1
|
Liu Y, Liu Q, Yi C, Liu C, Shi Q, Wang M, Han F. Past innovations and future possibilities in plant chromosome engineering. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:695-708. [PMID: 39612312 PMCID: PMC11869185 DOI: 10.1111/pbi.14530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
Plant chromosome engineering has emerged as a pivotal tool in modern plant breeding, facilitating the transfer of desirable traits through the incorporation of alien chromosome fragments into plants. Here, we provide a comprehensive overview of the past achievements, current methodologies and future prospects of plant chromosome engineering. We begin by examining the successful integration of specific examples such as the incorporation of rye chromosome segments (e.g. the 1BL/1RS translocation), Dasypyrum villosum segments (e.g. the 6VS segment for powdery mildew resistance), Thinopyrum intermedium segments (e.g. rust resistance genes) and Thinopyrum elongatum segments (e.g. Fusarium head blight resistance genes). In addition to trait transfer, advancements in plant centromere engineering have opened new possibilities for chromosomal manipulation. This includes the development of plant minichromosomes via centromere-mediated techniques, the generation of haploids through CENH3 gene editing, and the induction of aneuploidy using KaryoCreate. The advent of CRISPR/Cas technology has further revolutionized chromosome engineering, enabling large-scale chromosomal rearrangements, such as inversions and translocations, as well as enabling targeted insertion of large DNA fragments and increasing genetic recombination frequency. These advancements have significantly expanded the toolkit for genetic improvement in plants, opening new horizons for the future of plant breeding.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Qian Liu
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Congyang Yi
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Chang Liu
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
| | - Qinghua Shi
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mian Wang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Fangpu Han
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Birchler JA, Kelly J, Singh J, Liu H, Zhang Z, Char SN, Sharma M, Yang H, Albert PS, Yang B. Synthetic minichromosomes in plants: past, present, and promise. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2356-2366. [PMID: 39546384 DOI: 10.1111/tpj.17142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
The status of engineered mini-chromosomes/artificial chromosomes/synthetic chromosomes in plants is summarized. Their promise is that they provide a means to accumulate foreign genes on an independent entity other than the normal chromosomes, which would facilitate stacking of novel traits in a way that would not be linked to endogenous genes and that would facilitate transfer between lines. Centromeres in plants are epigenetic, and therefore the isolation of DNA underlying centromeres and reintroduction into plant cells will not establish a functional kinetochore, which obviates this approach for in vitro assembly of plant artificial chromosomes. This issue was bypassed by using telomere-mediated chromosomal truncation to produce mini-chromosomes with little more than an endogenous centromere that could in turn be used as a foundation to build synthetic chromosomes. Site-specific recombinases and various iterations of CRISPR-Cas9 editing provide many tools for the development and re-engineering of synthetic chromosomes.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jacob Kelly
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jasnoor Singh
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Hua Liu
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Zhengzhi Zhang
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Si Nian Char
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Malika Sharma
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Bing Yang
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
- Donald Danforth Plant Sciences Center, St. Louis, Missouri, 63132, USA
| |
Collapse
|
3
|
Puchta H, Houben A. Plant chromosome engineering - past, present and future. THE NEW PHYTOLOGIST 2024; 241:541-552. [PMID: 37984056 DOI: 10.1111/nph.19414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Spontaneous chromosomal rearrangements (CRs) play an essential role in speciation, genome evolution and crop domestication. To be able to use the potential of CRs for breeding, plant chromosome engineering was initiated by fragmenting chromosomes by X-ray irradiation. With the rise of the CRISPR/Cas system, it became possible to induce double-strand breaks (DSBs) in a highly efficient manner at will at any chromosomal position. This has enabled a completely new level of predesigned chromosome engineering. The genetic linkage between specific genes can be broken by inducing chromosomal translocations. Natural inversions, which suppress genetic exchange, can be reverted for breeding. In addition, various approaches for constructing minichromosomes by downsizing regular standard A or supernumerary B chromosomes, which could serve as future vectors in plant biotechnology, have been developed. Recently, a functional synthetic centromere could be constructed. Also, different ways of genome haploidization have been set up, some based on centromere manipulations. In the future, we expect to see even more complex rearrangements, which can be combined with previously developed engineering technologies such as recombinases. Chromosome engineering might help to redefine genetic linkage groups, change the number of chromosomes, stack beneficial genes on mini cargo chromosomes, or set up genetic isolation to avoid outcrossing.
Collapse
Affiliation(s)
- Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP) - Molecular Biology, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
4
|
Guo W, Comai L, Henry IM. Chromoanagenesis in plants: triggers, mechanisms, and potential impact. Trends Genet 2023; 39:34-45. [PMID: 36055901 DOI: 10.1016/j.tig.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
Abstract
Chromoanagenesis is a single catastrophic event that involves, in most cases, localized chromosomal shattering and reorganization, resulting in a dramatically restructured chromosome. First discovered in cancer cells, it has since been observed in various other systems, including plants. In this review, we discuss the origin, characteristics, and potential mechanisms underlying chromoanagenesis in plants. We report that multiple processes, including mutagenesis and genetic engineering, can trigger chromoanagenesis via a variety of mechanisms such as micronucleation, breakage-fusion-bridge (BFB) cycles, or chain-like translocations. The resulting rearranged chromosomes can be preserved during subsequent plant growth, and sometimes inherited to the next generation. Because of their high tolerance to genome restructuring, plants offer a unique system for investigating the evolutionary consequences and potential practical applications of chromoanagenesis.
Collapse
Affiliation(s)
- Weier Guo
- Genome Center and Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Luca Comai
- Genome Center and Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Isabelle M Henry
- Genome Center and Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Gomide MDS, Leitão MDC, Coelho CM. Biocircuits in plants and eukaryotic algae. FRONTIERS IN PLANT SCIENCE 2022; 13:982959. [PMID: 36212277 PMCID: PMC9545776 DOI: 10.3389/fpls.2022.982959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
As one of synthetic biology's foundations, biocircuits are a strategy of genetic parts assembling to recognize a signal and to produce a desirable output to interfere with a biological function. In this review, we revisited the progress in the biocircuits technology basis and its mandatory elements, such as the characterization and assembly of functional parts. Furthermore, for a successful implementation, the transcriptional control systems are a relevant point, and the computational tools help to predict the best combinations among the biological parts planned to be used to achieve the desirable phenotype. However, many challenges are involved in delivering and stabilizing the synthetic structures. Some research experiences, such as the golden crops, biosensors, and artificial photosynthetic structures, can indicate the positive and limiting aspects of the practice. Finally, we envision that the modulatory structural feature and the possibility of finer gene regulation through biocircuits can contribute to the complex design of synthetic chromosomes aiming to develop plants and algae with new or improved functions.
Collapse
Affiliation(s)
- Mayna da Silveira Gomide
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
- School of Medicine, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Matheus de Castro Leitão
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| |
Collapse
|
6
|
Kan M, Huang T, Zhao P. Artificial chromosome technology and its potential application in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:970943. [PMID: 36186059 PMCID: PMC9519882 DOI: 10.3389/fpls.2022.970943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Plant genetic engineering and transgenic technology are powerful ways to study the function of genes and improve crop yield and quality in the past few years. However, only a few genes could be transformed by most available genetic engineering and transgenic technologies, so changes still need to be made to meet the demands for high throughput studies, such as investigating the whole genetic pathway of crop traits and avoiding undesirable genes simultaneously in the next generation. Plant artificial chromosome (PAC) technology provides a carrier which allows us to assemble multiple and specific genes to produce a variety of products by minichromosome. However, PAC technology also have limitations that may hinder its further development and application. In this review, we will introduce the current state of PACs technology from PACs formation, factors on PACs formation, problems and potential solutions of PACs and exogenous gene(s) integration.
Collapse
Affiliation(s)
- Manman Kan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Panpan Zhao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Birchler JA, Yang H. The supernumerary B chromosome of maize: drive and genomic conflict. Open Biol 2021; 11:210197. [PMID: 34727722 PMCID: PMC8564619 DOI: 10.1098/rsob.210197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023] Open
Abstract
The supernumerary B chromosome of maize is dispensable, containing no vital genes, and thus is variable in number and presence in lines of maize. In order to be maintained in populations, it has a drive mechanism consisting of nondisjunction at the pollen mitosis that produces the two sperm cells, and then the sperm with the two B chromosomes has a preference for fertilizing the egg as opposed to the central cell in the process of double fertilization. The sequence of the B chromosome coupled with B chromosomal aberrations has localized features involved with nondisjunction and preferential fertilization, which are present at the centromeric region. The predicted genes from the sequence have paralogues dispersed across all A chromosomes and have widely different divergence times suggesting that they have transposed to the B chromosome over evolutionary time followed by degradation or have been co-opted for the selfish functions of the supernumerary chromosome.
Collapse
Affiliation(s)
- James A. Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Yin X, Zhang Y, Chen Y, Wang J, Wang RRC, Fan C, Hu Z. Precise Characterization and Tracking of Stably Inherited Artificial Minichromosomes Made by Telomere-Mediated Chromosome Truncation in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:743792. [PMID: 34671377 PMCID: PMC8521072 DOI: 10.3389/fpls.2021.743792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Plant artificial minichromosomes are the next-generation technology for plant genetic engineering and represent an independent platform for expressing foreign genes and the tools for studying the structure and function of chromosomes. Minichromosomes have been successfully produced by telomere-mediated chromosome truncation in several plants. However, previous studies have primarily focused on the construction and rough characterization of minichromosomes, while the development of stably inherited minichromosomes and their precise characterization and tracking over different generations have rarely been demonstrated. In this study, a 0.35-kb direct repeat of the Arabidopsis telomeric sequence was transformed into Brassica napus to produce artificial minichromosomes, which were analyzed by multifluorescence in situ hybridization (multi-FISH), Southern hybridization, and primer extension telomere rapid amplification (PETRA). The stably inherited minichromosomes C2 and C4 were developed by crossing transgenic plants with wild-type plants and then selfing the hybrids. Notably, two truncation sites on chromosomes C2 and C4, respectively, were identified by resequencing; thus, the artificial minichromosomes were tracked over different generations with insertion site-specific PCR. This study provided two stably inherited minichromosomes in oilseed rape and describes approaches to precisely characterize the truncation position and track the minichromosomes in offspring through multi-FISH, genome resequencing, and insertion site-specific PCR.
Collapse
Affiliation(s)
- Xiangzhen Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yingxin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuhong Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingqiao Wang
- Institute of Economical Crops, Yunnan Agricultural Academy, Kunming, China
| | - Richard R.-C. Wang
- Forage and Range Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Utah State University, Logan, UT, United States
| | - Chengming Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Agriculture, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Particle bombardment technology and its applications in plants. Mol Biol Rep 2020; 47:9831-9847. [PMID: 33222118 DOI: 10.1007/s11033-020-06001-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Particle bombardment, or biolistics, has emerged as an excellent alternative approach for plant genetic transformation which circumvents the limitations of Agrobacterium-mediated genetic transformation. The method has no biological constraints and can transform a wide range of plant species. Besides, it has been the most efficient way to achieve organelle transformation (for both chloroplasts and mitochondria) so far. Along with the recent advances in genome editing technologies, conventional gene delivery tools are now being repurposed to deliver targeted gene editing reagents into the plants. One of the key advantages is that the particle bombardment allows DNA-free gene editing of the genome. It enables the direct delivery of proteins, RNAs, and RNPs into plants. Owing to the versatility and wide-range applicability of the particle bombardment, it will likely remain one of the major genetic transformation methods in the future. This article provides an overview of the current status of particle bombardment technology and its applications in the field of plant research and biotechnology.
Collapse
|
10
|
Dawe RK. Charting the path to fully synthetic plant chromosomes. Exp Cell Res 2020; 390:111951. [PMID: 32151492 DOI: 10.1016/j.yexcr.2020.111951] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
The concepts of synthetic biology have the potential to transform plant genetics, both in how we analyze genetic pathways and how we transfer that knowledge into useful applications. While synthetic biology can be applied at the level of the single gene or small groups of genes, this commentary focuses on the ultimate challenge of designing fully synthetic plant chromosomes. Engineering at this scale will allow us to manipulate whole genome architecture and to modify multiple pathways and traits simultaneously. Advances in genome synthesis make it likely that the initial phases of plant chromosome construction will occur in bacteria and yeast. Here I discuss the next steps, including specific ways of overcoming technical barriers associated with plant transformation, functional centromere design, and ensuring accurate meiotic transmission.
Collapse
Affiliation(s)
- R Kelly Dawe
- Department of Genetics and Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
11
|
Cody JP, Graham ND, Zhao C, Swyers NC, Birchler JA. Site-specific recombinase genome engineering toolkit in maize. PLANT DIRECT 2020; 4:e00209. [PMID: 32166212 PMCID: PMC7061458 DOI: 10.1002/pld3.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/08/2020] [Accepted: 02/18/2020] [Indexed: 05/20/2023]
Abstract
Site-specific recombinase enzymes function in heterologous cellular environments to initiate strand-switching reactions between unique DNA sequences termed recombinase binding sites. Depending on binding site position and orientation, reactions result in integrations, excisions, or inversions of targeted DNA sequences in a precise and predictable manner. Here, we established five different stable recombinase expression lines in maize through Agrobacterium-mediated transformation of T-DNA molecules that contain coding sequences for Cre, R, FLPe, phiC31 Integrase, and phiC31 excisionase. Through the bombardment of recombinase activated DsRed transient expression constructs, we have determined that all five recombinases are functional in maize plants. These recombinase expression lines could be utilized for a variety of genetic engineering applications, including selectable marker removal, targeted transgene integration into predetermined locations, and gene stacking.
Collapse
Affiliation(s)
- Jon P. Cody
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | | | - Changzeng Zhao
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Nathan C. Swyers
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | | |
Collapse
|
12
|
Birchler JA, Swyers NC. Engineered minichromosomes in plants. Exp Cell Res 2020; 388:111852. [PMID: 31972219 DOI: 10.1016/j.yexcr.2020.111852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022]
Abstract
Artificial chromosome platforms are described in plants. Because the function of centromeres is largely epigenetic, attempts to produce artificial chromosomes with plant centromere DNA have failed. The removal of the centromeric sequences from the cell strips off the centromeric histone that is the apparent biochemical marker of centromere activity. Thus, engineered minichromosomes have been produced by telomere mediated chromosomal truncation. The introduction of telomere repeats will cleave the chromosome at the site of insertion and attach the accompanying transgenes in the process. Such truncation events have been documented in maize, Arabidopsis, barley, rice, Brassica and wheat. Truncation of the nonvital supernumerary B chromosome of maize is a favorite target but engineered minichromosomes derived from the normal A chromosomes have also been recovered. Transmission through mitosis of small chromosomes is apparently normal but there is loss during meiosis. Potential solutions to address this issue are discussed. With procedures now well established to produce the foundation for artificial chromosomes in plants, current efforts are directed at building them up to specification using gene stacking methods and editing techniques.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO, 65211-7400, USA.
| | - Nathan C Swyers
- Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO, 65211-7400, USA
| |
Collapse
|
13
|
Pouvreau B, Vanhercke T, Singh S. From plant metabolic engineering to plant synthetic biology: The evolution of the design/build/test/learn cycle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:3-12. [PMID: 29907306 DOI: 10.1016/j.plantsci.2018.03.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/19/2018] [Accepted: 03/28/2018] [Indexed: 05/21/2023]
Abstract
Genetic improvement of crops started since the dawn of agriculture and has continuously evolved in parallel with emerging technological innovations. The use of genome engineering in crop improvement has already revolutionised modern agriculture in less than thirty years. Plant metabolic engineering is still at a development stage and faces several challenges, in particular with the time necessary to develop plant based solutions to bio-industrial demands. However the recent success of several metabolic engineering approaches applied to major crops are encouraging and the emerging field of plant synthetic biology offers new opportunities. Some pioneering studies have demonstrated that synthetic genetic circuits or orthogonal metabolic pathways can be introduced into plants to achieve a desired function. The combination of metabolic engineering and synthetic biology is expected to significantly accelerate crop improvement. A defining aspect of both fields is the design/build/test/learn cycle, or the use of iterative rounds of testing modifications to refine hypotheses and develop best solutions. Several technological and technical improvements are now available to make a better use of each design, build, test, and learn components of the cycle. All these advances should facilitate the rapid development of a wide variety of bio-products for a world in need of sustainable solutions.
Collapse
Affiliation(s)
- Benjamin Pouvreau
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia.
| | - Thomas Vanhercke
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Surinder Singh
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
14
|
Yan X, Li C, Yang J, Wang L, Jiang C, Wei W. Induction of telomere-mediated chromosomal truncation and behavior of truncated chromosomes in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:700-713. [PMID: 28500683 DOI: 10.1111/tpj.13598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Engineered minichromosomes could be stably inherited and serve as a platform for simultaneously transferring and stably expressing multiple genes. Chromosomal truncation mediated by repeats of telomeric sequences is a promising approach for the generation of minichromosomes. In the present work, direct repetitive sequences of Arabidopsis telomere were used to study telomere-mediated truncation of chromosomes in Brassica napus. Transgenes containing alien Arabidopsis telomere were successfully obtained, and Southern blotting and fluorescence in situ hybridization (FISH) results show that the transgenes resulted in successful chromosomal truncation in B. napus. In addition, truncated chromosomes were inherited at rates lower than that predicted by Mendelian rules. To determine the potential manipulations and applications of the engineered chromosomes, such as the stacking of multiple transgenes and the Cre/lox and FRT/FLP recombination systems, both amenable to genetic manipulations through site-specific recombination in somatic cells, were tested for their ability to undergo recombination in B. napus. These results demonstrate that alien Arabidopsis telomere is able to mediate chromosomal truncation in B. napus. This technology would be feasible for chromosomal engineering and for studies on chromosome structure and function in B. napus.
Collapse
Affiliation(s)
- Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Chen Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
- College of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Xinxiang, 453003, China
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, 071001, China
| | - Jie Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Lijun Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Chenghong Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Wenhui Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
- College of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Xinxiang, 453003, China
| |
Collapse
|
15
|
Synthetic genetic circuits in crop plants. Curr Opin Biotechnol 2017; 49:16-22. [PMID: 28772191 DOI: 10.1016/j.copbio.2017.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022]
Abstract
The love affair between crop breeding and genetics began over a century ago and has continued unabated, from mass selection programs to targeted genome modifications. Synthetic genetic circuits, a recent development, are combinations of regulatory and coding DNA introduced into a crop plant to achieve a desired function. Genetic circuits could accelerate crop improvement, allowing complex traits to be rationally designed and requisite DNA parts delivered directly into a genome of interest. However, there is not yet a standardized pipeline from exploratory laboratory testing to crop trials, and bringing transgenic products to market remains a considerable barrier. We highlight successes so far and future developments necessary to make genetic circuits a viable crop improvement technology over this century.
Collapse
|
16
|
Swyers NC, Cody JP, McCaw ME, Graham ND, Zhao C, Gaeta RT, Birchler JA. Telomere-Mediated Chromosomal Truncation for Generating Engineered Minichromosomes in Maize. CURRENT PROTOCOLS IN PLANT BIOLOGY 2016; 1:488-500. [PMID: 31725959 DOI: 10.1002/cppb.20031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Minichromosomes have been generated in maize using telomere-mediated truncation. Telomere DNA, because of its repetitive nature, can be difficult to manipulate. The protocols in this unit describe two methods for generating the telomere DNA required for the initiation of telomere-mediated truncation. The resulting DNA can then be used with truncation cassettes for introduction into maize via transformation. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Nathan C Swyers
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Jon P Cody
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Morgan E McCaw
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Nathaniel D Graham
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Changzeng Zhao
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Robert T Gaeta
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
17
|
Production of Engineered Minichromosome Vectors via the Introduction of Telomere Sequences. Methods Mol Biol 2016. [PMID: 27557682 DOI: 10.1007/978-1-4939-4931-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Artificial minichromosomes are non-integrating vectors capable of stably maintaining transgenes outside of the main chromosome set. The production of minichromosomes relies on telomere-mediated chromosomal truncation, which involves introducing transgenes and telomere sequences concurrently to the cell to truncate an endogenous chromosomal target. Two methods can be utilized; either the telomere sequences can be incorporated into a binary vector for transformation with Agrobacterium tumefaciens, or the telomere sequences can be co-introduced with transgenes during particle bombardment. In this protocol, the methods required to isolate and introduce telomere sequences are presented. Following the methods presented, standard transformation procedures can be followed to produce minichromosome containing plants.
Collapse
|
18
|
Puchta H. Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:5-15. [PMID: 26677816 DOI: 10.1111/tpj.13100] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 05/21/2023]
Abstract
It is possible to target individual sequence motives within genomes by using synthetic DNA-binding domains. This one-dimensional approach has been used successfully in plants to induce mutations or for the transcriptional regulation of single genes. When the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system was discovered, a tool became available allowing the extension of this approach from one to three dimensions and to construct at least partly synthetic entities on the genome, epigenome and transcriptome levels. The second dimension can be obtained by targeting the Cas9 protein to multiple unique genomic sites by applying multiple different single guiding (sg) RNAs, each defining a different DNA-binding site. Finally, the simultaneous use of phylogenetically different Cas9 proteins or sgRNAs that harbour different types of protein binding motives, allows for a third dimension of control. Thus, different types of enzyme activities - fused either to one type of Cas9 orthologue or to one type of RNA-binding domain specific to one type of sgRNA - can be targeted to multiple different genomic sites simultaneously. Thus, it should be possible to induce quantitatively different levels of expression of certain sets of genes and at the same time to repress other genes, redefining the nuclear transcriptome. Likewise, by the use of different types of histone-modifying and/or DNA (de)methylating activities, the epigenome of plants should be reprogrammable. On our way to synthetic plant genomes, the next steps will be to use complex genome engineering approaches within or between species borders to restructure and recombine natural or artificial chromosomes.
Collapse
Affiliation(s)
- Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| |
Collapse
|
19
|
Xu C, Yu W. Artificial Chromosomes in Rice (Oryza sativa). CURRENT PROTOCOLS IN PLANT BIOLOGY 2016; 1:107-120. [PMID: 31725987 DOI: 10.1002/cppb.20008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosomes are the carriers of genetic material in biological organisms. Each chromosome has three essential components: a centromere, telomeres, and origins of replication. The understanding of the essential structural and functional organization of chromosomes has made it possible to produce artificial chromosomes (ACs), which are human-engineered minichromosomes. There are two approaches to make ACs: de novo assembly (bottom-up) and truncation of existing chromosomes (top-down). Rice (Oryza sativa) ACs are produced by telomere-mediated chromosome truncation, and may have many applications, such as genetic engineering to stack and express multiple genes in rice to combat diseases caused by bacteria, fungi, and viruses, to enhance tolerance of rice to environmental stresses such as drought, heat, and salinity, and to improve yield and quality. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Chunhui Xu
- School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Weichang Yu
- Shenzhen Research Institute of The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
20
|
Yu W, Yau YY, Birchler JA. Plant artificial chromosome technology and its potential application in genetic engineering. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1175-82. [PMID: 26369910 PMCID: PMC11389009 DOI: 10.1111/pbi.12466] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/16/2015] [Accepted: 08/07/2015] [Indexed: 06/05/2023]
Abstract
Genetic engineering with just a few genes has changed agriculture in the last 20 years. The most frequently used transgenes are the herbicide resistance genes for efficient weed control and the Bt toxin genes for insect resistance. The adoption of the first-generation genetically engineered crops has been very successful in improving farming practices, reducing the application of pesticides that are harmful to both human health and the environment, and producing more profit for farmers. However, there is more potential for genetic engineering to be realized by technical advances. The recent development of plant artificial chromosome technology provides a super vector platform, which allows the management of a large number of genes for the next generation of genetic engineering. With the development of other tools such as gene assembly, genome editing, gene targeting and chromosome delivery systems, it should become possible to engineer crops with multiple genes to produce more agricultural products with less input of natural resources to meet future demands.
Collapse
Affiliation(s)
- Weichang Yu
- Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
21
|
Plant minichromosomes. Curr Opin Biotechnol 2016; 37:135-142. [DOI: 10.1016/j.copbio.2015.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/06/2015] [Accepted: 11/23/2015] [Indexed: 11/23/2022]
|
22
|
Dang J, Zhao Q, Yang X, Chen Z, Xiang S, Liang G. A modified method for preparing meiotic chromosomes based on digesting pollen mother cells in suspension. Mol Cytogenet 2015; 8:80. [PMID: 26500700 PMCID: PMC4619508 DOI: 10.1186/s13039-015-0184-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/14/2015] [Indexed: 11/11/2022] Open
Abstract
Background Meiotic chromosome preparation is a key step in plant meiotic research. Pollen mother cell (PMC) wall elimination is beneficial to cytogenetic experimental procedures. Without wall interference, these procedures are easier and more successful. In existing methods it is difficult to eliminate PMC walls completely and uniformly. In this paper, we present an improved method for digesting PMC walls, and one for providing massive chromosomal spreads on a slide for other cytogenetic experimental procedures. Results Three plants were selected to exhibit the modified meiotic chromosome preparation method. PMCs were dispersed as single cells and incubated in a mixed enzyme solution (3 % cellulose + 0.3 % pectinase + 1 % snailase) for 1.5–2.5 h. In total, 28.28 % cells were lost during this process. There were 800–1900 spreads on every slide and no PMC wall interference was found on any of the slides. The spreads were also evenly distributed on the slides. More spreads were obtained when PMC and protoplast densities in the suspension were increased. All three plants’ spreads were successfully used to locate a 5 s rDNA conserved sequence. The Nicotiana hybrid’s spreads were successfully used to identify the hybrid’s parental genome. Conclusion This is an alternative method for meiotic chromosome preparation. Through this method, PMC walls can be completely and uniformly eliminated, and hundreds of spreads on every slide can be obtained. These spreads can be successfully used for DNA in situ hybridization.
Collapse
Affiliation(s)
- Jiangbo Dang
- Southwest University, College of Horticulture and Landscape, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Qian Zhao
- Southwest University, College of Horticulture and Landscape, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Xing Yang
- Southwest University, College of Horticulture and Landscape, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Zhi Chen
- Southwest University, College of Horticulture and Landscape, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Suqiong Xiang
- Southwest University, College of Horticulture and Landscape, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Guolu Liang
- Southwest University, College of Horticulture and Landscape, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| |
Collapse
|
23
|
|
24
|
Promises and pitfalls of synthetic chromosomes in plants. Trends Biotechnol 2015; 33:189-94. [DOI: 10.1016/j.tibtech.2014.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/21/2014] [Accepted: 12/30/2014] [Indexed: 12/28/2022]
|
25
|
Abstract
Engineered minimal chromosomes with sufficient mitotic and meiotic stability have an enormous potential as vectors for stacking multiple genes required for complex traits in plant biotechnology. Proof of principle for essential steps in chromosome engineering such as truncation of chromosomes by T-DNA-mediated telomere seeding and de novo formation of centromeres by cenH3 fusion protein tethering has been recently obtained. In order to generate robust protocols for application in plant biotechnology, these steps need to be combined and supplemented with additional methods such as site-specific recombination for the directed transfer of multiple genes of interest on the minichromosomes. At the same time, the development of these methods allows new insight into basic aspects of plant chromosome functions such as how centromeres assure proper distribution of chromosomes to daughter cells or how telomeres serve to cap the chromosome ends to prevent shortening of ends over DNA replication cycles and chromosome end fusion.
Collapse
Affiliation(s)
- Michael Florian Mette
- Research Group Chromosome Structure and Function, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Stadt Seeland OT Gatersleben, Germany,
| | | |
Collapse
|
26
|
|
27
|
Circular permutation of a synthetic eukaryotic chromosome with the telomerator. Proc Natl Acad Sci U S A 2014; 111:17003-10. [PMID: 25378705 DOI: 10.1073/pnas.1414399111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chromosome engineering is a major focus in the fields of systems biology, genetics, synthetic biology, and the functional analysis of genomes. Here, we describe the "telomerator," a new synthetic biology device for use in Saccharomyces cerevisiae. The telomerator is designed to inducibly convert circular DNA molecules into mitotically stable, linear chromosomes replete with functional telomeres in vivo. The telomerator cassette encodes convergent yeast telomere seed sequences flanking the I-SceI homing endonuclease recognition site in the center of an intron artificially transplanted into the URA3 selectable/counterselectable auxotrophic marker. We show that inducible expression of the homing endonuclease efficiently generates linear molecules, identified by using a simple plate-based screening method. To showcase its functionality and utility, we use the telomerator to circularly permute a synthetic yeast chromosome originally constructed as a circular molecule, synIXR, to generate 51 linear variants. Many of the derived linear chromosomes confer unexpected phenotypic properties. This finding indicates that the telomerator offers a new way to study the effects of gene placement on chromosomes (i.e., telomere proximity). However, that the majority of synIXR linear derivatives support viability highlights inherent tolerance of S. cerevisiae to changes in gene order and overall chromosome structure. The telomerator serves as an important tool to construct artificial linear chromosomes in yeast; the concept can be extended to other eukaryotes.
Collapse
|
28
|
Birchler JA. Engineered minichromosomes in plants. CURRENT OPINION IN PLANT BIOLOGY 2014; 19:76-80. [PMID: 24906050 DOI: 10.1016/j.pbi.2014.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/23/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
Platforms for the development of synthetic chromosomes in plants have been produced in several species using telomere mediated chromosomal truncation with the simultaneous inclusion of sites that facilitate further additions to the newly generated minichromosome. By utilizing truncated supernumerary or B chromosomes, the output of the genes on the minichromosome can be amplified. Proof of concept experiments have been successful illustrating that minichromosome platforms can be modified in vivo. Engineered minichromosomes can likely be combined with haploid breeding if they are incorporated into inducer lines given that the observations that basically inert chromosomes from haploid inducer lines can be recovered at workable frequencies in otherwise haploid plants. Future needs of synthetic chromosome development are discussed.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
29
|
|
30
|
Birchler JA, Han F. Meiotic behavior of small chromosomes in maize. FRONTIERS IN PLANT SCIENCE 2013; 4:505. [PMID: 24381575 PMCID: PMC3865424 DOI: 10.3389/fpls.2013.00505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/25/2013] [Indexed: 05/15/2023]
Abstract
The typical behavior of chromosomes in meiosis is that homologous pairs synapse, recombine, and then separate at anaphase I. At anaphase II, sister chromatids separate. However, studies of small chromosomes in maize derived from a variety of sources typically have failure of sister chromatid cohesion at anaphase I. This failure occurs whether there is pairing of two copies of a minichromosome or not. These characteristics have implications for managing the transmission of the first generation artificial chromosomes in plants. Procedures to address these issues of minichromosomes are discussed.
Collapse
Affiliation(s)
- James A. Birchler
- Division of Biological Sciences, University of MissouriColumbia, MO, USA
- *Correspondence: James A. Birchler, Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO 65211-7400, USA e-mail:
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|