-sequencing method used to identify millions of SNPs between G. hirsutum and G. barbadense. We construct and use an ultra-dense SNP map to correct sequence mis-assemblies, merge scaffolds into pseudomolecules corresponding to chromosomes, detect genome rearrangements, and identify centromeric regions in allotetraploid cottons. We find that the centromeric retro-element sequence of tetraploid cotton derived from the D subgenome progenitor might have invaded the A subgenome centromeres after allotetrapolyploid formation. This study serves as a valuable genomic resource for genetic research and breeding of cotton. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0678-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sen Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiedan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenpan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yan Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lijing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lei Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qiong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fenni Lv
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huaitong Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhanfeng Si
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shuqi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Caiping Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiefei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 2015; 33:531-7. [PMID: 25893781 DOI: 10.1038/nbt.3207] [Citation(s) in RCA: 1057] [Impact Index Per Article: 105.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/15/2015] [Indexed: 02/06/2023]
Abstract
Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.
Collapse
|
14
|
Construction of cytogenetic map of Gossypium herbaceum chromosome 1 and its integration with genetic maps. Mol Cytogenet 2015; 8:2. [PMID: 25628758 PMCID: PMC4307992 DOI: 10.1186/s13039-015-0106-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
Background Cytogenetic map can provide not only information of the genome structure, but also can build a solid foundation for genetic research. With the developments of molecular and cytogenetic studies in cotton (Gossypium), the construction of cytogenetic map is becoming more and more imperative. Results A cytogenetic map of chromosome 1 (A101) of Gossypium herbaceum (A1) which includes 10 bacterial artificial chromosome (BAC) clones was constructed by using fluorescent in situ hybridization (FISH). Meanwhile, comparison and analysis were made for the cytogenetic map of chromosome 1 (A101) of G. herbaceum with four genetic linkage maps of chromosome 1 (Ah01) of G. hirsutum ((AD)1) and one genetic linkage map of chromosome 1 of (A101) G. arboreum (A2). The 10 BAC clones were also used to be localized on G. raimondii (D5) chromosome 1 (D501), and 2 of them showed clear unique hybridized signals. Furthermore, these 2 BAC clones were also shown localized on chromosome 1 of both A sub-genome and D sub-genome of G. hirsutum. Conclusion The comparison of the cytogenetic map with genetic linkage maps showed that most of the identified marker-tagged BAC clones appearing same orders in different maps except three markers showing different positions, which might indicate chromosomal segmental rearrangements. The positions of the 2 BAC clones which were localized on Ah01 and Dh01 chromosomes were almost the same as that on A101 and D501 chromosomes. The corresponding anchored SSR markers of these 2 BAC clones were firstly found to be localized on chromosome D501 (Dh01) as they were not seen mapped like this in any genetic map reported.
Collapse
|
15
|
Zhang W, Cao Y, Wang K, Zhao T, Chen J, Pan M, Wang Q, Feng S, Guo W, Zhou B, Zhang T. Identification of centromeric regions on the linkage map of cotton using centromere-related repeats. Genomics 2014; 104:587-93. [PMID: 25238895 DOI: 10.1016/j.ygeno.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/16/2014] [Accepted: 09/07/2014] [Indexed: 12/16/2022]
Abstract
Centromere usually contains high-copy-number retrotransposons and satellite repeats, which are difficult to map, clone and sequence. Currently, very little is known about the centromere in cotton. Here, we sequenced a bacterial artificial chromosome (BAC) mapping to the centromeric region and predicted four long-terminal-repeat (LTR) retrotransposons. They were located in the heterochromatic centromeric regions of all 52 pachytene chromosomes in Gossypium hirsutum. Fiber-FISH mapping revealed that these retrotransposons span an area of at least 1.8Mb in the centromeric region. Comparative analysis showed that these retrotransposons generated similar, strong fluorescent signals in the D progenitor Gossypium raimondii but not in the A progenitor Gossypium herbaceum, suggesting that the centromere sequence of tetraploid cotton might be derived from the D progenitor. Centromeric regions were anchored on 13 chromosomes of D-genome sequence. Characterization of these centromere-related repeats and regions will enhance cotton centromere mapping, sequencing and evolutionary studies.
Collapse
Affiliation(s)
- Wenpan Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiedan Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengqiao Pan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiong Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Shouli Feng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Baoliang Zhou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
Systematic application of DNA fiber-FISH technique in cotton. PLoS One 2013; 8:e75674. [PMID: 24086609 PMCID: PMC3785504 DOI: 10.1371/journal.pone.0075674] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/09/2013] [Indexed: 01/16/2023] Open
Abstract
Fluorescence in situ hybridization on extended DNA (fiber-FISH) is a powerful tool in high-resolution physical mapping. To introduce this technique into cotton, we developed the technique and tested it by deliberately mapping of telomere and 5S rDNA. Results showed that telomere-length ranged from 0.80 kb to 37.86 kb in three species, G. hirsutum, G. herbaceum and G. arboreum. However, most of the telomeres (>91.0%) were below 10 kb. The length of 5S rDNA was revealed as 964 kb in G. herbaceum whereas, in G. arboreum, it was approximately three times longer (3.1 Mb). A fiber-FISH based immunofluorescence method was also described to assay the DNA methylation. Using this technique, we revealed that both telomere and 5S rDNA were methylated at different levels. In addition, we developed a BAC molecule-based fiber-FISH technique. Using this technique, we can precisely map BAC clones on each other and evaluated the size and location of overlapped regions. The development and application of fiber-FISH technique will facilitate high-resolution physical mapping and further directed sequencing projects for cotton.
Collapse
|
17
|
Sun J, Zhang Z, Zong X, Huang S, Li Z, Han Y. A high-resolution cucumber cytogenetic map integrated with the genome assembly. BMC Genomics 2013; 14:461. [PMID: 23834562 PMCID: PMC3710503 DOI: 10.1186/1471-2164-14-461] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/05/2013] [Indexed: 01/05/2023] Open
Abstract
Background High-resolution cytogenetic map can provide not only important biological information on genome organization but also solid foundation for genetic and genomic research. The progress in the molecular and cytogenetic studies has created the basis for developing the cytogenetic map in cucumber (Cucumis sativus L.). Results Here, the cytogenetic maps of four cucumber chromosomes (chromosomes 1, 3–5) were constructed by fluorescence in situ hybridization (FISH) analysis on cucumber pachytene chromosomes. Together with our previously constructed cytogenetic maps of three cucumber chromosomes (chromosomes 2, 6–7), cucumber has a complete cytogenetic map with 76 anchoring points between the genetic, the cytogenetic and the draft genome assembly maps. To compare our pachytene FISH map directly to the genetic linkage and draft genome assembly maps, we used a standardized map unit—relative map position (RMP) to produce the comparative map alignments. The alignments allowed a global view of the relationship of genetic and physical distances along each cucumber chromosome, and accuracy and coverage of the draft genome assembly map. Conclusions We demonstrated a good correlation between positions of the markers in the linkage and physical maps, and essentially complete coverage of chromosome arms by the draft genome assembly. Our study not only provides essential information for the improvement of sequence assembly but also offers molecular tools for cucumber genomics research, comparative genomics and evolutionary study.
Collapse
Affiliation(s)
- Jianying Sun
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | | | | | | | | | | |
Collapse
|
18
|
Zhao L, Yuanda L, Caiping C, Xiangchao T, Xiangdong C, Wei Z, Hao D, Xiuhua G, Wangzhen G. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics 2012; 13:539. [PMID: 23046547 PMCID: PMC3557173 DOI: 10.1186/1471-2164-13-539] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 09/23/2012] [Indexed: 01/02/2023] Open
Abstract
Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource for tetraploid cotton genome assembly, for cloning genes related to superior agronomic traits, and for further comparative genomic analyses in Gossypium.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Aversano R, Ercolano MR, Caruso I, Fasano C, Rosellini D, Carputo D. Molecular tools for exploring polyploid genomes in plants. Int J Mol Sci 2012; 13:10316-10335. [PMID: 22949863 PMCID: PMC3431861 DOI: 10.3390/ijms130810316] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 11/16/2022] Open
Abstract
Polyploidy is a very common phenomenon in the plant kingdom, where even diploid species are often described as paleopolyploids. The polyploid condition may bring about several advantages compared to the diploid state. Polyploids often show phenotypes that are not present in their diploid progenitors or exceed the range of the contributing species. Some of these traits may play a role in heterosis or could favor adaptation to new ecological niches. Advances in genomics and sequencing technology may create unprecedented opportunities for discovering and monitoring the molecular effects of polyploidization. Through this review, we provide an overview of technologies and strategies that may allow an in-depth analysis of polyploid genomes. After introducing some basic aspects on the origin and genetics of polyploids, we highlight the main tools available for genome and gene expression analysis and summarize major findings. In the last part of this review, the implications of next generation sequencing are briefly discussed. The accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists to understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.
Collapse
Affiliation(s)
- Riccardo Aversano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Maria Raffaella Ercolano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Immacolata Caruso
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Carlo Fasano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Daniele Rosellini
- Department of Applied Biology, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy; E-Mail:
| | - Domenico Carputo
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| |
Collapse
|
20
|
Wang K, Zhang W, Cao Y, Zhang Z, Zheng D, Zhou B, Guo W, Zhang T. Localization of high level of sequence conservation and divergence regions in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1173-1182. [PMID: 22212344 DOI: 10.1007/s00122-011-1777-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 12/15/2011] [Indexed: 05/31/2023]
Abstract
In a previous study, we observed that the variations in chromosome size are due to uneven expansion and contraction by comparing the structures and sizes of a pair of homoeologous high-resolution cytogenetic maps of chromosomes 12A and 12D in tetraploid cotton. To reveal the variation at the sequence level, in the present paper, we sequenced two pairs of homoeologous bacterial artificial chromosomes derived from high- to low-variable genomic regions. Comparisons of their sequence variations confirmed that the highly conserved and divergent sequences existed in the distal and pericentric regions, e.g., high- and low-variable genome size regions in these two pairs of cotton homoeologous chromosomes. Sequence analysis also confirmed that the differential accumulation of Gossypium retrotransposable gypsy-like element (Gorge3) accounted for the main contributions for the size difference between the pericentric regions. By fluorescence in situ hybridization analysis, we found that Gorge3 has a bias distribution in the A(T)/A proximal regions and is associated with the heterochromatin along the chromosomes in the entire Gossypium genome. These results indicate that, between A(T)/A and D(T)/D genomes, the distal and pericentric regions usually possess high level of sequence conservation and divergence, respectively, in cotton.
Collapse
Affiliation(s)
- Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Peng R, Zhang T, Liu F, Ling J, Wang C, Li S, Zhang X, Wang Y, Wang K. Preparations of meiotic pachytene chromosomes and extended DNA fibers from cotton suitable for fluorescence in situ hybridization. PLoS One 2012; 7:e33847. [PMID: 22442728 PMCID: PMC3307766 DOI: 10.1371/journal.pone.0033847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/18/2012] [Indexed: 12/02/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) has become one of the most important techniques applied in plant molecular cytogenetics. However, the application of this technique in cotton has lagged behind because of difficulties in chromosome preparation. The focus of this article was FISH performed not only on cotton pachytene chromosomes, but also on cotton extended DNA fibers. The cotton pollen mother cells (PMCs) instead of buds or anthers were directly digested in enzyme to completely breakdown the cell wall. Before the routine acetic acid treatment, PMCs were incubated in acetic acid and enzyme mixture to remove the cytoplasm and clear the background. The method of ice-cold Carnoy's solution spreading chromosome was adopted instead of nitrogen removed method to avoid chromosomes losing and fully stretch chromosome. With the above-improved steps, the high-quality well-differentiated pachytene chromosomes with clear background were obtained. FISH results demonstrated that a mature protocol of cotton pachytene chromosomes preparation was presented. Intact and no debris cotton nuclei were obtained by chopping from etiolation cotyledons instead of the conventional liquid nitrogen grinding method. After incubating the nuclei with nucleus lysis buffer on slide, the parallel and clear background DNA fibers were acquired along the slide. This method overcomes the twist, accumulation and fracture of DNA fibers compared with other methods. The entire process of DNA fibers preparation requires only 30 min, in contrast, it takes 3 h with routine nitrogen grinding method. The poisonous mercaptoethanol in nucleus lysis buffer is replaced by nonpoisonous dithiothreitol. PVP40 in nucleus isolation buffer is used to prevent oxidation. The probability of success in isolating nuclei for DNA fiber preparation is almost 100% tested with this method in cotton. So a rapid, safe, and efficient method for the preparation of cotton extended DNA fibers suitable for FISH was established.
Collapse
Affiliation(s)
- Renhai Peng
- State Key Laboratory of Cotton Biology, China and Cotton Research Institute of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Han Y, Zhang Z, Huang S, Jin W. An integrated molecular cytogenetic map of Cucumis sativus L. chromosome 2. BMC Genet 2011; 12:18. [PMID: 21272311 PMCID: PMC3039625 DOI: 10.1186/1471-2156-12-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 01/27/2011] [Indexed: 12/16/2022] Open
Abstract
Background Integration of molecular, genetic and cytological maps is still a challenge for most plant species. Recent progress in molecular and cytogenetic studies created a basis for developing integrated maps in cucumber (Cucumis sativus L.). Results In this study, eleven fosmid clones and three plasmids containing 45S rDNA, the centromeric satellite repeat Type III and the pericentriomeric repeat CsRP1 sequences respectively were hybridized to cucumber metaphase chromosomes to assign their cytological location on chromosome 2. Moreover, an integrated molecular cytogenetic map of cucumber chromosomes 2 was constructed by fluorescence in situ hybridization (FISH) mapping of 11 fosmid clones together with the cucumber centromere-specific Type III sequence on meiotic pachytene chromosomes. The cytogenetic map was fully integrated with genetic linkage map since each fosmid clone was anchored by a genetically mapped simple sequence repeat marker (SSR). The relationship between the genetic and physical distances along chromosome was analyzed. Conclusions Recombination was not evenly distributed along the physical length of chromosome 2. Suppression of recombination was found in centromeric and pericentromeric regions. Our results also indicated that the molecular markers composing the linkage map for chromosome 2 provided excellent coverage of the chromosome.
Collapse
Affiliation(s)
- Yonghua Han
- National Maize Improvement Center of China, Key Laboratory of Crop Genetic Improvement and Genome of Ministry of Agriculture, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100094, PR China.
| | | | | | | |
Collapse
|