1
|
Shevchenko AI, Rifel NA, Zakian SM, Zakharova IS. Constitutive heterochromatin propagation contributes to the X chromosome inactivation. Chromosome Res 2022; 30:289-307. [PMID: 35920963 DOI: 10.1007/s10577-022-09706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/25/2023]
Abstract
Imprinted X chromosome inactivation (iXCI) balances the expression of X-linked genes in preimplantation embryos and extraembryonic tissues in rodents. Long noncoding Xist RNA drives iXCI, silencing genes and recruiting Xist-dependent chromatin repressors. Some domains on the inactive X chromosome include repressive modifications specific to constitutive heterochromatin, which show no direct link to Xist RNA. We explored the relationship between Xist RNA and chromatin silencing during iXCI in vole Microtus levis. We performed locus-specific activation of Xist transcription on the only active X chromosome using the dCas9-SAM system in XO vole trophoblast stem cells (TSCs), which allow modeling iXCI events to some extent. The artificially activated endogenous vole Xist transcript is truncated and restricted ~ 6.6 kb of the exon 1. Ectopic Xist RNA accumulates on the X chromosome and recruits Xist-dependent modifications during TSC differentiation, yet is incapable by itself repressing X-linked genes. Transcriptional silencing occurs upon ectopic Xist upregulation only when repressive marks spread from the massive telomeric constitutive heterochromatin to the X chromosome region containing genes. We hypothesize that the Xist RNA-induced propagation of repressive marks from the constitutive heterochromatin could be a mechanism involved in X chromosome inactivation.
Collapse
Affiliation(s)
- Alexander I Shevchenko
- Federal Research Center, "Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences", Novosibirsk, 630090, Russia.,Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,E.N. Meshalkin National Medical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, 630055, Russia
| | - Nikita A Rifel
- Federal Research Center, "Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences", Novosibirsk, 630090, Russia
| | - Suren M Zakian
- Federal Research Center, "Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences", Novosibirsk, 630090, Russia.,Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,E.N. Meshalkin National Medical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, 630055, Russia
| | - Irina S Zakharova
- Federal Research Center, "Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences", Novosibirsk, 630090, Russia. .,Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,E.N. Meshalkin National Medical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, 630055, Russia.
| |
Collapse
|
2
|
Ichihara S, Nagao K, Sakaguchi T, Obuse C, Sado T. SmcHD1 underlies the formation of H3K9me3 blocks on the inactive X chromosome in mice. Development 2022; 149:dev200864. [PMID: 38771307 DOI: 10.1242/dev.200864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022]
Abstract
Stable silencing of the inactive X chromosome (Xi) in female mammals is crucial for the development of embryos and their postnatal health. SmcHD1 is essential for stable silencing of the Xi, and its functional deficiency results in derepression of many X-inactivated genes. Although SmcHD1 has been suggested to play an important role in the formation of higher-order chromatin structure of the Xi, the underlying mechanism is largely unknown. Here, we explore the epigenetic state of the Xi in SmcHD1-deficient epiblast stem cells and mouse embryonic fibroblasts in comparison with their wild-type counterparts. The results suggest that SmcHD1 underlies the formation of H3K9me3-enriched blocks on the Xi, which, although the importance of H3K9me3 has been largely overlooked in mice, play a crucial role in the establishment of the stably silenced state. We propose that the H3K9me3 blocks formed on the Xi facilitate robust heterochromatin formation in combination with H3K27me3, and that the substantial loss of H3K9me3 caused by SmcHD1 deficiency leads to aberrant distribution of H3K27me3 on the Xi and derepression of X-inactivated genes.
Collapse
Affiliation(s)
- Saya Ichihara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Koji Nagao
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Takehisa Sakaguchi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Chikashi Obuse
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
3
|
The methylation and telomere landscape in two families of marsupials with different rates of chromosome evolution. Chromosome Res 2018; 26:317-332. [PMID: 30539406 DOI: 10.1007/s10577-018-9593-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023]
Abstract
Two marsupial families exemplify divergent rates of karyotypic change. The Dasyurid family has an extremely conserved karyotype. In contrast, there is significant chromosomal variation within the Macropodidae family, best exemplified by members of the genus Petrogale (rock-wallabies). Both families are also distinguished by their telomere landscape (length and epigenetics), with the dasyurids having a unique telomere length dimorphism not observed in other marsupials and hypothesised to be regulated in a parent-of-origin fashion. Previous work has shown that proximal ends of chromosomes are enriched in cytosine methylation in dasyurids, but that the chromosomes of a macropod, the tammar wallaby, have DNA methylation enrichment of pericentric regions. Using a combination of telomere and 5-methylcytosine immunofluorescence staining, we investigated the telomere landscape of four dasyurid and three Petrogale species. As part of this study, we also further examined the parent-of-origin hypothesis for the regulation of telomere length dimorphism in dasyurids, using epigenetic modifications known to differentiate the active maternal X chromosome, including 5-methylcytosine methylation and histone modifications H3K4me2, H3K9ac and H4Kac. Our results give further support to the parent-of-origin hypothesis for the regulation of telomere length dimorphism in dasyurids, where the paternally derived X chromosome in females was associated with long telomeres and the maternally derived with short telomeres. In contrast to the tammar wallaby, rock-wallabies demonstrated a similar 5-methylcytosine staining pattern across all chromosomes to that of dasyurids, suggesting that DNA methylation of telomeric regions is not responsible for differences in the rates of chromosome evolution between these two families.
Collapse
|
4
|
Impact of Xist RNA on chromatin modifications and transcriptional silencing maintenance at different stages of imprinted X chromosome inactivation in vole Microtus levis. Chromosoma 2017; 127:129-139. [PMID: 29151149 DOI: 10.1007/s00412-017-0650-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
In vole Microtus levis, cells of preimplantation embryo and extraembryonic tissues undergo imprinted X chromosome inactivation (iXCI) which is triggered by a long non-coding nuclear RNA, Xist. At early stages of iXCI, chromatin of vole inactive X chromosome is enriched with the HP1 heterochromatin-specific protein, trimethylated H3K9 and H4K20 attributable to constitutive heterochromatin. In the study, using vole trophoblast stem (TS) cells as a model of iXCI, we further investigated chromatin of the inactive X chromosome of M. levis and tried to find out the role of Xist RNA. We demonstrated that chromatin of the inactive X chromosome in vole TS cells also contained the SETDB1 histone methyltransferase and KAP1 protein. In addition, we observed that Xist RNA did not contribute significantly to maintenance of X chromosome inactive state during iXCI in vole TS cells. Xist repression affected neither transcriptional silencing caused by iXCI nor maintenance of trimethylated H3K9 and H4K20 as well as HP1, KAP1, and SETDB1 on the inactive X chromosome. Moreover, the unique repertoire of chromatin modifications on the inactive X chromosome in vole TS cells could be disrupted by a chemical compound, DZNep, and then restored even in the absence of Xist RNA. However, Xist transcript was necessary for recruitment of an additional repressive histone modification, trimethylated H3K27, to the inactive X chromosome during vole TS cell differentiation.
Collapse
|
5
|
Suárez-Villota EY, Haro RE, Vargas RA, Gallardo MH. The ancestral chromosomes of Dromiciops gliroides (Microbiotheridae), and its bearings on the karyotypic evolution of American marsupials. Mol Cytogenet 2016; 9:59. [PMID: 27489568 PMCID: PMC4971695 DOI: 10.1186/s13039-016-0270-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/25/2016] [Indexed: 11/12/2022] Open
Abstract
Background The low-numbered 14-chromosome karyotype of marsupials has falsified the fusion hypothesis claiming ancestrality from a 22-chromosome karyotype. Since the 14-chromosome condition of the relict Dromiciops gliroides is reminecent of ancestrality, its interstitial traces of past putative fusions and heterochromatin banding patterns were studied and added to available marsupials’ cytogenetic data. Fluorescent in situ hybridization (FISH) and self-genomic in situ hybridization (self-GISH) were used to detect telomeric and repetitive sequences, respectively. These were complemented with C-, fluorescent banding, and centromere immunodetection over mitotic spreads. The presence of interstitial telomeric sequences (ITS) and diploid numbers were reconstructed and mapped onto the marsupial phylogenetic tree. Results No interstitial, fluorescent signals, but clearly stained telomeric regions were detected by FISH and self-GISH. Heterochromatin distribution was sparse in the telomeric/subtelomeric regions of large submetacentric chromosomes. Large AT-rich blocks were detected in the long arm of four submetacentrics and CG-rich block in the telomeric regions of all chromosomes. The ancestral reconstructions both ITS presence and diploid numbers suggested that ITS are unrelated to fusion events. Conclusion Although the lack of interstitial signals in D. gliroides’ karyotype does not prove absence of past fusions, our data suggests its non-rearranged plesiomorphic condition. Electronic supplementary material The online version of this article (doi:10.1186/s13039-016-0270-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elkin Y Suárez-Villota
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Ronie E Haro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Rodrigo A Vargas
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Milton H Gallardo
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| |
Collapse
|
6
|
Vaskova EA, Medvedev SP, Sorokina AE, Nemudryy AA, Elisaphenko EA, Zakharova IS, Shevchenko AI, Kizilova EA, Zhelezova AI, Evshin IS, Sharipov RN, Minina JM, Zhdanova NS, Khegay II, Kolpakov FA, Sukhikh GT, Pokushalov EA, Karaskov AM, Vlasov VV, Ivanova LN, Zakian SM. Transcriptome Characteristics and X-Chromosome Inactivation Status in Cultured Rat Pluripotent Stem Cells. Stem Cells Dev 2015; 24:2912-24. [DOI: 10.1089/scd.2015.0204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Evgeniya A. Vaskova
- The Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey P. Medvedev
- The Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Anastasiya E. Sorokina
- The Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Artem A. Nemudryy
- The Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgeniy A. Elisaphenko
- The Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina S. Zakharova
- The Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander I. Shevchenko
- The Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena A. Kizilova
- The Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Antonina I. Zhelezova
- The Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ivan S. Evshin
- Institute of Systems Biology, Ltd., Novosibirsk, Russia
- Design Technological Institute of Digital Techniques, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ruslan N. Sharipov
- Novosibirsk State University, Novosibirsk, Russia
- Institute of Systems Biology, Ltd., Novosibirsk, Russia
- Design Technological Institute of Digital Techniques, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Julia M. Minina
- The Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia S. Zhdanova
- The Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Igor I. Khegay
- The Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Fedor A. Kolpakov
- Institute of Systems Biology, Ltd., Novosibirsk, Russia
- Design Technological Institute of Digital Techniques, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Gennadiy T. Sukhikh
- Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Evgeniy A. Pokushalov
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia
| | - Alexander M. Karaskov
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia
| | - Valentin V. Vlasov
- Institute of Chemical Biology and Fundamental Medicine, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Ludmila N. Ivanova
- The Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Suren M. Zakian
- The Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
7
|
Abstract
Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.
Collapse
|
8
|
Dynamics of the two heterochromatin types during imprinted X chromosome inactivation in vole Microtus levis. PLoS One 2014; 9:e88256. [PMID: 24505450 PMCID: PMC3913780 DOI: 10.1371/journal.pone.0088256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/07/2014] [Indexed: 11/27/2022] Open
Abstract
In rodent female mammals, there are two forms of X-inactivation – imprinted and random which take place in extraembryonic and embryonic tissues, respectively. The inactive X-chromosome during random X-inactivation was shown to contain two types of facultative heterochromatin that alternate and do not overlap. However, chromatin structure of the inactive X-chromosome during imprinted X-inactivation, especially at early stages, is still not well understood. In this work, we studied chromatin modifications associated with the inactive X-chromosome at different stages of imprinted X-inactivation in a rodent, Microtus levis. It has been found that imprinted X-inactivation in vole occurs in a species-specific manner in two steps. The inactive X-chromosome at early stages of imprinted X-inactivation is characterized by accumulation of H3K9me3, HP1, H4K20me3, and uH2A, resembling to some extent the pattern of repressive chromatin modifications of meiotic sex chromatin. Later, the inactive X-chromosome recruits trimethylated H3K27 and acquires the two types of heterochromatin associated with random X-inactivation.
Collapse
|
9
|
Sado T, Sakaguchi T. Species-specific differences in X chromosome inactivation in mammals. Reproduction 2013; 146:R131-9. [PMID: 23847260 DOI: 10.1530/rep-13-0173] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In female mammals, the dosage difference in X-linked genes between XX females and XY males is compensated for by inactivating one of the two X chromosomes during early development. Since the discovery of the X inactive-specific transcript (XIST) gene in humans and its subsequent isolation of the mouse homolog, Xist, in the early 1990s, the molecular basis of X chromosome inactivation (X-inactivation) has been more fully elucidated using genetically manipulated mouse embryos and embryonic stem cells. Studies on X-inactivation in other mammals, although limited when compared with those in the mice, have revealed that, while their inactive X chromosome shares many features with those in the mice, there are marked differences in not only some epigenetic modifications of the inactive X chromosome but also when and how X-inactivation is initiated during early embryonic development. Such differences raise the issue about what extent of the molecular basis of X-inactivation in the mice is commonly shared among others. Recognizing similarities and differences in X-inactivation among mammals may provide further insight into our understanding of not only the evolutionary but also the molecular aspects for the mechanism of X-inactivation. Here, we reviewed species-specific differences in X-inactivation and discussed what these differences may reveal.
Collapse
Affiliation(s)
- Takashi Sado
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
10
|
Sado T, Brockdorff N. Advances in understanding chromosome silencing by the long non-coding RNA Xist. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110325. [PMID: 23166390 DOI: 10.1098/rstb.2011.0325] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In female mammals, one of the two X chromosomes becomes genetically silenced to compensate for dosage imbalance of X-linked genes between XX females and XY males. X chromosome inactivation (X-inactivation) is a classical model for epigenetic gene regulation in mammals and has been studied for half a century. In the last two decades, efforts have been focused on the X inactive-specific transcript (Xist) locus, discovered to be the master regulator of X-inactivation. The Xist gene produces a non-coding RNA that functions as the primary switch for X-inactivation, coating the X chromosome from which it is transcribed in cis. Significant progress has been made towards understanding how Xist is regulated at the onset of X-inactivation, but our understanding of the molecular basis of silencing mediated by Xist RNA has progressed more slowly. A picture has, however, begun to emerge, and new tools and resources hold out the promise of further advances to come. Here, we provide an overview of the current state of our knowledge, what is known about Xist RNA and how it may trigger chromosome silencing.
Collapse
Affiliation(s)
- Takashi Sado
- Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
11
|
Abstract
Marsupial and eutherian mammals inactivate one X chromosome in female somatic cells in what is thought to be a means of compensating for the unbalanced X chromosome dosage between XX females and XY males. The hypothesis of X chromosome inactivation (XCI) was first published by Mary Lyon just over 50 years ago, with the discovery of XCI in marsupials occurring a decade later. However, we are still piecing together the evolutionary origins of this fascinating epigenetic mechanism. From the very first studies on marsupial X inactivation, it was apparent that, although there were some similarities between marsupial and eutherian XCI, there were also some striking differences. For instance, the paternally derived X was found to be preferentially silenced in marsupials, although the silencing was often incomplete, which was in contrast to the random and more tightly controlled inactivation of the X chromosome in eutherians. Many of these earlier studies used isozymes to study the activity of just a few genes in marsupials. The sequencing of several marsupial genomes and the advent of molecular cytogenetic techniques have facilitated more in-depth studies into marsupial X chromosome inactivation and allowed more detailed comparisons of the features of XCI to be made. Several important findings have come from such comparisons, among which is the absence of the XIST gene in marsupials, a non-coding RNA gene with a critical role in eutherian XCI, and the discovery of the marsupial RSX gene, which appears to perform a similar role to XIST. Here I review the history of marsupial XCI studies, the latest advances that have been made and the impact they have had towards unravelling the evolution of XCI in mammals.
Collapse
|
12
|
Staiber W. Germ line-limited and somatic chromosomes of Acricotopus lucidus differ in distribution and timing of alterations of histone modifications in male gonial mitosis and meiosis. Chromosome Res 2012; 20:717-34. [PMID: 22911004 DOI: 10.1007/s10577-012-9308-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/27/2012] [Accepted: 08/01/2012] [Indexed: 01/22/2023]
Abstract
Special chromosomes limited to the germ line (=Ks) and exceptional genetic events such as elimination mitoses and a monopolar migration of the Ks in the last gonial mitosis are specific features of the complex chromosome cycle occurring in the chironomid Acricotopus lucidus. In the male, this unequal differential gonial mitosis results in a regular spermatocyte possessing all the Ks in addition to the somatic chromosomes (=Ss) and an aberrant spermatocyte containing only Ss. During evolution, the Ks have developed from the Ss and are composed of euchromatic S-homologous sections and heterochromatic segments. Less is known about the function and the transcriptional activity of the Ks. Specific post-translational histone modifications are known to be associated with transcriptionally active and inactive states of the chromatin. In an immunofluorescence study, the distribution of the following acetylated (ac), methylated (me) and phosphorylated (ph) amino acids in the histones H3 and H4 was analysed in Ks and Ss in male gonial mitoses and meiosis of A. lucidus, namely H3K18ac and H4K8ac, H3K4me3 and H3K9me3, H3S10ph, H3S28ph and H3T3ph. Ks and Ss clearly differ in the distribution of H3S28ph in gonial and meiotic metaphases. The H3S28ph mark covered the entire Ss, while the Ks showed this label only on their pericentromeric heterochromatin bands containing germ line-specific repetitive DNA sequences. A differential timing in the dephosphorylation of H3S10ph, H3S28ph and H3T3ph between Ks and Ss within the same cell was detected in the last gonial mitosis. The dephosphorylation occurred earlier in the Ks migrating first to the pole, than in the later equally segregating Ss. A programmed rapid histone deacetylation and dephosphorylation happened in the unseparated Ss of the aberrant spermatocyte at metaphase I in the connected primary spermatocyte, which correlated with the beginning of a permanent inactivation of these Ss in a metaphase-like condensed state. In meiosis, phosphorylated H3T3 could be detected only in metaphase II chromosomes at the inner centromeres of the attached sister chromatids. The H3T3ph labelling at this region was recently reported to be essential in mitosis for correct deposition of components of the chromosomal passenger complex and so for proper alignment, sister chromatid cohesion and segregation of chromosomes (Wang et al., Science 330:231-235, 2010; Curr Biol 21:1061-1069, 2011). Importantly, in spermatocytes, the euchromatic sections of the Ks were strongly acetylated at H3K18 and H4K8, and trimethylated at H3K4 during meiosis I and II, while the euchromatin of the meiotic Ss was hypoacetylated and hypomethylated at these sites. This result suggests a silencing of the Ss during spermatocyte meiosis. The high levels of active histone modifications detected in the euchromatic K sections support the idea that the Ks of A. lucidus are transcriptionally active in the germ line.
Collapse
Affiliation(s)
- Wolfgang Staiber
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
13
|
Deakin JE. Marsupial genome sequences: providing insight into evolution and disease. SCIENTIFICA 2012; 2012:543176. [PMID: 24278712 PMCID: PMC3820666 DOI: 10.6064/2012/543176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/26/2012] [Indexed: 05/08/2023]
Abstract
Marsupials (metatherians), with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil), with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences.
Collapse
Affiliation(s)
- Janine E. Deakin
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
- *Janine E. Deakin:
| |
Collapse
|
14
|
Livernois AM, Graves JAM, Waters PD. The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity (Edinb) 2011; 108:50-8. [PMID: 22086077 DOI: 10.1038/hdy.2011.106] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In mammals, birds, snakes and many lizards and fish, sex is determined genetically (either male XY heterogamy or female ZW heterogamy), whereas in alligators, and in many reptiles and turtles, the temperature at which eggs are incubated determines sex. Evidently, different sex-determining systems (and sex chromosome pairs) have evolved independently in different vertebrate lineages. Homology shared by Xs and Ys (and Zs and Ws) within species demonstrates that differentiated sex chromosomes were once homologous, and that the sex-specific non-recombining Y (or W) was progressively degraded. Consequently, genes are left in single copy in the heterogametic sex, which results in an imbalance of the dosage of genes on the sex chromosomes between the sexes, and also relative to the autosomes. Dosage compensation has evolved in diverse species to compensate for these dose differences, with the stringency of compensation apparently differing greatly between lineages, perhaps reflecting the concentration of genes on the original autosome pair that required dosage compensation. We discuss the organization and evolution of amniote sex chromosomes, and hypothesize that dosage insensitivity might predispose an autosome to evolving function as a sex chromosome.
Collapse
Affiliation(s)
- A M Livernois
- Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | |
Collapse
|
15
|
Payer B, Lee JT, Namekawa SH. X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Hum Genet 2011; 130:265-80. [PMID: 21667284 PMCID: PMC3744832 DOI: 10.1007/s00439-011-1024-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/27/2011] [Indexed: 01/07/2023]
Abstract
X-chromosome inactivation is an epigenetic hallmark of mammalian development. Chromosome-wide regulation of the X-chromosome is essential in embryonic and germ cell development. In the male germline, the X-chromosome goes through meiotic sex chromosome inactivation, and the chromosome-wide silencing is maintained from meiosis into spermatids before the transmission to female embryos. In early female mouse embryos, X-inactivation is imprinted to occur on the paternal X-chromosome, representing the epigenetic programs acquired in both parental germlines. Recent advances revealed that the inactive X-chromosome in both females and males can be dissected into two elements: repeat elements versus unique coding genes. The inactive paternal X in female preimplantation embryos is reactivated in the inner cell mass of blastocysts in order to subsequently allow the random form of X-inactivation in the female embryo, by which both Xs have an equal chance of being inactivated. X-chromosome reactivation is regulated by pluripotency factors and also occurs in early female germ cells and in pluripotent stem cells, where X-reactivation is a stringent marker of naive ground state pluripotency. Here we summarize recent progress in the study of X-inactivation and X-reactivation during mammalian reproduction and development as well as in pluripotent stem cells.
Collapse
Affiliation(s)
- Bernhard Payer
- Department of Genetics, Harvard Medical School, Boston, MA, USA. Howard Hughes Medical Institute, Boston, MA, USA. Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeannie T. Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA. Howard Hughes Medical Institute, Boston, MA, USA. Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Satoshi H. Namekawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
16
|
Wutz A. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 2011; 12:542-53. [PMID: 21765457 DOI: 10.1038/nrg3035] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In female mammals, one of the two X chromosomes is silenced for dosage compensation between the sexes. X-chromosome inactivation is initiated in early embryogenesis by the Xist RNA that localizes to the inactive X chromosome. During development, the inactive X chromosome is further modified, a specialized form of facultative heterochromatin is formed and gene repression becomes stable and independent of Xist in somatic cells. The recent identification of several factors involved in this process has provided insights into the mechanism of Xist localization and gene silencing. The emerging picture is complex and suggests that chromosome-wide silencing can be partitioned into several steps, the molecular components of which are starting to be defined.
Collapse
Affiliation(s)
- Anton Wutz
- Wellcome Trust Centre for Stem Cell Research, Cambridge, UK.
| |
Collapse
|
17
|
Evolutionary diversity and developmental regulation of X-chromosome inactivation. Hum Genet 2011; 130:307-27. [PMID: 21687993 PMCID: PMC3132430 DOI: 10.1007/s00439-011-1029-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 05/31/2011] [Indexed: 12/26/2022]
Abstract
X-chromosome inactivation (XCI) results in the transcriptional silencing of one X-chromosome in females to attain gene dosage parity between XX female and XY male mammals. Mammals appear to have developed rather diverse strategies to initiate XCI in early development. In placental mammals XCI depends on the regulatory noncoding RNA X-inactive specific transcript (Xist), which is absent in marsupials and monotremes. Surprisingly, even placental mammals show differences in the initiation of XCI in terms of Xist regulation and the timing to acquire dosage compensation. Despite this, all placental mammals achieve chromosome-wide gene silencing at some point in development, and this is maintained by epigenetic marks such as chromatin modifications and DNA methylation. In this review, we will summarise recent findings concerning the events that occur downstream of Xist RNA coating of the inactive X-chromosome (Xi) to ensure its heterochromatinization and the maintenance of the inactive state in the mouse and highlight similarities and differences between mammals.
Collapse
|