1
|
Li S, Koe CT, Tay ST, Tan ALK, Zhang S, Zhang Y, Tan P, Sung WK, Wang H. An intrinsic mechanism controls reactivation of neural stem cells by spindle matrix proteins. Nat Commun 2017; 8:122. [PMID: 28744001 PMCID: PMC5526931 DOI: 10.1038/s41467-017-00172-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/08/2017] [Indexed: 11/09/2022] Open
Abstract
The switch between quiescence and proliferation is central for neurogenesis and its alteration is linked to neurodevelopmental disorders such as microcephaly. However, intrinsic mechanisms that reactivate Drosophila larval neural stem cells (NSCs) to exit from quiescence are not well established. Here we show that the spindle matrix complex containing Chromator (Chro) functions as a key intrinsic regulator of NSC reactivation downstream of extrinsic insulin/insulin-like growth factor signalling. Chro also prevents NSCs from re-entering quiescence at later stages. NSC-specific in vivo profiling has identified many downstream targets of Chro, including a temporal transcription factor Grainy head (Grh) and a neural stem cell quiescence-inducing factor Prospero (Pros). We show that spindle matrix proteins promote the expression of Grh and repress that of Pros in NSCs to govern their reactivation. Our data demonstrate that nuclear Chro critically regulates gene expression in NSCs at the transition from quiescence to proliferation. The spindle matrix proteins, including Chro, are known to regulate mitotic spindle assembly in the cytoplasm. Here the authors show that in Drosophila larval brain, Chro promotes neural stem cell (NSC) reactivation and prevents activated NSCs from entering quiescence, and that Chro carries out such a role by regulating the expression of key transcription factors in the nucleus.
Collapse
Affiliation(s)
- Song Li
- Neuroscience & Behavioural Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Chwee Tat Koe
- Neuroscience & Behavioural Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Su Ting Tay
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Angie Lay Keng Tan
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Shenli Zhang
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yingjie Zhang
- Neuroscience & Behavioural Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Patrick Tan
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 119074, Singapore.,Genome Institute of Singapore, 60 Biopolis Street, Genome 02-01, Singapore, 138672, Singapore
| | - Wing-Kin Sung
- Genome Institute of Singapore, 60 Biopolis Street, Genome 02-01, Singapore, 138672, Singapore.,Department of Computer Science, National University of Singapore, Singapore, 117417, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioural Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
2
|
Chromodomain protein Tcd1 is required for macronuclear genome rearrangement and repair in Tetrahymena. Sci Rep 2015; 5:10243. [PMID: 25989344 PMCID: PMC4437310 DOI: 10.1038/srep10243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/07/2015] [Indexed: 11/25/2022] Open
Abstract
The survival of an organism’s progeny depends on the maintenance of its genome. Programmed DNA rearrangement and repair in Tetrahymena occur during the differentiation of the developing somatic macronuclear genome from the germ line micronuclear genome. Tetrahymena chromodomain protein (Tcd1) exhibited dynamic localization from the parental to the developing macronuclei. In the developing macronuclei, Tcd1 colocalized with Pdd1 and H3K9me3. Furthermore, Tcd1 colocalized with Pdd1 in the conjusome and “donut structure” of DNA elimination heterochromatin region. During the growth and conjugation stages, TCD1 knockout cells appeared normal and similar to wild-type strains. In addition, these knockout cells proceeded to the 2MAC-1MIC stage. However, the progeny of the TCD1 knockout cells did not grow upon return to SPP medium and eventually died. The deletion of the internal elimination sequence R element was partially disrupted in the developing new macronuclei. Gamma H2A staining showed that Tcd1 loss induced the accumulation of DNA double-strand breaks and the failure of genome repair. These results suggest that the chromodomain protein Tcd1 is required for the rearrangement and repair of new macronuclear genome in Tetrahymena.
Collapse
|
3
|
Vogelmann J, Le Gall A, Dejardin S, Allemand F, Gamot A, Labesse G, Cuvier O, Nègre N, Cohen-Gonsaud M, Margeat E, Nöllmann M. Chromatin insulator factors involved in long-range DNA interactions and their role in the folding of the Drosophila genome. PLoS Genet 2014; 10:e1004544. [PMID: 25165871 PMCID: PMC4148193 DOI: 10.1371/journal.pgen.1004544] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
Chromatin insulators are genetic elements implicated in the organization of chromatin and the regulation of transcription. In Drosophila, different insulator types were characterized by their locus-specific composition of insulator proteins and co-factors. Insulators mediate specific long-range DNA contacts required for the three dimensional organization of the interphase nucleus and for transcription regulation, but the mechanisms underlying the formation of these contacts is currently unknown. Here, we investigate the molecular associations between different components of insulator complexes (BEAF32, CP190 and Chromator) by biochemical and biophysical means, and develop a novel single-molecule assay to determine what factors are necessary and essential for the formation of long-range DNA interactions. We show that BEAF32 is able to bind DNA specifically and with high affinity, but not to bridge long-range interactions (LRI). In contrast, we show that CP190 and Chromator are able to mediate LRI between specifically-bound BEAF32 nucleoprotein complexes in vitro. This ability of CP190 and Chromator to establish LRI requires specific contacts between BEAF32 and their C-terminal domains, and dimerization through their N-terminal domains. In particular, the BTB/POZ domains of CP190 form a strict homodimer, and its C-terminal domain interacts with several insulator binding proteins. We propose a general model for insulator function in which BEAF32/dCTCF/Su(HW) provide DNA specificity (first layer proteins) whereas CP190/Chromator are responsible for the physical interactions required for long-range contacts (second layer). This network of organized, multi-layer interactions could explain the different activities of insulators as chromatin barriers, enhancer blockers, and transcriptional regulators, and suggest a general mechanism for how insulators may shape the organization of higher-order chromatin during cell division.
Collapse
Affiliation(s)
- Jutta Vogelmann
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Antoine Le Gall
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Stephanie Dejardin
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Frederic Allemand
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Adrien Gamot
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS and Université de Toulouse, Toulouse; France
| | - Gilles Labesse
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Olivier Cuvier
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS and Université de Toulouse, Toulouse; France
| | - Nicolas Nègre
- Laboratoire Diversité, Génomes & Interactions Microorganismes-Insectes, INRA UMR1333, Université de Montpellier 2, Montpellier, France
| | - Martin Cohen-Gonsaud
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Emmanuel Margeat
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Marcelo Nöllmann
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
- * E-mail:
| |
Collapse
|
4
|
The spindle matrix protein, Chromator, is a novel tubulin binding protein that can interact with both microtubules and free tubulin. PLoS One 2014; 9:e103855. [PMID: 25072297 PMCID: PMC4114980 DOI: 10.1371/journal.pone.0103855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022] Open
Abstract
The chromodomain protein, Chromator, is localized to chromosomes during interphase; however, during cell division together with other nuclear proteins Chromator redistributes to form a macro molecular spindle matrix complex that embeds the microtubule spindle apparatus. It has been demonstrated that the CTD of Chromator is sufficient for localization to the spindle matrix and that expression of this domain alone could partially rescue Chro mutant microtubule spindle defects. Furthermore, the presence of frayed and unstable microtubule spindles during mitosis after Chromator RNAi depletion in S2 cells indicated that Chromator may interact with microtubules. In this study using a variety of biochemical assays we have tested this hypothesis and show that Chromator not only has binding activity to microtubules with a Kd of 0.23 µM but also to free tubulin. Furthermore, we have mapped the interaction with microtubules to a relatively small stretch of 139 amino acids in the carboxy-terminal region of Chromator. This sequence is likely to contain a novel microtubule binding interface since database searches did not find any sequence matches with known microtubule binding motifs.
Collapse
|
5
|
Zhimulev IF, Zykova TY, Goncharov FP, Khoroshko VA, Demakova OV, Semeshin VF, Pokholkova GV, Boldyreva LV, Demidova DS, Babenko VN, Demakov SA, Belyaeva ES. Genetic organization of interphase chromosome bands and interbands in Drosophila melanogaster. PLoS One 2014; 9:e101631. [PMID: 25072930 PMCID: PMC4114487 DOI: 10.1371/journal.pone.0101631] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/09/2014] [Indexed: 12/18/2022] Open
Abstract
Drosophila melanogaster polytene chromosomes display specific banding pattern; the underlying genetic organization of this pattern has remained elusive for many years. In the present paper, we analyze 32 cytology-mapped polytene chromosome interbands. We estimated molecular locations of these interbands, described their molecular and genetic organization and demonstrate that polytene chromosome interbands contain the 5' ends of housekeeping genes. As a rule, interbands display preferential "head-to-head" orientation of genes. They are enriched for "broad" class promoters characteristic of housekeeping genes and associate with open chromatin proteins and Origin Recognition Complex (ORC) components. In two regions, 10A and 100B, coding sequences of genes whose 5'-ends reside in interbands map to constantly loosely compacted, early-replicating, so-called "grey" bands. Comparison of expression patterns of genes mapping to late-replicating dense bands vs genes whose promoter regions map to interbands shows that the former are generally tissue-specific, whereas the latter are represented by ubiquitously active genes. Analysis of RNA-seq data (modENCODE-FlyBase) indicates that transcripts from interband-mapping genes are present in most tissues and cell lines studied, across most developmental stages and upon various treatment conditions. We developed a special algorithm to computationally process protein localization data generated by the modENCODE project and show that Drosophila genome has about 5700 sites that demonstrate all the features shared by the interbands cytologically mapped to date.
Collapse
Affiliation(s)
- Igor F. Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Tatyana Yu. Zykova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Fyodor P. Goncharov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Varvara A. Khoroshko
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga V. Demakova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valeriy F. Semeshin
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Galina V. Pokholkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lidiya V. Boldyreva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Darya S. Demidova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir N. Babenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey A. Demakov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena S. Belyaeva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Cai W, Wang C, Li Y, Yao C, Shen L, Liu S, Bao X, Schnable PS, Girton J, Johansen J, Johansen KM. Genome-wide analysis of regulation of gene expression and H3K9me2 distribution by JIL-1 kinase mediated histone H3S10 phosphorylation in Drosophila. Nucleic Acids Res 2014; 42:5456-67. [PMID: 24598257 PMCID: PMC4027157 DOI: 10.1093/nar/gku173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study we have determined the genome-wide relationship of JIL-1 kinase mediated H3S10 phosphorylation with gene expression and the distribution of the epigenetic H3K9me2 mark. We show in wild-type salivary gland cells that the H3S10ph mark is predominantly enriched at active genes whereas the H3K9me2 mark is largely associated with inactive genes. Comparison of global transcription profiles in salivary glands from wild-type and JIL-1 null mutant larvae revealed that the expression levels of 1539 genes changed at least 2-fold in the mutant and that a substantial number (49%) of these genes were upregulated whereas 51% were downregulated. Furthermore, the results showed that downregulation of genes in the mutant was correlated with higher levels or acquisition of the H3K9me2 mark whereas upregulation of a gene was correlated with loss of or diminished H3K9 dimethylation. These results are compatible with a model where gene expression levels are modulated by the levels of the H3K9me2 mark independent of the state of the H3S10ph mark, which is not required for either transcription or gene activation to occur. Rather, H3S10 phosphorylation functions to indirectly maintain active transcription by counteracting H3K9 dimethylation and gene silencing.
Collapse
Affiliation(s)
- Weili Cai
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Chao Wang
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yeran Li
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Changfu Yao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Lu Shen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Sanzhen Liu
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Xiaomin Bao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA Data2Bio LLC, Ames, IA 50011, USA
| | - Jack Girton
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jørgen Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Kristen M Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Wang C, Yao C, Li Y, Cai W, Bao X, Girton J, Johansen J, Johansen KM. Evidence against a role for the JIL-1 kinase in H3S28 phosphorylation and 14-3-3 recruitment to active genes in Drosophila. PLoS One 2013; 8:e62484. [PMID: 23638096 PMCID: PMC3640051 DOI: 10.1371/journal.pone.0062484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 03/21/2013] [Indexed: 01/19/2023] Open
Abstract
JIL-1 is the major kinase controlling phosphorylation of histone H3S10 and has been demonstrated to function to counteract heterochromatization and gene silencing. However, an alternative model has been proposed in which JIL-1 is required for transcription to occur, additionally phosphorylates H3S28, and recruits 14-3-3 to active genes. Since these findings are incompatible with our previous demonstration that there are robust levels of transcription in the complete absence of JIL-1 and that JIL-1 is not present at developmental or heat shock-induced polytene chromosome puffs, we have reexamined JIL-1’s possible role in H3S28 phosphorylation and 14-3-3 recruitment. Using two different H3S28ph antibodies we show by immunocytochemistry and immunoblotting that in Drosophila the H3S28ph mark is not present at detectable levels above background on polytene chromosomes at interphase but only on chromosomes at pro-, meta-, and anaphase during cell division in S2 cells and third instar larval neuroblasts. Moreover, this mitotic H3S28ph signal is also present in a JIL-1 null mutant background at undiminished levels suggesting that JIL-1 is not the mitotic H3S28ph kinase. We also demonstrate that H3S28ph is not enriched at heat shock puffs. Using two different pan-specific 14-3-3 antibodies as well as an enhancer trap 14-3-3ε-GFP line we show that 14-3-3, while present in salivary gland nuclei, does not localize to chromosomes but only to the nuclear matrix surrounding the chromosomes. In our hands 14-3-3 is not recruited to developmental or heat shock puffs. Furthermore, using a lacO repeat tethering system to target LacI-JIL-1 to ectopic sites on polytene chromosomes we show that only H3S10ph is present and upregulated at such sites, not H3S28ph or 14-3-3. Thus, our results argue strongly against a model where JIL-1 is required for H3S28 phosphorylation and 14-3-3 recruitment at active genes.
Collapse
Affiliation(s)
- Chao Wang
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Changfu Yao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Yeran Li
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Weili Cai
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Xiaomin Bao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jack Girton
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jørgen Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (KMJ); (JJ)
| | - Kristen M. Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (KMJ); (JJ)
| |
Collapse
|
8
|
Yao C, Rath U, Maiato H, Sharp D, Girton J, Johansen KM, Johansen J. A nuclear-derived proteinaceous matrix embeds the microtubule spindle apparatus during mitosis. Mol Biol Cell 2012; 23:3532-41. [PMID: 22855526 PMCID: PMC3442402 DOI: 10.1091/mbc.e12-06-0429] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/12/2012] [Accepted: 07/26/2012] [Indexed: 01/03/2023] Open
Abstract
The concept of a spindle matrix has long been proposed. Whether such a structure exists, however, and what its molecular and structural composition are have remained controversial. In this study, using a live-imaging approach in Drosophila syncytial embryos, we demonstrate that nuclear proteins reorganize during mitosis to form a highly dynamic, viscous spindle matrix that embeds the microtubule spindle apparatus, stretching from pole to pole. We show that this "internal" matrix is a distinct structure from the microtubule spindle and from a lamin B-containing spindle envelope. By injection of 2000-kDa dextran, we show that the disassembling nuclear envelope does not present a diffusion barrier. Furthermore, when microtubules are depolymerized with colchicine just before metaphase the spindle matrix contracts and coalesces around the chromosomes, suggesting that microtubules act as "struts" stretching the spindle matrix. In addition, we demonstrate that the spindle matrix protein Megator requires its coiled-coil amino-terminal domain for spindle matrix localization, suggesting that specific interactions between spindle matrix molecules are necessary for them to form a complex confined to the spindle region. The demonstration of an embedding spindle matrix lays the groundwork for a more complete understanding of microtubule dynamics and of the viscoelastic properties of the spindle during cell division.
Collapse
Affiliation(s)
- Changfu Yao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Uttama Rath
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - David Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jack Girton
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Kristen M. Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Jørgen Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|