1
|
Amin A, Wu R, Khan MA, Cheung MH, Liang Y, Liu C, Zhu G, Yu ZL, Liang C. An essential Noc3p dimerization cycle mediates ORC double-hexamer formation in replication licensing. Life Sci Alliance 2023; 6:e202201594. [PMID: 36599624 PMCID: PMC9813392 DOI: 10.26508/lsa.202201594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Replication licensing, a prerequisite of DNA replication, helps to ensure once-per-cell-cycle genome duplication. Some DNA replication-initiation proteins are sequentially loaded onto replication origins to form pre-replicative complexes (pre-RCs). ORC and Noc3p bind replication origins throughout the cell cycle, providing a platform for pre-RC assembly. We previously reported that cell cycle-dependent ORC dimerization is essential for the chromatin loading of the symmetric MCM double-hexamers. Here, we used Saccharomyces cerevisiae separation-of-function NOC3 mutants to confirm the separable roles of Noc3p in DNA replication and ribosome biogenesis. We also show that an essential and cell cycle-dependent Noc3p dimerization cycle regulates the ORC dimerization cycle. Noc3p dimerizes at the M-to-G1 transition and de-dimerizes in S-phase. The Noc3p dimerization cycle coupled with the ORC dimerization cycle enables replication licensing, protects nascent sister replication origins after replication initiation, and prevents re-replication. This study has revealed a new mechanism of replication licensing and elucidated the molecular mechanism of Noc3p as a mediator of ORC dimerization in pre-RC formation.
Collapse
Affiliation(s)
- Aftab Amin
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Rentian Wu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Man Hei Cheung
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanting Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Changdong Liu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang Zhu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- EnKang Pharmaceuticals (Guangzhou), Ltd., Guangzhou, China
| |
Collapse
|
2
|
Tanaka S, Ogawa S. Dimerization of Firing Factors for Replication Origin Activation in Eukaryotes: A Crucial Process for Simultaneous Assembly of Bidirectional Replication Forks? BIOLOGY 2022; 11:928. [PMID: 35741449 PMCID: PMC9219616 DOI: 10.3390/biology11060928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
Controlling the activity of the heterohexameric Mcm2-7 replicative helicase is crucial for regulation of replication origin activity in eukaryotes. Because bidirectional replication forks are generated from every replication origin, when origins are licensed for replication in the first step of DNA replication, two inactive Mcm2-7 heterohexiameric complexes are loaded around double stranded DNA as a head-to-head double hexamer. The helicases are subsequently activated via a 'firing' reaction, in which the Mcm2-7 double hexamer is converted into two active helicase units, the CMG complex, by firing factors. Dimerization of firing factors may contribute to this process by allowing simultaneous activation of two sets of helicases and thus efficient assembly of bidirectional replication forks. An example of this is dimerization of the firing factor Sld3/Treslin/Ticrr via its binding partner, Sld7/MTBP. In organisms in which no Sld7 ortholog has been identified, such as the fission yeast Schizosaccharomyces pombe, Sld3 itself has a dimerization domain, and it has been suggested that this self-interaction is crucial for the firing reaction in this organism. Dimerization induces a conformational change in Sdl3 that appears to be critical for the firing reaction. Moreover, Mcm10 also seems to be regulated by self-interaction in yeasts. Although it is not yet clear to what extent dimerization of firing factors contributes to the firing reaction in eukaryotes, we discuss the possible roles of firing factor dimerization in simultaneous helicase activation.
Collapse
Affiliation(s)
- Seiji Tanaka
- School of Environmental Science and Engineering, Kochi University of Technology, Kami 782-8502, Japan;
| | | |
Collapse
|
3
|
Hammond-Martel I, Verreault A, Wurtele H. Chromatin dynamics and DNA replication roadblocks. DNA Repair (Amst) 2021; 104:103140. [PMID: 34087728 DOI: 10.1016/j.dnarep.2021.103140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
A broad spectrum of spontaneous and genotoxin-induced DNA lesions impede replication fork progression. The DNA damage response that acts to promote completion of DNA replication is associated with dynamic changes in chromatin structure that include two distinct processes which operate genome-wide during S-phase. The first, often referred to as histone recycling or parental histone segregation, is characterized by the transfer of parental histones located ahead of replication forks onto nascent DNA. The second, known as de novo chromatin assembly, consists of the deposition of new histone molecules onto nascent DNA. Because these two processes occur at all replication forks, their potential to influence a multitude of DNA repair and DNA damage tolerance mechanisms is considerable. The purpose of this review is to provide a description of parental histone segregation and de novo chromatin assembly, and to illustrate how these processes influence cellular responses to DNA replication roadblocks.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada; Département de Médecine, Université de Montréal, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada.
| |
Collapse
|
4
|
Hashimoto Y, Tanaka H. Ongoing replication forks delay the nuclear envelope breakdown upon mitotic entry. J Biol Chem 2021; 296:100033. [PMID: 33148697 PMCID: PMC7948514 DOI: 10.1074/jbc.ra120.015142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 01/22/2023] Open
Abstract
DNA replication is a major contributor to genomic instability, and protection against DNA replication perturbation is essential for normal cell division. Certain types of replication stress agents, such as aphidicolin and hydroxyurea, have been shown to cause reversible replication fork stalling, wherein replisome complexes are stably maintained with competence to restart in the S phase of the cell cycle. If these stalled forks persist into the M phase without a replication restart, replisomes are disassembled in a p97-dependent pathway and under-replicated DNA is subjected to mitotic DNA repair synthesis. Here, using Xenopus egg extracts, we investigated the consequences that arise when stalled forks are released simultaneously with the induction of mitosis. Ara-cytidine-5'-triphosphate-induced stalled forks were able to restart with the addition of excess dCTP during early mitosis before the nuclear envelope breakdown (NEB). However, stalled forks could no longer restart efficiently after the NEB. Although replisome complexes were finally disassembled in a p97-dependent manner during mitotic progression whether or not fork stalling was relieved, the timing of the NEB was delayed with the ongoing forks, rather than the stalled forks, and the delay was dependent on Wee1/Myt1 kinase activities. Thus, ongoing DNA replication was found to be directly linked to the regulation of Wee1/Myt1 kinases to modulate cyclin-dependent kinase activities because of which DNA replication and mitosis occur in a mutually exclusive and sequential manner.
Collapse
Affiliation(s)
- Yoshitami Hashimoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| | - Hirofumi Tanaka
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
5
|
Ahmed Ezzat H, Price C. Characterisation of unessential genes required for survival under conditions of DNA stress. J Genet Eng Biotechnol 2020; 18:14. [PMID: 32372157 PMCID: PMC7201005 DOI: 10.1186/s43141-020-00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/11/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genomic instability is a hallmark of cancer. Cancer progression depends on the development and amplification of mutations that alter the cellular response to threats to the genome. This can lead to DNA replication stress and the potential loss of genetic integrity of the newly formed cells. This study utilised fission yeast to map the interactions occurring in some of the most crucial pathways in both DNA replication and checkpoint monitoring involving Rad4, the Schizosaccharomyces pombe (S. pombe) TopBP1 homologue. We have modelled conditions of replication stress in the genetically tractable fission yeast, S. pombe using the hypomorphic rad4-116 allele. Synthetic genetic analysis was used to identify processes required for cell survival under conditions of DNA replication stress. With the aim of mapping the genetic interactions of rad4 and its mutant allele, rad4-116, several genes that could have an interaction with rad4 during replication stress have emerged as attractive. RESULTS Interactions with genes involved in chromatin remodelling, such as hip1, and replication fork stalling resolution, such as mrc1, swi1 and swi3 were explored and confirmed. The interactions of Rad4 with each of the genes provided separate and distinct tumour formation pathways, as evident in the synthetically lethal interactions. Even within the same complex, rad4-116 double mutants behaved differently proving that Rad4 interacts at different levels and functions with the same proteins. CONCLUSION Results from this study provide a novel view of the rad4 interactions, the association of Rad4 with the replisome. The study also provides the groundwork on a theoretical and practical level for the exploration and separation of interactions of TopBP1 with the histone chaperone family and the replisome.
Collapse
Affiliation(s)
- Hassan Ahmed Ezzat
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK.
| | - Clive Price
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
6
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
7
|
Premature activation of Cdk1 leads to mitotic events in S phase and embryonic lethality. Oncogene 2018; 38:998-1018. [PMID: 30190546 PMCID: PMC6756125 DOI: 10.1038/s41388-018-0464-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/15/2018] [Accepted: 07/27/2018] [Indexed: 01/08/2023]
Abstract
Cell cycle regulation, especially faithful DNA replication and mitosis, are crucial to maintain genome stability. Cyclin-dependent kinase (CDK)/cyclin complexes drive most processes in cellular proliferation. In response to DNA damage, cell cycle surveillance mechanisms enable normal cells to arrest and undergo repair processes. Perturbations in genomic stability can lead to tumor development and suggest that cell cycle regulators could be effective targets in anticancer therapy. However, many clinical trials ended in failure due to off-target effects of the inhibitors used. Here, we investigate in vivo the importance of WEE1- and MYT1-dependent inhibitory phosphorylation of mammalian CDK1. We generated Cdk1AF knockin mice, in which two inhibitory phosphorylation sites are replaced by the non-phosphorylatable amino acids T14A/Y15F. We uncovered that monoallelic expression of CDK1AF is early embryonic lethal in mice and induces S phase arrest accompanied by γH2AX and DNA damage checkpoint activation in mouse embryonic fibroblasts (MEFs). The chromosomal fragmentation in Cdk1AF MEFs does not rely on CDK2 and is partly caused by premature activation of MUS81-SLX4 structure-specific endonuclease complexes, as well as untimely onset of chromosome condensation followed by nuclear lamina disassembly. We provide evidence that tumor development in liver expressing CDK1AF is inhibited. Interestingly, the regulatory mechanisms that impede cell proliferation in CDK1AF expressing cells differ partially from the actions of the WEE1 inhibitor, MK-1775, with p53 expression determining the sensitivity of cells to the drug response. Thus, our work highlights the importance of improved therapeutic strategies for patients with various cancer types and may explain why some patients respond better to WEE1 inhibitors.
Collapse
|
8
|
Wakida T, Ikura M, Kuriya K, Ito S, Shiroiwa Y, Habu T, Kawamoto T, Okumura K, Ikura T, Furuya K. The CDK-PLK1 axis targets the DNA damage checkpoint sensor protein RAD9 to promote cell proliferation and tolerance to genotoxic stress. eLife 2017; 6:e29953. [PMID: 29254517 PMCID: PMC5736350 DOI: 10.7554/elife.29953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/02/2017] [Indexed: 01/08/2023] Open
Abstract
Genotoxic stress causes proliferating cells to activate the DNA damage checkpoint, to assist DNA damage recovery by slowing cell cycle progression. Thus, to drive proliferation, cells must tolerate DNA damage and suppress the checkpoint response. However, the mechanism underlying this negative regulation of checkpoint activation is still elusive. We show that human Cyclin-Dependent-Kinases (CDKs) target the RAD9 subunit of the 9-1-1 checkpoint clamp on Thr292, to modulate DNA damage checkpoint activation. Thr292 phosphorylation on RAD9 creates a binding site for Polo-Like-Kinase1 (PLK1), which phosphorylates RAD9 on Thr313. These CDK-PLK1-dependent phosphorylations of RAD9 suppress checkpoint activation, therefore maintaining high DNA synthesis rates during DNA replication stress. Our results suggest that CDK locally initiates a PLK1-dependent signaling response that antagonizes the ability of the DNA damage checkpoint to detect DNA damage. These findings provide a mechanism for the suppression of DNA damage checkpoint signaling, to promote cell proliferation under genotoxic stress conditions.
Collapse
Affiliation(s)
- Takeshi Wakida
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Masae Ikura
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Kenji Kuriya
- Laboratory of Nutritional Chemistry, Department of Life SciencesGraduate School of Bioresources, Mie UniversityTsuJapan
| | - Shinji Ito
- Medical Research Support CenterGraduate School of Medicine, Kyoto UniversitySakyo-kuJapan
| | - Yoshiharu Shiroiwa
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Toshiyuki Habu
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Department of Food Science and NutritionMukogawa Women’s UniversityNishinomiyaJapan
| | | | - Katsuzumi Okumura
- Laboratory of Molecular and Cellular Biology, Department of Life SciencesMie UniversityTsuJapan
| | - Tsuyoshi Ikura
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Chromatin Regulatory NetworkGraduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Kanji Furuya
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Genome MaintenanceGraduate School of Biostudies, Kyoto UniversityKyotoJapan
| |
Collapse
|
9
|
Dmowski M, Fijałkowska IJ. Diverse roles of Dpb2, the non-catalytic subunit of DNA polymerase ε. Curr Genet 2017; 63:983-987. [PMID: 28516230 PMCID: PMC5668336 DOI: 10.1007/s00294-017-0706-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022]
Abstract
Timely progression of living cells through the cell cycle is precisely regulated. This involves a series of phosphorylation events which are regulated by various cyclins, activated in coordination with the cell cycle progression. Phosphorylated proteins govern cell growth, division as well as duplication of the genetic material and transcriptional activation of genes involved in these processes. A subset of these tightly regulated genes, which depend on the MBF transcription factor and are mainly involved in DNA replication and cell division, is transiently activated at the transition from G1 to S phase. A Saccharomyces cerevisiae mutant in the Dpb2 non-catalytic subunit of DNA polymerase ε (Polε) demonstrates abnormalities in transcription of MBF-dependent genes even in normal growth conditions. It is, therefore, tempting to speculate that Dpb2 which, as described previously, participates in the early stages of DNA replication initiation, has an impact on the regulation of replication-related genes expression with possible implications for genomic stability.
Collapse
Affiliation(s)
- Michał Dmowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| | - Iwona J Fijałkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
10
|
Forsburg SL, Shen KF. Centromere Stability: The Replication Connection. Genes (Basel) 2017; 8:genes8010037. [PMID: 28106789 PMCID: PMC5295031 DOI: 10.3390/genes8010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/16/2022] Open
Abstract
The fission yeast centromere, which is similar to metazoan centromeres, contains highly repetitive pericentromere sequences that are assembled into heterochromatin. This is required for the recruitment of cohesin and proper chromosome segregation. Surprisingly, the pericentromere replicates early in the S phase. Loss of heterochromatin causes this domain to become very sensitive to replication fork defects, leading to gross chromosome rearrangements. This review examines the interplay between components of DNA replication, heterochromatin assembly, and cohesin dynamics that ensures maintenance of genome stability and proper chromosome segregation.
Collapse
Affiliation(s)
- Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA.
| | - Kuo-Fang Shen
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA.
| |
Collapse
|
11
|
Reusswig KU, Zimmermann F, Galanti L, Pfander B. Robust Replication Control Is Generated by Temporal Gaps between Licensing and Firing Phases and Depends on Degradation of Firing Factor Sld2. Cell Rep 2016; 17:556-569. [DOI: 10.1016/j.celrep.2016.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 08/10/2016] [Accepted: 09/02/2016] [Indexed: 10/20/2022] Open
|
12
|
Im JS, Park SY, Cho WH, Bae SH, Hurwitz J, Lee JK. RecQL4 is required for the association of Mcm10 and Ctf4 with replication origins in human cells. Cell Cycle 2015; 14:1001-9. [PMID: 25602958 DOI: 10.1080/15384101.2015.1007001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Though RecQL4 was shown to be essential for the initiation of DNA replication in mammalian cells, its role in initiation is poorly understood. Here, we show that RecQL4 is required for the origin binding of Mcm10 and Ctf4, and their physical interactions and association with replication origins are controlled by the concerted action of both CDK and DDK activities. Although RecQL4-dependent binding of Mcm10 and Ctf4 to chromatin can occur in the absence of pre-replicative complex, their association with replication origins requires the presence of the pre-replicative complex and CDK and DDK activities. Their association with replication origins and physical interactions are also targets of the DNA damage checkpoint pathways which prevent initiation of DNA replication at replication origins. Taken together, the RecQL4-dependent association of Mcm10 and Ctf4 with replication origins appears to be the first important step controlled by S phase promoting kinases and checkpoint pathways for the initiation of DNA replication in human cells.
Collapse
Affiliation(s)
- Jun-Sub Im
- a Department of Biology Education; Seoul National University ; Seoul , Korea
| | | | | | | | | | | |
Collapse
|
13
|
Perez-Arnaiz P, Bruck I, Kaplan DL. Mcm10 coordinates the timely assembly and activation of the replication fork helicase. Nucleic Acids Res 2015; 44:315-29. [PMID: 26582917 PMCID: PMC4705653 DOI: 10.1093/nar/gkv1260] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/02/2015] [Indexed: 11/12/2022] Open
Abstract
Mcm10 is an essential replication factor that is required for DNA replication in eukaryotes. Two key steps in the initiation of DNA replication are the assembly and activation of Cdc45–Mcm2–7-GINS (CMG) replicative helicase. However, it is not known what coordinates helicase assembly with helicase activation. We show in this manuscript, using purified proteins from budding yeast, that Mcm10 directly interacts with the Mcm2–7 complex and Cdc45. In fact, Mcm10 recruits Cdc45 to Mcm2–7 complex in vitro. To study the role of Mcm10 in more detail in vivo we used an auxin inducible degron in which Mcm10 is degraded upon addition of auxin. We show in this manuscript that Mcm10 is required for the timely recruitment of Cdc45 and GINS recruitment to the Mcm2–7 complex in vivo during early S phase. We also found that Mcm10 stimulates Mcm2 phosphorylation by DDK in vivo and in vitro. These findings indicate that Mcm10 plays a critical role in coupling replicative helicase assembly with helicase activation. Mcm10 is first involved in the recruitment of Cdc45 to the Mcm2–7 complex. After Cdc45–Mcm2–7 complex assembly, Mcm10 promotes origin melting by stimulating DDK phosphorylation of Mcm2, which thereby leads to GINS attachment to Mcm2–7.
Collapse
Affiliation(s)
- Patricia Perez-Arnaiz
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Irina Bruck
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Daniel L Kaplan
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| |
Collapse
|
14
|
Irazoqui AP, Heim NB, Boland RL, Buitrago CG. 1α,25 dihydroxi-vitamin D₃ modulates CDK4 and CDK6 expression and localization. Biochem Biophys Res Commun 2015; 459:137-42. [PMID: 25721671 DOI: 10.1016/j.bbrc.2015.02.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 02/14/2015] [Indexed: 12/18/2022]
Abstract
We recently reported that the vitamin D receptor (VDR) and p38 MAPK participate in pro-differentiation events triggered by 1α,25(OH)₂-vitamin D₃ [1,25D] in skeletal muscle cells. Specifically, our studies demonstrated that 1,25D promotes G0/G1 arrest of cells inducing cyclin D3 and cyclin dependent kinases inhibitors (CKIs) p21(Waf1/Cip1) and p27(Kip1) expression in a VDR and p38 MAPK dependent manner. In this work we present data indicating that cyclin-dependent kinases (CDKs) 4 and 6 also play a role in the mechanism by which 1,25D stimulates myogenesis. To investigate VDR involvement in hormone regulation of CDKs 4 and 6, we significantly reduced its expression by the use of a shRNA against mouse VDR, generating the skeletal muscle cell line C2C12-VDR. Investigation of changes in cellular cycle regulating proteins by immunoblotting showed that the VDR is involved in the 1,25D -induced CDKs 4 and 6 protein levels at 6 h of hormone treatment. CDK4 levels remains high during S phase peak and G0/G1 arrest while CDK6 expression decreases at 12 h and increases again al 24 h. The up-regulation of CDKs 4 and 6 by 1,25D (6 h) was abolished in C2C12 cells pre-treated with the ERK1/2 inhibitor, UO126. Moreover, CDKs 4 and 6 expression induced by the hormone nor was detected when α and β isoforms of p38 MAPK were inhibited by compound SB203580. Confocal images show that there is not co-localization between VDR and CDKs at 6 h of hormone treatment, however CDK4 and VDR co-localizates in nucleus after 12 h of 1,25D exposure. Of relevance, at this time 1,25D promotes CDK6 localization in a peri-nuclear ring. Our data demonstrate that the VDR, ERK1/2 and p38 MAPK are involved in the control of CDKs 4 and 6 by 1,25D in skeletal muscle cells sustaining the operation of a VDR and MAPKs -dependent mechanism in hormone modulation of myogenesis.
Collapse
Affiliation(s)
- Ana P Irazoqui
- INBIOSUR-CONICET y Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Nadia B Heim
- INBIOSUR-CONICET y Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Ricardo L Boland
- INBIOSUR-CONICET y Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Claudia G Buitrago
- INBIOSUR-CONICET y Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
15
|
Ohkura H. Meiosis: an overview of key differences from mitosis. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a015859. [PMID: 25605710 DOI: 10.1101/cshperspect.a015859] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Meiosis is the specialized cell division that generates gametes. In contrast to mitosis, molecular mechanisms and regulation of meiosis are much less understood. Meiosis shares mechanisms and regulation with mitosis in many aspects, but also has critical differences from mitosis. This review highlights these differences between meiosis and mitosis. Recent studies using various model systems revealed differences in a surprisingly wide range of aspects, including cell-cycle regulation, recombination, postrecombination events, spindle assembly, chromosome-spindle interaction, and chromosome segregation. Although a great degree of diversity can be found among organisms, meiosis-specific processes, and regulation are generally conserved.
Collapse
Affiliation(s)
- Hiroyuki Ohkura
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
16
|
Stephenson R, Hosler MR, Gavande NS, Ghosh AK, Weake VM. Characterization of a Drosophila ortholog of the Cdc7 kinase: a role for Cdc7 in endoreplication independent of Chiffon. J Biol Chem 2014; 290:1332-47. [PMID: 25451925 DOI: 10.1074/jbc.m114.597948] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc7 is a serine-threonine kinase that phosphorylates components of the pre-replication complex during DNA replication initiation. Cdc7 is highly conserved, and Cdc7 orthologs have been characterized in organisms ranging from yeast to humans. Cdc7 is activated specifically during late G1/S phase by binding to its regulatory subunit, Dbf4. Drosophila melanogaster contains a Dbf4 ortholog, Chiffon, which is essential for chorion amplification in Drosophila egg chambers. However, no Drosophila ortholog of Cdc7 has yet been characterized. Here, we report the functional and biochemical characterization of a Drosophila ortholog of Cdc7. Co-expression of Drosophila Cdc7 and Chiffon is able to complement a growth defect in yeast containing a temperature-sensitive Cdc7 mutant. Cdc7 and Chiffon physically interact and can be co-purified from insect cells. Cdc7 phosphorylates the known Cdc7 substrates Mcm2 and histone H3 in vitro, and Cdc7 kinase activity is stimulated by Chiffon and inhibited by the Cdc7-specific inhibitor XL413. Drosophila egg chamber follicle cells deficient for Cdc7 have a defect in two types of DNA replication, endoreplication and chorion gene amplification. However, follicle cells deficient for Chiffon have a defect in chorion gene amplification but still undergo endocycling. Our results show that Cdc7 interacts with Chiffon to form a functional Dbf4-dependent kinase complex and that Cdc7 is necessary for DNA replication in Drosophila egg chamber follicle cells. Additionally, we show that Chiffon is a member of an expanding subset of DNA replication initiation factors that are not strictly required for endoreplication in Drosophila.
Collapse
Affiliation(s)
| | | | | | - Arun K Ghosh
- Chemistry and Medicinal Chemistry, and Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Vikki M Weake
- From the Departments of Biochemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
17
|
Mazouzi A, Velimezi G, Loizou JI. DNA replication stress: causes, resolution and disease. Exp Cell Res 2014; 329:85-93. [PMID: 25281304 DOI: 10.1016/j.yexcr.2014.09.030] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 12/17/2022]
Abstract
DNA replication is a fundamental process of the cell that ensures accurate duplication of the genetic information and subsequent transfer to daughter cells. Various pertubations, originating from endogenous or exogenous sources, can interfere with proper progression and completion of the replication process, thus threatening genome integrity. Coordinated regulation of replication and the DNA damage response is therefore fundamental to counteract these challenges and ensure accurate synthesis of the genetic material under conditions of replication stress. In this review, we summarize the main sources of replication stress and the DNA damage signaling pathways that are activated in order to preserve genome integrity during DNA replication. We also discuss the association of replication stress and DNA damage in human disease and future perspectives in the field.
Collapse
Affiliation(s)
- Abdelghani Mazouzi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Georgia Velimezi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Abrantes JLF, Tornatore TF, Pelizzaro-Rocha KJ, de Jesus MB, Cartaxo RT, Milani R, Ferreira-Halder CV. Crosstalk between kinases, phosphatases and miRNAs in cancer. Biochimie 2014; 107 Pt B:167-87. [PMID: 25230087 DOI: 10.1016/j.biochi.2014.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Reversible phosphorylation of proteins, performed by kinases and phosphatases, is the major post translational protein modification in eukaryotic cells. This intracellular event represents a critical regulatory mechanism of several signaling pathways and can be related to a vast array of diseases, including cancer. Cancer research has produced increasing evidence that kinase and phosphatase activity can be compromised by mutations and also by miRNA silencing, performed by small non-coding and endogenously produced RNA molecules that lead to translational repression. miRNAs are believed to target about one-third of human mRNAs while a single miRNA may target about 200 transcripts simultaneously. Regulation of the phosphorylation balance by miRNAs has been a topic of intense research over the last years, spanning topics going as far as cancer aggressiveness and chemotherapy resistance. By addressing recent studies that have shown miRNA expression patterns as phenotypic signatures of cancers and how miRNA influence cellular processes such as apoptosis, cell cycle control, angiogenesis, inflammation and DNA repair, we discuss how kinases, phosphatases and miRNAs cooperatively act in cancer biology.
Collapse
Affiliation(s)
- Júlia L F Abrantes
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Thaís F Tornatore
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | | | - Marcelo B de Jesus
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Rodrigo T Cartaxo
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Renato Milani
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | | |
Collapse
|
19
|
Samel SA, Fernández-Cid A, Sun J, Riera A, Tognetti S, Herrera MC, Li H, Speck C. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev 2014; 28:1653-66. [PMID: 25085418 PMCID: PMC4117941 DOI: 10.1101/gad.242404.114] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/25/2014] [Indexed: 01/24/2023]
Abstract
The regulated loading of the replicative helicase minichromosome maintenance proteins 2-7 (MCM2-7) onto replication origins is a prerequisite for replication fork establishment and genomic stability. Origin recognition complex (ORC), Cdc6, and Cdt1 assemble two MCM2-7 hexamers into one double hexamer around dsDNA. Although the MCM2-7 hexamer can adopt a ring shape with a gap between Mcm2 and Mcm5, it is unknown which Mcm interface functions as the DNA entry gate during regulated helicase loading. Here, we establish that the Saccharomyces cerevisiae MCM2-7 hexamer assumes a closed ring structure, suggesting that helicase loading requires active ring opening. Using a chemical biology approach, we show that ORC-Cdc6-Cdt1-dependent helicase loading occurs through a unique DNA entry gate comprised of the Mcm2 and Mcm5 subunits. Controlled inhibition of DNA insertion triggers ATPase-driven complex disassembly in vitro, while in vivo analysis establishes that Mcm2/Mcm5 gate opening is essential for both helicase loading onto chromatin and cell cycle progression. Importantly, we demonstrate that the MCM2-7 helicase becomes loaded onto DNA as a single hexamer during ORC/Cdc6/Cdt1/MCM2-7 complex formation prior to MCM2-7 double hexamer formation. Our study establishes the existence of a unique DNA entry gate for regulated helicase loading, revealing key mechanisms in helicase loading, which has important implications for helicase activation.
Collapse
Affiliation(s)
- Stefan A Samel
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Alejandra Fernández-Cid
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Jingchuan Sun
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alberto Riera
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Silvia Tognetti
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - M Carmen Herrera
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom;
| |
Collapse
|
20
|
On KF, Beuron F, Frith D, Snijders AP, Morris EP, Diffley JFX. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. EMBO J 2014; 33:605-20. [PMID: 24566989 PMCID: PMC3989654 DOI: 10.1002/embj.201387369] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/17/2013] [Accepted: 01/10/2014] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic DNA replication initiates from multiple replication origins. To ensure each origin fires just once per cell cycle, initiation is divided into two biochemically discrete steps: the Mcm2-7 helicase is first loaded into prereplicative complexes (pre-RCs) as an inactive double hexamer by the origin recognition complex (ORC), Cdt1 and Cdc6; the helicase is then activated by a set of "firing factors." Here, we show that plasmids containing pre-RCs assembled with purified proteins support complete and semi-conservative replication in extracts from budding yeast cells overexpressing firing factors. Replication requires cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK). DDK phosphorylation of Mcm2-7 does not by itself promote separation of the double hexamer, but is required for the recruitment of firing factors and replisome components in the extract. Plasmid replication does not require a functional replication origin; however, in the presence of competitor DNA and limiting ORC concentrations, replication becomes origin-dependent in this system. These experiments indicate that Mcm2-7 double hexamers can be precursors of replication and provide insight into the nature of eukaryotic DNA replication origins.
Collapse
Affiliation(s)
- Kin Fan On
- Chromosome Replication Laboratory, Cancer Research UK London Research InstituteSouth Mimms, Herts, UK
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer ResearchLondon, UK
| | - David Frith
- Protein Analysis and Proteomics, Cancer Research UK London Research Institute, Clare Hall LaboratoriesSouth Mimms, Herts, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics, Cancer Research UK London Research Institute, Clare Hall LaboratoriesSouth Mimms, Herts, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer ResearchLondon, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, Cancer Research UK London Research InstituteSouth Mimms, Herts, UK
| |
Collapse
|
21
|
Magiera MM, Gueydon E, Schwob E. DNA replication and spindle checkpoints cooperate during S phase to delay mitosis and preserve genome integrity. ACTA ACUST UNITED AC 2014; 204:165-75. [PMID: 24421333 PMCID: PMC3897190 DOI: 10.1083/jcb.201306023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deoxyribonucleic acid (DNA) replication and chromosome segregation must occur in ordered sequence to maintain genome integrity during cell proliferation. Checkpoint mechanisms delay mitosis when DNA is damaged or upon replication stress, but little is known on the coupling of S and M phases in unperturbed conditions. To address this issue, we postponed replication onset in budding yeast so that DNA synthesis is still underway when cells should enter mitosis. This delayed mitotic entry and progression by transient activation of the S phase, G2/M, and spindle assembly checkpoints. Disabling both Mec1/ATR- and Mad2-dependent controls caused lethality in cells with deferred S phase, accompanied by Rad52 foci and chromosome missegregation. Thus, in contrast to acute replication stress that triggers a sustained Mec1/ATR response, multiple pathways cooperate to restrain mitosis transiently when replication forks progress unhindered. We suggest that these surveillance mechanisms arose when both S and M phases were coincidently set into motion by a unique ancestral cyclin-Cdk1 complex.
Collapse
Affiliation(s)
- Maria M Magiera
- Institute of Molecular Genetics, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535 and University of Montpellier, 34293 Montpellier, France
| | | | | |
Collapse
|
22
|
Tanaka S, Araki H. Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol 2013; 5:a010371. [PMID: 23881938 DOI: 10.1101/cshperspect.a010371] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many replication proteins assemble on the pre-RC-formed replication origins and constitute the pre-initiation complex (pre-IC). This complex formation facilitates the conversion of Mcm2-7 in the pre-RC to an active DNA helicase, the Cdc45-Mcm-GINS (CMG) complex. Two protein kinases, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), work to complete the formation of the pre-IC. Each kinase is responsible for a distinct step of the process in yeast; Cdc45 associates with origins in a DDK-dependent manner, whereas the association of GINS with origins depends on CDK. These associations with origins also require specific initiation proteins: Sld3 for Cdc45; and Dpb11, Sld2, and Sld3 for GINS. Functional homologs of these proteins exist in metazoa, although pre-IC formation cannot be separated by requirement of DDK and CDK because of experimental limitations. Once the replicative helicase is activated, the origin DNA is unwound, and bidirectional replication forks are established.
Collapse
Affiliation(s)
- Seiji Tanaka
- Division of Microbial Genetics, National Institute of Genetics, and Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
23
|
McNeely S, Beckmann R, Bence Lin AK. CHEK again: revisiting the development of CHK1 inhibitors for cancer therapy. Pharmacol Ther 2013; 142:1-10. [PMID: 24140082 DOI: 10.1016/j.pharmthera.2013.10.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/05/2013] [Indexed: 02/06/2023]
Abstract
CHEK1 encodes the serine/threonine kinase CHK1, a central component of the DNA damage response. CHK1 regulates cell cycle checkpoints following genotoxic stress to prevent the entry of cells with damaged DNA into mitosis and coordinates various aspects of DNA repair. Accordingly, CHK1 has become a target of considerable interest in oncology. CHK1 inhibitors potentiate the efficacy of DNA-damaging chemotherapeutics by abrogating CHK1-mediated cell cycle arrest and preventing repair of damaged DNA. In addition, CHK1 inhibitors interfere with the biological role of CHK1 as a principal regulator of the cell cycle that controls the initiation of DNA replication, stabilizes replication forks, and coordinates mitosis. Since these functions of CHK1 facilitate progression through an unperturbed cell cycle, CHK1 inhibitors are being developed not only as chemopotentiators, but also as single-agent therapies. This review is intended to provide information on the current progress of CHK1 inhibitors in pre-clinical and clinical development and will focus on mechanisms of single-agent activity and potential strategies for patient tailoring and combinations with non-genotoxic agents.
Collapse
Affiliation(s)
- S McNeely
- Eli Lilly and Company, Indianapolis, IN, United States.
| | - R Beckmann
- Eli Lilly and Company, Indianapolis, IN, United States
| | - A K Bence Lin
- Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
24
|
Replication checkpoint: tuning and coordination of replication forks in s phase. Genes (Basel) 2013; 4:388-434. [PMID: 24705211 PMCID: PMC3924824 DOI: 10.3390/genes4030388] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 12/01/2022] Open
Abstract
Checkpoints monitor critical cell cycle events such as chromosome duplication and segregation. They are highly conserved mechanisms that prevent progression into the next phase of the cell cycle when cells are unable to accomplish the previous event properly. During S phase, cells also provide a surveillance mechanism called the DNA replication checkpoint, which consists of a conserved kinase cascade that is provoked by insults that block or slow down replication forks. The DNA replication checkpoint is crucial for maintaining genome stability, because replication forks become vulnerable to collapse when they encounter obstacles such as nucleotide adducts, nicks, RNA-DNA hybrids, or stable protein-DNA complexes. These can be exogenously induced or can arise from endogenous cellular activity. Here, we summarize the initiation and transduction of the replication checkpoint as well as its targets, which coordinate cell cycle events and DNA replication fork stability.
Collapse
|
25
|
Gao S, Xiong J, Zhang C, Berquist BR, Yang R, Zhao M, Molascon AJ, Kwiatkowski SY, Yuan D, Qin Z, Wen J, Kapler GM, Andrews PC, Miao W, Liu Y. Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 2013; 27:1662-79. [PMID: 23884606 DOI: 10.1101/gad.218966.113] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Replication of nuclear DNA occurs in the context of chromatin and is influenced by histone modifications. In the ciliate Tetrahymena thermophila, we identified TXR1, encoding a histone methyltransferase. TXR1 deletion resulted in severe DNA replication stress, manifested by the accumulation of ssDNA, production of aberrant replication intermediates, and activation of robust DNA damage responses. Paired-end Illumina sequencing of ssDNA revealed intergenic regions, including replication origins, as hot spots for replication stress in ΔTXR1 cells. ΔTXR1 cells showed a deficiency in histone H3 Lys 27 monomethylation (H3K27me1), while ΔEZL2 cells, deleting a Drosophila E(z) homolog, were deficient in H3K27 di- and trimethylation, with no detectable replication stress. A point mutation in histone H3 at Lys 27 (H3 K27Q) mirrored the phenotype of ΔTXR1, corroborating H3K27me1 as a key player in DNA replication. Additionally, we demonstrated interactions between TXR1 and proliferating cell nuclear antigen (PCNA). These findings support a conserved pathway through which H3K27me1 facilitates replication elongation.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Supady A, Klipp E, Barberis M. A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae. J Biotechnol 2013; 168:174-84. [PMID: 23850861 DOI: 10.1016/j.jbiotec.2013.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/23/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
Activation (in the following referred to as firing) of replication origins is a continuous and irreversible process regulated by availability of DNA replication molecules and cyclin-dependent kinase activities, which are often altered in human cancers. The temporal, progressive origin firing throughout S phase appears as a characteristic replication profile, and computational models have been developed to describe this process. Although evidence from yeast to human indicates that a range of replication fork rates is observed experimentally in order to complete a timely S phase, those models incorporate velocities that are uniform across the genome. Taking advantage of the availability of replication profiles, chromosomal position and replication timing, here we investigated how fork rate may affect origin firing in budding yeast. Our analysis suggested that patterns of origin firing can be observed from a modulation of the fork rate that strongly correlates with origin density. Replication profiles of chromosomes with a low origin density were fitted with a variable fork rate, whereas for the ones with a high origin density a constant fork rate was appropriate. This indeed supports the previously reported correlation between inter-origin distance and fork rate changes. Intriguingly, the calculated correlation between fork rate and timing of origin firing allowed the estimation of firing efficiencies for the replication origins. This approach correctly retrieved origin efficiencies previously determined for chromosome VI and provided testable prediction for other chromosomal origins. Our results gain deeper insights into the temporal coordination of genome duplication, indicating that control of the replication fork rate is required for the timely origin firing during S phase.
Collapse
Affiliation(s)
- Adriana Supady
- Institute for Biology, Theoretical Biophysics, Humboldt University Berlin, Invalidenstraβe 42, 10115 Berlin, Germany
| | | | | |
Collapse
|
27
|
O'Donnell M, Langston L, Stillman B. Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect Biol 2013; 5:5/7/a010108. [PMID: 23818497 DOI: 10.1101/cshperspect.a010108] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The accurate copying of genetic information in the double helix of DNA is essential for inheritance of traits that define the phenotype of cells and the organism. The core machineries that copy DNA are conserved in all three domains of life: bacteria, archaea, and eukaryotes. This article outlines the general nature of the DNA replication machinery, but also points out important and key differences. The most complex organisms, eukaryotes, have to coordinate the initiation of DNA replication from many origins in each genome and impose regulation that maintains genomic integrity, not only for the sake of each cell, but for the organism as a whole. In addition, DNA replication in eukaryotes needs to be coordinated with inheritance of chromatin, developmental patterning of tissues, and cell division to ensure that the genome replicates once per cell division cycle.
Collapse
Affiliation(s)
- Michael O'Donnell
- The Rockefeller University and Howard Hughes Medical Institute, New York, New York 10065, USA
| | | | | |
Collapse
|
28
|
Boos D, Yekezare M, Diffley JFX. Identification of a heteromeric complex that promotes DNA replication origin firing in human cells. Science 2013; 340:981-4. [PMID: 23704573 DOI: 10.1126/science.1237448] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Treslin/TICRR (TopBP1-interacting, replication stimulating protein/TopBP1-interacting, checkpoint, and replication regulator), the human ortholog of the yeast Sld3 protein, is an essential DNA replication factor that is regulated by cyclin-dependent kinases and the DNA damage checkpoint. We identified MDM two binding protein (MTBP) as a factor that interacts with Treslin/TICRR throughout the cell cycle. We show that MTBP depletion by means of small interfering RNA inhibits DNA replication by preventing assembly of the CMG (Cdc45-MCM-GINS) holohelicase during origin firing. Although MTBP has been implicated in the function of the p53 tumor suppressor, we found MTBP is required for DNA replication irrespective of a cell's p53 status. We propose that MTBP acts with Treslin/TICRR to integrate signals from cell cycle and DNA damage response pathways to control the initiation of DNA replication in human cells.
Collapse
Affiliation(s)
- Dominik Boos
- Cancer Research UK London Research Institute (LRI), Clare Hall Laboratories, South Mimms, Herts., UK
| | | | | |
Collapse
|
29
|
Efficient initiation of DNA replication in eukaryotes requires Dpb11/TopBP1-GINS interaction. Mol Cell Biol 2013; 33:2614-22. [PMID: 23629628 DOI: 10.1128/mcb.00431-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dpb11/Cut5/TopBP1 is evolutionarily conserved and is essential for the initiation of DNA replication in eukaryotes. The Dpb11 of the budding yeast Saccharomyces cerevisiae has four BRCT domains (BRCT1 to -4). The N-terminal pair (BRCT1 and -2) and the C-terminal pair (BRCT3 and -4) bind to cyclin-dependent kinase (CDK)-phosphorylated Sld3 and Sld2, respectively. These phosphorylation-dependent interactions trigger the initiation of DNA replication. BRCT1 and -2 and BRCT3 and -4 of Dpb11 are separated by a short stretch of ~100 amino acids. It is unknown whether this inter-BRCT region functions in DNA replication. Here, we showed that the inter-BRCT region is a GINS interaction domain that is essential for cell growth and that mutations in this domain cause replication defects in budding yeast. We found the corresponding region in the vertebrate ortholog, TopBP1, and showed that the corresponding region also interacts with GINS and is required for efficient DNA replication. We propose that the inter-BRCT region of Dpb11 is a functionally conserved GINS interaction domain that is important for the initiation of DNA replication in eukaryotes.
Collapse
|
30
|
Frigola J, Remus D, Mehanna A, Diffley JFX. ATPase-dependent quality control of DNA replication origin licensing. Nature 2013; 495:339-43. [PMID: 23474987 PMCID: PMC4825857 DOI: 10.1038/nature11920] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 01/17/2013] [Indexed: 11/13/2022]
Abstract
The regulated loading of the Mcm2-7 DNA helicase (comprising six related subunits, Mcm2 to Mcm7) into pre-replicative complexes at multiple replication origins ensures precise once per cell cycle replication in eukaryotic cells. The origin recognition complex (ORC), Cdc6 and Cdt1 load Mcm2-7 into a double hexamer bound around duplex DNA in an ATP-dependent reaction, but the molecular mechanism of this origin 'licensing' is still poorly understood. Here we show that both Mcm2-7 hexamers in Saccharomyces cerevisiae are recruited to origins by an essential, conserved carboxy-terminal domain of Mcm3 that interacts with and stimulates the ATPase activity of ORC-Cdc6. ATP hydrolysis can promote Mcm2-7 loading, but can also promote Mcm2-7 release if components are missing or if ORC has been inactivated by cyclin-dependent kinase phosphorylation. Our work provides new insights into how origins are licensed and reveals a novel ATPase-dependent mechanism contributing to precise once per cell cycle replication.
Collapse
Affiliation(s)
- Jordi Frigola
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | | | | | | |
Collapse
|
31
|
Yekezare M, Gómez-González B, Diffley JFX. Controlling DNA replication origins in response to DNA damage - inhibit globally, activate locally. J Cell Sci 2013; 126:1297-306. [PMID: 23645160 DOI: 10.1242/jcs.096701] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA replication in eukaryotic cells initiates from multiple replication origins that are distributed throughout the genome. Coordinating the usage of these origins is crucial to ensure complete and timely replication of the entire genome precisely once in each cell cycle. Replication origins fire according to a cell-type-specific temporal programme, which is established in the G1 phase of each cell cycle. In response to conditions causing the slowing or stalling of DNA replication forks, the programme of origin firing is altered in two contrasting ways, depending on chromosomal context. First, inactive or 'dormant' replication origins in the vicinity of the stalled replication fork become activated and, second, the S phase checkpoint induces a global shutdown of further origin firing throughout the genome. Here, we review our current understanding on the role of dormant origins and the S phase checkpoint in the rescue of stalled forks and the completion of DNA replication in the presence of replicative stress.
Collapse
Affiliation(s)
- Mona Yekezare
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | | | | |
Collapse
|
32
|
Li Y, Araki H. Loading and activation of DNA replicative helicases: the key step of initiation of DNA replication. Genes Cells 2013; 18:266-77. [PMID: 23461534 PMCID: PMC3657122 DOI: 10.1111/gtc.12040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/11/2013] [Indexed: 11/27/2022]
Abstract
Evolution has led to diversification of all living organisms from a common ancestor. Consequently, all living organisms use a common method to duplicate their genetic information and thus pass on their inherited traits to their offspring. To duplicate chromosomal DNA, double-stranded DNA must first be unwound by helicase, which is loaded to replication origins and activated during the DNA replication initiation step. In this review, we discuss the common features of, and differences in, replicative helicases between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Yan Li
- Division of Microbial Genetics, National Institute of Genetics, Yata 1111, Mishima City, Shizuoka, 411-8540, Japan
| | | |
Collapse
|
33
|
Abstract
One of the fundamental challenges facing the cell is to accurately copy its genetic material to daughter cells. When this process goes awry, genomic instability ensues in which genetic alterations ranging from nucleotide changes to chromosomal translocations and aneuploidy occur. Organisms have developed multiple mechanisms that can be classified into two major classes to ensure the fidelity of DNA replication. The first class includes mechanisms that prevent premature initiation of DNA replication and ensure that the genome is fully replicated once and only once during each division cycle. These include cyclin-dependent kinase (CDK)-dependent mechanisms and CDK-independent mechanisms. Although CDK-dependent mechanisms are largely conserved in eukaryotes, higher eukaryotes have evolved additional mechanisms that seem to play a larger role in preventing aberrant DNA replication and genome instability. The second class ensures that cells are able to respond to various cues that continuously threaten the integrity of the genome by initiating DNA-damage-dependent "checkpoints" and coordinating DNA damage repair mechanisms. Defects in the ability to safeguard against aberrant DNA replication and to respond to DNA damage contribute to genomic instability and the development of human malignancy. In this article, we summarize our current knowledge of how genomic instability arises, with a particular emphasis on how the DNA replication process can give rise to such instability.
Collapse
Affiliation(s)
- Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
34
|
Tazumi A, Fukuura M, Nakato R, Kishimoto A, Takenaka T, Ogawa S, Song JH, Takahashi TS, Nakagawa T, Shirahige K, Masukata H. Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast. Genes Dev 2012; 26:2050-62. [PMID: 22987637 DOI: 10.1101/gad.194282.112] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotes, the replication of chromosome DNA is coordinated by a replication timing program that temporally regulates the firing of individual replication origins. However, the molecular mechanism underlying the program remains elusive. Here, we report that the telomere-binding protein Taz1 plays a crucial role in the control of replication timing in fission yeast. A DNA element located proximal to a late origin in the chromosome arm represses initiation from the origin in early S phase. Systematic deletion and substitution experiments demonstrated that two tandem telomeric repeats are essential for this repression. The telomeric repeats recruit Taz1, a counterpart of human TRF1 and TRF2, to the locus. Genome-wide analysis revealed that Taz1 regulates about half of chromosomal late origins, including those in subtelomeres. The Taz1-mediated mechanism prevents Dbf4-dependent kinase (DDK)-dependent Sld3 loading onto the origins. Our results demonstrate that the replication timing program in fission yeast uses the internal telomeric repeats and binding of Taz1.
Collapse
Affiliation(s)
- Atsutoshi Tazumi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bøe CA, Knutsen JHJ, Boye E, Grallert B. Hpz1 modulates the G1-S transition in fission yeast. PLoS One 2012; 7:e44539. [PMID: 22970243 PMCID: PMC3435320 DOI: 10.1371/journal.pone.0044539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/03/2012] [Indexed: 11/29/2022] Open
Abstract
Here we characterize a novel protein in S. pombe. It has a high degree of homology with the Zn-finger domain of the human Poly(ADP-ribose) polymerase (PARP). Surprisingly, the gene for this protein is, in many fungi, fused with and in the same reading frame as that encoding Rad3, the homologue of the human ATR checkpoint protein. We name the protein Hpz1 (Homologue of PARP-type Zn-finger). Hpz1 does not possess PARP activity, but is important for resistance to ultraviolet light in the G1 phase and to treatment with hydroxyurea, a drug that arrests DNA replication forks in the S phase. However, we find no evidence of a checkpoint function of Hpz1. Furthermore, absence of Hpz1 results in an advancement of S-phase entry after a G1 arrest as well as earlier recovery from a hydroxyurea block. The hpz1 gene is expressed mainly in the G1 phase and Hpz1 is localized to the nucleus. We conclude that Hpz1 regulates the initiation of the S phase and may cooperate with Rad3 in this function.
Collapse
Affiliation(s)
- Cathrine A. Bøe
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Jon Halvor J. Knutsen
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Beáta Grallert
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
- * E-mail:
| |
Collapse
|
36
|
Enserink JM. Chemical genetics: budding yeast as a platform for drug discovery and mapping of genetic pathways. Molecules 2012; 17:9258-73. [PMID: 22858845 PMCID: PMC6268143 DOI: 10.3390/molecules17089258] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/18/2012] [Accepted: 07/23/2012] [Indexed: 01/18/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a widely used model organism, and yeast genetic methods are powerful tools for discovery of novel functions of genes. Recent advancements in chemical-genetics and chemical-genomics have opened new avenues for development of clinically relevant drug treatments. Systematic mapping of genetic networks by high-throughput chemical-genetic screens have given extensive insight in connections between genetic pathways. Here, I review some of the recent developments in chemical-genetic techniques in budding yeast.
Collapse
Affiliation(s)
- Jorrit M Enserink
- Department of Molecular Biology, Institute of Medical Microbiology and Centre for Molecular Biology and Neuroscience, Oslo University Hospital, Sognsvannsveien 20, NO-0027 Oslo, Norway.
| |
Collapse
|
37
|
Dynamic association of ORCA with prereplicative complex components regulates DNA replication initiation. Mol Cell Biol 2012; 32:3107-20. [PMID: 22645314 DOI: 10.1128/mcb.00362-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In eukaryotes, initiation of DNA replication requires the assembly of a multiprotein prereplicative complex (pre-RC) at the origins. We recently reported that a WD repeat-containing protein, origin recognition complex (ORC)-associated (ORCA/LRWD1), plays a crucial role in stabilizing ORC to chromatin. Here, we find that ORCA is required for the G(1)-to-S-phase transition in human cells. In addition to binding to ORC, ORCA associates with Cdt1 and its inhibitor, geminin. Single-molecule pulldown experiments demonstrate that each molecule of ORCA can bind to one molecule of ORC, one molecule of Cdt1, and two molecules of geminin. Further, ORCA directly interacts with the N terminus of Orc2, and the stability of ORCA is dependent on its association with Orc2. ORCA associates with Orc2 throughout the cell cycle, with Cdt1 during mitosis and G(1), and with geminin in post-G(1) cells. Overexpression of geminin results in the loss of interaction between ORCA and Cdt1, suggesting that increased levels of geminin in post-G(1) cells titrate Cdt1 away from ORCA. We propose that the dynamic association of ORCA with pre-RC components modulates the assembly of its interacting partners on chromatin and facilitates DNA replication initiation.
Collapse
|
38
|
Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc Natl Acad Sci U S A 2012; 109:6042-7. [PMID: 22474384 DOI: 10.1073/pnas.1203734109] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In eukaryotes, although the Mcm2-7 complex is a key component of the replicative DNA helicase, its association with Cdc45 and GINS (the CMG complex) is required for the activation of the DNA helicase. Here, we show that the CMG complex is localized to chromatin in human cells and describe the biochemical properties of the human CMG complex purified from baculovirus-infected Sf9 cells. The isolated complex binds to ssDNA regions in the presence of magnesium and ATP (or a nonhydrolyzable ATP analog), contains maximal DNA helicase in the presence of forked DNA structures, and translocates along the leading strand (3' to 5' direction). The complex hydrolyses ATP in the absence of DNA; unwinds duplex regions up to 500 bp; and either replication protein A or Escherichia coli single stranded binding protein increases the efficiency of displacement of long duplex regions. Using a 200-nt primed circular DNA substrate, the combined action of human DNA polymerase ε and the human CMG complex leads to the formation of products >10 kb in length. These findings suggest that the coordinated action of these replication complexes supports leading strand synthesis.
Collapse
|
39
|
Diffley JFX. Quality control in the initiation of eukaryotic DNA replication. Philos Trans R Soc Lond B Biol Sci 2012; 366:3545-53. [PMID: 22084381 PMCID: PMC3203456 DOI: 10.1098/rstb.2011.0073] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Origins of DNA replication must be regulated to ensure that the entire genome is replicated precisely once in each cell cycle. In human cells, this requires that tens of thousands of replication origins are activated exactly once per cell cycle. Failure to do so can lead to cell death or genome rearrangements such as those associated with cancer. Systems ensuring efficient initiation of replication, while also providing a robust block to re-initiation, play a crucial role in genome stability. In this review, I will discuss some of the strategies used by cells to ensure once per cell cycle replication and provide a quantitative framework to evaluate the relative importance and efficiency of individual pathways involved in this regulation.
Collapse
Affiliation(s)
- John F X Diffley
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| |
Collapse
|
40
|
Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol 2011; 21:2055-63. [PMID: 22169533 DOI: 10.1016/j.cub.2011.11.038] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/24/2011] [Accepted: 11/21/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Chromosomal DNA replication in eukaryotes initiates from multiple origins of replication, and because of this multiplicity, activation of replication origins is likely to be highly coordinated; origins fire at characteristic times, with some origins firing on average earlier (early-firing origins) and others later (late-firing origins) in the S phase of the budding yeast cell cycle. However, the molecular basis for such temporal regulation is poorly understood. RESULTS We show that origin association of the low-abundance replication proteins Sld3, Sld7, and Cdc45 is the key to determining the temporal order of origin firing. These proteins form a complex and associate with the early-firing origins in G1 phase in a manner that depends on Dbf4-dependent kinase (DDK), which is essential for the initiation of DNA replication. An increased dosage of Sld3, Sld7, and Cdc45 allows the late-firing origins to fire earlier in S phase. Additionally, an increased dosage of DDK also allows the late-firing origins to fire earlier. CONCLUSIONS The DDK-dependent limited association between origins and Sld3-Sld7-Cdc45 is a key step for determining the timing of origin firing.
Collapse
|
41
|
RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat Struct Mol Biol 2011; 19:17-24. [PMID: 22139015 PMCID: PMC4306020 DOI: 10.1038/nsmb.2177] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/29/2011] [Indexed: 12/14/2022]
Abstract
In higher eukaryotes the dynamics of replisome components during fork collapse and restart are poorly understood. Here, we reconstituted replication fork collapse and restart by inducing single-strand DNA (ssDNA) lesions that create a double-strand break (DSB) in one of the replicated sister chromatids after fork passage. We found that, upon fork collapse, the active CDC45–MCM–GINS (CMG) helicase complex loses its GINS subunit. A functional replisome is restored by the reloading of GINS and Pol epsilon onto DNA in a RAD51- and MRE11- dependent manner, but independently of replication origin assembly and firing. PCNA mutant alleles defective in break-induced replication (BIR) are unable to support restoration of replisome integrity. These results reveal that in higher eukaryotes replisomes are partially dismantled following fork collapse and fully re-established by a recombination-mediated process.
Collapse
|
42
|
Ozaki S, Katayama T. Highly organized DnaA-oriC complexes recruit the single-stranded DNA for replication initiation. Nucleic Acids Res 2011; 40:1648-65. [PMID: 22053082 PMCID: PMC3287180 DOI: 10.1093/nar/gkr832] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Escherichia coli, the replication origin oriC consists of two functional regions: the duplex unwinding element (DUE) and its flanking DnaA-assembly region (DAR). ATP-DnaA molecules multimerize on DAR, unwinding DUE for DnaB helicase loading. However, DUE-unwinding mechanisms and functional structures in DnaA–oriC complexes supporting those remain unclear. Here, using various in vitro reconstituted systems, we identify functionally distinct DnaA sub-complexes formed on DAR and reveal novel mechanisms in DUE unwinding. The DUE-flanking left-half DAR carrying high-affinity DnaA box R1 and the ATP-DnaA-preferential DnaA box R5, τ1-2 and I1-2 sites formed a DnaA sub-complex competent in DUE unwinding and ssDUE binding, thereby supporting basal DnaB loading activity. This sub-complex is further subdivided into two; the DUE-distal DnaA sub-complex formed on the ATP–DnaA-preferential sites binds ssDUE. Notably, the DUE-flanking, DnaA box R1–DnaA sub-complex recruits DUE to the DUE-distal DnaA sub-complex in concert with a DNA-bending nucleoid protein IHF, thereby promoting DUE unwinding and binding of ssDUE. The right-half DAR–DnaA sub-complex stimulated DnaB loading, consistent with in vivo analyses. Similar features are seen in DUE unwinding of the hyperthermophile, Thermotoga maritima, indicating evolutional conservation of those mechanisms.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | |
Collapse
|
43
|
Su TT. Safeguarding genetic information in Drosophila. Chromosoma 2011; 120:547-55. [PMID: 21927823 DOI: 10.1007/s00412-011-0342-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells employ a plethora of conserved proteins and mechanisms to ensure genome integrity. In metazoa, these mechanisms must operate in the context of organism development. This mini-review highlights two emerging features of DNA damage responses in Drosophila: a crosstalk between DNA damage responses and components of the spindle assembly checkpoint, and increasing evidence for the effect of DNA damage on the developmental program at multiple points during the Drosophila life cycle.
Collapse
Affiliation(s)
- Tin Tin Su
- MCD Biology, University of Colorado, Boulder, USA.
| |
Collapse
|
44
|
Abe T, Sugimura K, Hosono Y, Takami Y, Akita M, Yoshimura A, Tada S, Nakayama T, Murofushi H, Okumura K, Takeda S, Horikoshi M, Seki M, Enomoto T. The histone chaperone facilitates chromatin transcription (FACT) protein maintains normal replication fork rates. J Biol Chem 2011; 286:30504-30512. [PMID: 21757688 DOI: 10.1074/jbc.m111.264721] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ordered nucleosome disassembly and reassembly are required for eukaryotic DNA replication. The facilitates chromatin transcription (FACT) complex, a histone chaperone comprising Spt16 and SSRP1, is involved in DNA replication as well as transcription. FACT associates with the MCM helicase, which is involved in DNA replication initiation and elongation. Although the FACT-MCM complex is reported to regulate DNA replication initiation, its functional role in DNA replication elongation remains elusive. To elucidate the functional role of FACT in replication fork progression during DNA elongation in the cells, we generated and analyzed conditional SSRP1 gene knock-out chicken (Gallus gallus) DT40 cells. SSRP1-depleted cells ceased to grow and exhibited a delay in S-phase cell cycle progression, although SSRP1 depletion did not affect the level of chromatin-bound DNA polymerase α or nucleosome reassembly on daughter strands. The tracking length of newly synthesized DNA, but not origin firing, was reduced in SSRP1-depleted cells, suggesting that the S-phase cell cycle delay is mainly due to the inhibition of replication fork progression rather than to defects in the initiation of DNA replication in these cells. We discuss the mechanisms of how FACT promotes replication fork progression in the cells.
Collapse
Affiliation(s)
- Takuya Abe
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578
| | - Kazuto Sugimura
- Department of Life Science, Graduate School of Bioresources, Mie University, Mie 514-8507; Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University, Mie 514-8507
| | - Yoshifumi Hosono
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578
| | - Yasunari Takami
- Department of Medical Sciences, Section of Biochemistry and Molecular Biology, Miyazaki Medical College, University of Miyazaki, Miyazaki 889-1692
| | - Motomu Akita
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578
| | - Akari Yoshimura
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578; Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585
| | - Shusuke Tada
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578
| | - Tatsuo Nakayama
- Department of Medical Sciences, Section of Biochemistry and Molecular Biology, Miyazaki Medical College, University of Miyazaki, Miyazaki 889-1692
| | - Hiromu Murofushi
- Department of Applied Molecular Biosciences, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512
| | - Katsuzumi Okumura
- Department of Life Science, Graduate School of Bioresources, Mie University, Mie 514-8507
| | - Shunichi Takeda
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Koyoto 606-8501
| | - Masami Horikoshi
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 111-0032, Japan.
| | - Masayuki Seki
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578.
| | - Takemi Enomoto
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578; Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585.
| |
Collapse
|
45
|
Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication. ACTA ACUST UNITED AC 2011; 193:995-1007. [PMID: 21646402 PMCID: PMC3115804 DOI: 10.1083/jcb.201102003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Treslin, a TopBP1-interacting protein, is necessary for deoxyribonucleic acid (DNA) replication in vertebrates. Association between Treslin and TopBP1 requires cyclin-dependent kinase (Cdk) activity in Xenopus laevis egg extracts. We investigated the mechanism and functional importance of Cdk for this interaction using both X. laevis egg extracts and human cells. We found that Treslin also associated with TopBP1 in a Cdk-regulated manner in human cells and that Treslin was phosphorylated within a conserved Cdk consensus target sequence (on S976 in X. laevis and S1000 in humans). Recombinant human Cdk2-cyclin E also phosphorylated this residue of Treslin in vitro very effectively. Moreover, a mutant of Treslin that cannot undergo phosphorylation on this site showed significantly diminished binding to TopBP1. Finally, human cells harboring this mutant were severely deficient in DNA replication. Collectively, these results indicate that Cdk-mediated phosphorylation of Treslin during S phase is necessary for both its effective association with TopBP1 and its ability to promote DNA replication in human cells.
Collapse
Affiliation(s)
- Akiko Kumagai
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
46
|
Sld7, an Sld3-associated protein required for efficient chromosomal DNA replication in budding yeast. EMBO J 2011; 30:2019-30. [PMID: 21487389 DOI: 10.1038/emboj.2011.115] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/23/2011] [Indexed: 01/16/2023] Open
Abstract
Genetic screening of yeast for sld (synthetic lethality with dpb11) mutations has identified replication proteins, including Sld2, -3, and -5, and clarified the molecular mechanisms underlying eukaryotic chromosomal DNA replication. Here, we report a new replication protein, Sld7, identified by rescreening of sld mutations. Throughout the cell cycle, Sld7 forms a complex with Sld3, which associates with replication origins in a complex with Cdc45, binds to Dpb11 when phosphorylated by cyclin-dependent kinase, and dissociates from origins once DNA replication starts. However, Sld7 does not move with the replication fork. Sld7 binds to the nonessential N-terminal portion of Sld3 and reduces its affinity for Cdc45, a component of the replication fork. Although Sld7 is not essential for cell growth, its absence reduces the level of cellular Sld3, delays the dissociation from origins of GINS, a component of the replication fork, and slows S-phase progression. These results suggest that Sld7 is required for the proper function of Sld3 at the initiation of DNA replication.
Collapse
|
47
|
Meisch F, Prioleau MN. Genomic approaches to the initiation of DNA replication and chromatin structure reveal a complex relationship. Brief Funct Genomics 2011; 10:30-6. [PMID: 21278082 DOI: 10.1093/bfgp/elr001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The mechanisms regulating the coordinate activation of tens of thousands of replication origins in multicellular organisms remain poorly explored. Recent advances in genomics have provided valuable information about the sites at which DNA replication is initiated and the selection mechanisms of specific sites in both yeast and vertebrates. Studies in yeast have advanced to the point that it is now possible to develop convincing models for origin selection. A general model has emerged, but yeast data have also revealed an unsuspected diversity of strategies for origin positioning. We focus here on the ways in which chromatin structure may affect the formation of pre-replication complexes, a prerequisite for origin activation. We also discuss the need to exercise caution when trying to extrapolate yeast models directly to more complex vertebrate genomes.
Collapse
Affiliation(s)
- Françoise Meisch
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Université Paris Diderot, 75013 Paris, France
| | | |
Collapse
|
48
|
Germann SM, Oestergaard VH, Haas C, Salis P, Motegi A, Lisby M. Dpb11/TopBP1 plays distinct roles in DNA replication, checkpoint response and homologous recombination. DNA Repair (Amst) 2010; 10:210-24. [PMID: 21130053 DOI: 10.1016/j.dnarep.2010.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/20/2010] [Accepted: 11/04/2010] [Indexed: 12/16/2022]
Abstract
DPB11/TopBP1 is an essential evolutionarily conserved gene involved in initiation of DNA replication and checkpoint signaling. Here, we show that Saccharomyces cerevisiae Dpb11 forms nuclear foci that localize to sites of DNA damage in G1, S and G2 phase, a recruitment that is conserved for its homologue TopBP1 in Gallus gallus. Damage-induced Dpb11 foci are distinct from Sld3 replication initiation foci. Further, Dpb11 foci are dependent on the checkpoint proteins Mec3 (9-1-1 complex) and Rad24, and require the C-terminal domain of Dpb11. Dpb11 foci are independent of the checkpoint kinases Mec1 and Tel1, and of the checkpoint mediator Rad9. In a site-directed mutagenesis screen, we identify a separation-of-function mutant, dpb11-PF, that is sensitive to DSB-inducing agents yet remains proficient for DNA replication and the S-phase checkpoint at the permissive temperature. The dpb11-PF mutant displays altered rates of heteroallelic and direct-repeat recombination, sensitivity to DSB-inducing drugs as well as delayed kinetics of mating-type switching with a defect in the DNA synthesis step thus implicating Dpb11 in homologous recombination. We conclude that Dpb11/TopBP1 plays distinct roles in replication, checkpoint response and recombination processes, thereby contributing to chromosomal stability.
Collapse
|